
Correspondence

Optimum Configurations for Static and Rotating
Phased Arrays

We introduce a method for comparing the system surveillance

characteristics of static and rotating phased array radars that also

includes subregions of a given total surveillance area. The search

function is obtained for different hemispherical regions based

on the number of active/nonactive array faces. We derive the

surveillance occupancy functions for a typical scenario consisting

of 4 search sectors under various constraints and consider the

number of radiating elements required for surveillance purposes.

We derive an expression for the accurate determination of the

surveillance volume and average beam dwell times for different

scan angles based on the theory of manifolds and consider the

impact of various window functions on the broadside dwell times.

I. INTRODUCTION

A phased array radar [1] has the ability to
perform many tasks, one of the most important being
surveillance. In order to perform 360± volumetric
surveillance a certain number of array faces NF
is required with each array face consisting of a
fixed number (Nelem) of transmit (Tx) and receive
(Rx) modules, respectively. These array faces are
typically inclined at an angle ® from the vertical for
performance reasons and each array face scans a
volume of space bound by angles in elevation (μ1,μ2)
and azimuth (Á1,Á2), respectively. The azimuth angles
that bound the area of surveillance are related to
the number of array faces needed to carry out 360±

scanning via NF = 2¼=(Á2¡Á1). For example if we
require that one array face scan a region bound by
Á1 =¡60± and Á2 = +60± on either side of broadside
then the number of faces required to perform 360±

surveillance is NF = 2¼=120 = 3 or NF = ¼=Ámax =
¼=60 = 3. As each array face scans such a surveillance
region, a certain amount of time is required which is
known as the frame time, i.e., the total time to scan
the surveillance area allocated to one array face. If the
phased array face scans subregions or different sectors
of the total surveillance area, eg., close to the horizon,
then the amount of time to do this is defined as the
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(surveillance) search function time. There are typically
two types of phased array radar systems in use: static
phased arrays and rotating phased arrays with each
type having better performance characteristics than
the other depending on operational requirements.
However a mathematical method that allows direct
comparison between the two is almost nonexistent.
In this correspondence we will derive an approach
that allows such a comparison where the measure of
performance is the scan rate (time taken) to perform
surveillance of different regions/subregions under
certain constraints. At the same time we also solve
some of the problems associated with arrays in
general, that is, the noninvariance of array parameters
with scan angle. More precisely, the effective aperture
of arrays changes as the radiation beam is steered
in elevation and azimuth which dramatically alters
(broadens) the beamwidth and hence the gain or
signal-to-noise ratio (SNR) from that at broadside.
Furthermore the beam at broadside is given a dwell
time tB which is the amount of time it spends on
a target for example. Due to the loss in SNR for
scanning off broadside the beam dwell time is not
invariant and must increase in order to match the
initial value at broadside. This effect has a direct
impact on the search function time. In addition,
there is difficulty in determiming the number of
beams due the beam-broadening effect and each
beam direction has to be calculated explicitly. Not
least of all, the array tilt angle ® makes it even more
difficult to determine the surveillance area since it
“distorts” the bounding regions of the scanned area.
Various attempts have been made to address some
of these issues mainly for static arrays [2—5] that
involve unnecessarily complicated iterative techniques,
but a more general and simplified approach is
lacking. In this correspondence we derive results that
solve the issues addressed above, thus allowing the
two radar types to be compared without the need
for complex iterative or nontractable approaches.
Specifically, we examine the number of radiating
elements that are required in order that surveillance
of different hemispherical regions and subregions is
achieved. In particular we define occupancy functions
for different subregions but before doing so, it is
necessary to derive the search functions for these
regions/subregions which in the end allow us to
compare static and rotating array broadside dwell
times that are required for surveillance under certain
constraints. We derive an expression for the accurate
determination of the area scanned by static and
rotating phased arrays as well as the average beam
dwell times for arbitrary scan angles in uv-space [5].
We use transformations that involve the tilt angle
of the arrays and in the case of rotating arrays
we make use of a pseudocylindrical coordinate
system [6]. We make use of weighting functions
and consider how these effect the broadside

Fig. 1. Coordinate system for static arrays relating the real
coordinate system (x,y,z) (polar) to (u,v,w) reference system
centered on array face. Scanning vector p(μ,Á) determines the
beam position, i.e., p(μ,Á;®)! °; see (22). Array tilt angle ® is
shown as rotation between array face with coordinates (u,v,w) and

real world coordinate system (x,y,z).

dwell times used to do surveillance in different
regions/subregions.

II. THE SEARCH FUNCTION

For an array tilt angle ® we can obtain coordinate
transformations that relate the real world elevation μ
and azimuth Á to the uv-space coordinate system. For
a static array whose axes form a basis on the array
face, i.e., the uv-plane (see Fig. 1), we have [7]

u= cos(μ)sin(Á) (1)

and
v = sin(μ)cos(®)¡ cos(μ)cos(Á) sin(®): (2)

In a similar way we define coordinate transformations
for a rotating array that are based on pseudocylindrical
coordinates commonly known as Sanson-Flamsteed
projections [6]. Relating the pseudocylindrical
u¤v¤-space to the real world elevation and azimuth we
have

u¤ = Ácos(μ) (3)
and

v¤ = sin(μ)cos(®)¡ cos(μ)sin(®)´ sin(μ¡®): (4)

Note that “*” denotes rotating arrays and not the
complex conjugate. The invariance of the beamwidth
for all scan angles under these transformations means
that we can define the area to be a function of the
broadside half-power beamwidth or any other overlap
angle of choice Ã:

Abeams = ¼ sin
2
μ
Ã

2

¶
: (5)

It has been shown [8] that the number of beams
required to scan a volume of space for one static array
face as a function of the total number of array faces
NF required to do hemispherical surveillance is

Nbeams =
−

2¼NF
csc2

μ
Ã

2

¶
(6)
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where

− = ¼ sin(®)(cos(2μ1)¡ cos(2μ2)) +NF cos(®)
£ sin(¼=NF)(sin(2μ2)¡ sin(2μ1)+2(μ2¡ μ1))

(7)
and in the case of one rotating array face

N¤beams =
−¤

2NF
csc2

μ
Ã

2

¶
(8)

where

−¤ = sin(®¡ 2μ1)¡ sin(®¡ 2μ2)+2cos(®)(μ2¡ μ1):

(9)
Here the number of array faces is related to the
maximum azimuth extent Ámax for one array face by
NF = ¼=Ámax, ® is the array tilt angle, and μ1,2 are the
elevations bounding surveillance. We are now faced
with the challenge of obtaining an accurate measure
of the surveillance area (volume). It is evident that
the surveillance area is represented by a manifold
or surface above the real coordinate system (x,y,z).
As an analogy consider the longitude and latitude
geodesics of the Earth which are curves that are
especially pronounced towards the zenith with added
complication when we include the array tilt angle ®.
Thus an accurate determination of the surveillance
region requires finding the area of such a bound
manifold. Since we require that the beamwidths
remain invariant during scanning we have made the
transformation to the coordinate system of the array
face, i.e., (u,v,w). It is in this latter coordinate system
that the beamwidths remain invariant, at least from
a geometric point of view, and which will allow us
to obtain an accurate average beam dwell time by
weighting the manifold by the surveillance area. In
uv(u¤v¤)-space let the surveillance area (manifold) be
represented by a function f= f(u(r,μ,Á),v(r,μ,Á))´
f(u(μ,Á),v(μ,Á)) since in this coordinate system
we can take the value r = 1. In order to obtain the
surveillance area Auv (or Au¤v¤) we notice that any
two vectors t1 and t2 on the surface of the manifold
are not orthogonal to each other but rather span as
vectors in a parallelogram with tangent components
t1 = @r=@μdμ and t2 = @r=@ÁdÁ where r= (u,v,0).
The area of the small parallelogram is the magnitude
of the crossproduct kt1£ t2k, which simplifies to
(note: the analysis that follows also applies to rotating
arrays u¤v¤ unless we specify otherwise):

dAuv = k(@r=@μ)£ (@r=@Á)kdμdÁ (10)

where dAuv is the surface area differential for the
surface. Equation (10) is justified thus: If dAuv
maps a region S in the uv-plane to the surface of
the surveillance manifold § (or vice-versa), then it
follows that a partition of S in the uv-plane leads to
a partition of § in which each partition is practically
the same as the parallelogram spanned by (@r=@μ)¢μj

and (@r=@Á)¢Ák. The area of the parallelogram that
is spanned is ¢Ajk = k(@r=@μ)£ (@r=@Á)k¢μj¢Ák, so
that the approximate area of the surface becomes

Auv ¼
nX
j=1

mX
k=1

¢A(jk)uv

=
nX
j=1

mX
k=1

°°°°μ@r@μ
¶
£
μ
@r
@Á

¶°°°°¢μj¢Ák: (11)

In the limit where the partition becomes finer and
finer the limit of the Riemann sum from (11) then
becomes

Auv =
Z
S

Z
dAuv =

Z
S

Z °°°°μ@r@μ
¶
£
μ
@r
@Á

¶°°°°dμdÁ:
(12)

Equation (12) determines the area scanned by
the array but we will transform it explicitly to a
form that only requires solution of the Jacobian
coordinate transformation matrix using the conformal
transformations given by (1), (2), (3), and (4). Let the
ith component of the cross-product of two vectors
be (v1£ v2)i = ²ijkvj1vk2, where repeated indices are
summed, then we have

jv1£ v2j2 = (v1£ v2)i(v1£ v2)i

= ("ijkv
j
1v
k
2)("ilmv

l
1v
m
2 )

= "ijk"ilmv
j
1v
k
2v
l
1v
m
2

= (±jl±km¡ ±jm±kl)vj1vk2vl1vm2
= ±jl±kmv

j
1v
k
2v
l
1v
m
2 ¡ ±jm±klvj1vk2vl1vm2

= vj1v
k
2v
j
1v
k
2¡ vj1vk2vk1vj2

= (vj1v
j
1)(v

k
2v
k
2)¡ (vj1vj2)(vk1vk2)

= jv1j2jv2j2¡ (v1 ¢ v2)2 (13)

where ±xy is the Kroneker delta-function and ²xyz is the
Levi-Civita or alternating tensor with

²®¯° =8><>:
+1 ®¯° is an even permutation of (1,2,3)

¡1 ®¯° is an odd permutation of (1,2,3)

0 otherwise

:

(14)

If we consider a (1,1)-tensor Aij we can obtain a
tensor Cij if

Cij ´ [AT]ikAkj = Aki Akj (15)

where AT is the transpose of A. Let A be a matrix such
that its elements are composed of the vectors v1 and
v2:

A=
μ
v1 v2
0 0

¶
(16)
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then from (15) we have that the determinant is

det jATAj= C11C22 ¡C12C21
= (v1 ¢ v1)(v2 ¢ v2)¡ (v1 ¢ v2)2

= jv1j2jv2j2¡ (v1 ¢ v2)2: (17)

Equating (13) and (17) we see that

det jATAj= jv1£ v2j2: (18)

Since the cross-product of two vectors can be
formulated based on the Jacobian matrix we define
the matrix A in (18) as the Jacobian.1 Thus the
surveillance region scanned in real space is mapped
on to the uv(u¤v¤)-space coordinate system which we
then project on to the uv(u¤v¤)-plane and with the use
of the coordinate transformations we define the area
for both static and rotating phased arrays to be (for
the appropriate choice of coordinates uv or u¤v¤):

Auv =
Z Á2

Á1

Z μ2

μ1

vuutdet ¯̄̄̄¯
·
@(u,v)
@(μ,Á)

¸T ·@(u,v)
@(μ,Á)

¸¯̄̄̄
¯dμdÁ

(19)

where T is the transpose operator, Á1 =¡¼=NF and
Á2 = ¼=NF are the azimuth angles, and @(u,v)=@(μ,Á)
(or @(u¤,v¤)=@(μ,Á)) represents the Jacobian matrix,

@(u,v)
@(μ,Á)

=
μ
@u=@μ @u=@Á

@v=@μ @v=@Á

¶
: (20)

From the angular bounds we can obtain the frame
time which is the total time required to scan the total
surveillance region. Furthermore any subregion has
an associated time that is required to cover it, i.e.,
the search function time for that subregion. We can
obtain both of these by considering the average beam
dwell time h¿ 0i= tBh¿i for each of the beam directions
where tB is the beam dwell time at broadside and in
the case of static arrays we have

h¿i= 1
Auv

Z Á2

Á1

Z μ2

μ1

1
cos3(°)

det
¯̄̄̄
@(u,v)
@(μ,Á)

¯̄̄̄
dμdÁ

(21)
where

° = sin¡1
μq

sin2(μ¡®)+ cos2(μ¡®) sin2(Á)
¶
(22)

Similarly for a rotating phased array the average beam
dwell time is given by h¿¤0 i= tBh¿¤i where

h¿¤i= 1
±

Z μ2

μ1

1
cos3(μ¡®)

@v¤

@μ
dμ (23)

where ± = sin(μ2¡®)¡ sin(μ1¡®) and we note that
there is only dependence on the elevation and not on
the azimuth, i.e., Á is a constant. Equations (21) and

1The proof is straightforward but mathematically tedious.

Fig. 2. For overlap beam angle Ã = 2±, broadside dwell time
tB = 1 ms and elevation angles in range (1—60) deg we show

change of average beam dwell time h¿ 0i and h¿¤0 i for static and
rotating arrays, respectively, as function of the array tilt angle ®.
Solid curves represent static arrays with azimuth bounds given by
number of faces NF required to do hemispherical surveillance. Top

curve is for NF = 3 and minimum beam dwell time
min(h¿ 0i) = 2:358 ms. Below that is the case for NF = 4 with

min(h¿ 0i) = 1:623 ms and then NF = 5 with min(h¿ 0i) = 1:411 ms.
Lowest curve is for NF = 6 with min(h¿ 0i) = 1:316 ms. Dashed

curve has lowest average beam dwell times and represents rotating
array case for all NF since there is no dependence in azimuth
direction and only on elevation. Minimum of curve gives value

min(h¿¤0 i) = 1:148 ms.

(23) contain the factor 1=cos3(:) where the power
3 is chosen in order to account for two-way loss
effects [9]. Note that h¿i and h¿¤i in (21) and (23),
respectively, do not represent true time quantities but
can be thought of as being dimensionless(normalised)
averages of time-like manifolds that describe
geometrical changes in the beam dwell times and
which, after being multiplied by tB , give the average
beam dwell times h¿ 0i and h¿¤0 i as required. From
the average dwell time and the number of beams we
can derive the search function time to perform the
surveillance task in any subregion as ¿s = tBh¿iNbeams
or ¿ ¤s = tBh¿ ¤iN¤beams. Fig. 2 shows the average beam
dwell times, for static and rotating arrays as a function
of the array tilt angle ®. In Table I and Table II for the
parameters given, we compare the number of beams,
average dwell times and search function times for
different static and rotating array faces. The search
function times for static arrays are always greater than
those for rotating arrays. Interestingly, the average
dwell times for rotating arrays are constant and the
values “cluster” around the broadside dwell time
tB = 1 ms. This is due to the fact that the scanning is
in elevation only with no azimuth scanning (constant)
so the only contribution comes from averaging the
beam dwell times in elevation.

III. NUMBER OF ELEMENTS REQUIRED FOR
SURVEILLANCE

We consider what the number of radiating
elements Nelem is for a constant broadside dwell time
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TABLE I
Static Phased Array with Parameters: tB = 1 ms; ®= 15

±; Ã = 1±;
μ = (1—20) deg

No. of Beams Average Dwell Search Function
No. of Faces: per Face: Time per Beam: Time per Face:

NF Nbeams h¿ 0i (ms) ¿s (s)

3 2301 2.111 4.86
4 1879 1.476 2.77
5 1564 1.285 2.01
6 1331 1.198 1.59

TABLE II
Rotating Phased Array with Parameters: tB = 1 ms; ®= 15

±;
Ã = 1±; μ = (1—20) deg

No. of Beams Average Dwell Search Function
No. of Faces: per Face: Time per Beam: Time per Face:

NF N¤beams h¿¤0i (ms) ¿¤s (s)

3 2819 1.023 2.88
4 2115 1.023 2.16
5 1692 1.023 1.73
6 1410 1.023 1.44

tB in order for static and rotating arrays to perform
surveillance. In the analysis that follows we consider
the case for static arrays but the same procedure
applies to rotating arrays. Since the average beam
dwell time as a function of the scan angles (μ,Á) is
given by h¿ 0i= tBh¿i then the frame time ¿frame is
related to tB by tB = ¿frame=(h¿iNbeams). For a single
coherent integration we have [10]

R4max =
¿frame

h¿iNbeams
Pav¾GtGr¸

2

(4¼)3kTDL
(24)

so that

R4max =
¿frame

h¿iNbeams
Pav¾A´

2

4¼2kTDLsin2(Ã=2)
(25)

where Pav-average power, ¸-wavelength, ¾-RCS,
L-losses, T-temperature and D-SNR. In (25) we have
used (refer also to [10]),

Gt =
4´

sin2(Ã=2)
(26)

and

Gr =
4¼´A
¸2

(27)

for the transmit and receive gains where Ã is the
arbitrary beam overlap angle such as the 3 dB point
and ´ is the array efficiency. Further transforming (25)
by replacing the array power and effective area by the
element contributions Pelem and Aelem gives

R4max =
¿frameNuse
NFh¿iNbeams

N2elemPelemAelem¾´
2

4¼2kTDLsin2(Ã=2)
: (28)

In (28) we have introduced the factor Nuse=NF , where
NF is the number of faces and Nuse is the number of

faces transmitting or receiving simultaneously in the
surveillance regions. Since NF = ¼=Ámax where Ámax is
the maximum azimuth scanned in any of the regions
we finally obtain

Nelemp
·
= sin(Ã=2)

μ
¼¿̂s

ÁmaxNuse

¶1=2
(29)

where · is the system-dependent constant

·=
4¼2R4maxkTDL

¿framePelemAelem¾´
2 (30)

and we define ¿̂s = h¿iNbeams, i.e., we have factored
out the broadside dwell time tB from ¿s. It should be
noted that the frame time ¿frame appearing in (30) is
assumed to be constant and is reflected in column 5
of the tabulated results in Table III while in all other
cases it is not a constant. Equation (29) describes
how the number of elements per face must change
in order to maintain a constant free-space surveillance
time. Table III gives the total search time to perform
360± surveillance based on the number of array faces
in use. The corresponding number of elements for
surveillance is also shown. What is interesting to
note amongst other things is that the 3-face rotating
array system with two active arrays has the same
search function time to that of the 6-face system with
the three active array faces. In the next section we
look at the number of elements required for static
and rotating arrays to perform sector scanning. In
particular Table VI shows that for NF = 3 in particular,
rotating arrays have a smaller number of radiating
elements needed for surveillance. As the number of
faces increases the difference between the two is very
small, especially in subregions r3 and r4. This has
enormous implications to such things as cost, weight,
and cooling of arrays. Interestingly, the number of
elements for rotating arrays is constant as NF increases
in the different subregions.

IV. COMPARISON OF SECTOR SURVEILLANCE
CHARACTERISTICS

In this section we compare static and rotating
radar system performance under sector scanning
conditions via the occupancy function. The amount
of time required to scan a subregion will dictate
how much time is taken from the frame time which
subsequently will determine the time that is left over
for other applications or tasks, e.g., dedicated tracking.
For a frame time ¿frame and search function time ¿s
we define the occupancy ´ to be the ratio of the
search function time to the frame time required to
complete surveillance in a particular subregion, i.e.,
´ = ¿s=¿frame or ´

¤ in the case of rotating arrays. We
note that if the region required to be scanned is the
total surveillance region only, then the occupancy
allowed for that task is ´ = 100 percent. In order
to investigate the occupancy profiles between static
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TABLE III
Total Search Function Time for tB = 1 ms (Column 4) and Relative Number of Elements for a Fixed (Noise Limited) Frame Time ¿frame

(Column 5) for Different Number of Active Array Faces
Parameters: ®= 15±; Ã = 1±; μ = (1—20) deg

Number of Simultaneously Total Search Function Time for 360±

Array Type No. of Faces: Active Faces: Surveillance (s): Nelem=
p
·:

1 14.58 1.8250
Static 3 2 9.72 1.0537

3 4.86 0.6083

1 11.08 1.8371
Static 4 2 8.31 1.1250

4 2.77 0.4592

1 9.54 2.0878
Static 6 2 7.95 1.3476

3 6.36 0.9842
6 1.59 0.3479

1 8.64 1.4049
Rotating 3 2 5.76 0.8111

3 2.88 0.4683

1 8.64 1.6222
Rotating 4 2 6.48 0.9934

4 2.16 0.4055

1 8.64 1.9868
Rotating 6 2 7.20 1.2825

3 5.76 0.9366
6 1.44 0.3311

Fig. 3. Typical division of search volume into subregions which
can be defined by elevation, azimuth, and range.

and rotating arrays we consider a typical scenario
as shown in Fig. 3 for arrays tilted back at an angle
®= 15± with a broadside half-power beamwidth of
Ã = 2±. The subregions r1, r2, r3, and r4 are examined
for the system parameters given in Table IV which
represent typical design specifications where the frame
times in the different subregions are given and the
relative energy required for coherent integration E
is dictated by the normalised ratio of the radar cross
section ¾0 and the pattern factor F over the range
R, i.e., E / (¾0F4=R4)max. Using these parameters
and the surveillance occupancy functions we can
determine what the chosen broadside dwell time tB
should be if all the subregions are scanned with the
restrictions imposed in Table IV and with the added
constraint that the surveillance be done within a

time tmin representing the smallest frame time. In our
analysis this is tmin = 1 s corresponding to subregion
r1 and it is the value used in this paper. Suppose we
factor out tB from the occupancy function which we
redefine to be ˆ́ =Nbeamsh¿i=¿frame ´ ¿̂s=¿frame, then the
broadside dwell time is obtained from

tB = tmin

,24N=4X
j=1

Ej ˆ́j

35= tmin
E1 ˆ́1 +E2 ˆ́2 +E3 ˆ́3 +E4 ˆ́4

(31)

where j represents the different subregions. Table V
shows the search functions for NF = 3, 4, and 5 faced
static and rotating phased array radars. Also shown
are the broadside dwell times required so that all the
subregions are scanned within the constraints given
in Table IV and in a time less or equal to tmin. As the
number of faces increase, so do the broadside dwell
times. More precisely, for NF = 3 the subregion search
functions are greater due to the larger surveillance
angles scanned. This implies that the broadside dwell
times must be small in order to compensate and to
meet the overall system frame time requirements.
For NF = 5 for example, the broadside dwell times
are greater because the subregion search functions
are smaller due to the smaller angular bounds. In all
cases, rotating arrays have greater flexibility in the
range of broadside dwell times that can be chosen to
cover the same subregions as the static arrays. This is
critical if a radar needs a longer broadside dwell time
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TABLE IV
An Example of System Parameters and Angular Bounds for the Different Surveillance Subregions of Fig. 3

Scan Angles in deg Scan Angles in deg Scan Angles in deg
Subregion: r for NF = 3 for NF = 4 for NF = 5 Frame Time ¿frame(s) Relative Energy E

r1 0· μ · ¼=6 0· μ · ¼=6 0· μ · ¼=6 1 1
¡¼=3· Á· ¼=3 ¡¼=4· Á· ¼=4 ¡¼=5· Á· ¼=5

r2 0· μ · ¼=6 0· μ · ¼=6 0· μ · ¼=6 4 2
¡¼=3· Á· ¼=3 ¡¼=4· Á· ¼=4 ¡¼=5· Á· ¼=5

r3 ¼=6· μ · ¼=3 ¼=6· μ · ¼=3 ¼=6· μ · ¼=3 2 1
¡¼=6· Á· ¼=6 ¡¼=9· Á· ¼=9 ¡¼=10· Á· ¼=10

r4 ¼=6· μ · ¼=3 ¼=6· μ · ¼=3 ¼=6· μ · ¼=3 4 2
¡¼=6· Á· ¼=6 ¡¼=9· Á· ¼=9 ¡¼=10· Á· ¼=10

TABLE V
Modified Search Function Times ¿̂s and the Corresponding

Broadside Dwell Times Required to Scan the Subregions Under
the Constraints of Table IV are Shown for NF = 3, 4, and 5 Face

Static and Rotating Phased Arrays

Subregion: ¿̂
s
for ¿̂

s
for ¿̂

s
for

r N
F
= 3 N

F
= 4 N

F
= 5

r1 static: 1.89827 static: 1.07971 static: 0.78111

rotating: 1.12021 rotating: 0.84015 rotating: 0.67212

r2 static: 1.89827 static: 1.07971 static: 0.78111

rotating: 1.12021 rotating: 0.84015 rotating: 0.67212

r3 static: 0.60719 static: 0.38020 static: 0.33909

rotating: 0.56755 rotating: 0.37837 rotating: 0.34053

r4 static: 0.60719 static: 0.38020 static: 0.33909

rotating: 0.56755 rotating: 0.37837 rotating: 0.34053

t
B

static: 0.28947 static: 0.50005 static: 0.66192

rotating: 0.44486 rotating: 0.61027 rotating: 0.74144

which directly effects how the beam dwell times at
arbitrary angles must be changed in order to maintain
SNR amongst other things under the restriction that
the time is no greater than tmin. Note that the values
for tB in Table V have been normalised by tmin and
are therefore dimensionless. In Table VI we display
the number of elements required in order to perform
scanning in the different sectors for varying array
faces.

V. EFFECT OF WEIGHTED ARRAYS ON THE
BROADSIDE DWELL TIME

In the last two rows of Table V we obtained
the broadside dwell time that is required for static
and rotating arrays so that the subregions could
be scanned in a time interval tmin and under the
restrictions of Table IV. This was done using
unweighted coefficients appearing in the array
factors

f(Ã) = 2
Nelem=2X
m=1

am cos
·μ
m¡ 1

2

¶
Ã

¸
(32)

TABLE VI
Number of Radiating Elements Required to Perform Surveillance
Based on the Subregion Parameters of Tables IV and V. Here we

Take the Case of One Active Array Face

Subregion: Nelem=
p
· Nelem=

p
· Nelem=

p
·

r for N
F
= 3 for N

F
= 4 for N

F
= 5

r1, r2 static: 0.31525 static: 0.27453 static: 0.26107

rotating: 0.24217 rotating: 0.24217 rotating: 0.24217

r3, r4 static: 0.25214 static: 0.24436 static: 0.24326

rotating: 0.24377 rotating: 0.24377 rotating: 0.24377

for even Nelem and

f(Ã) = a0 +2
(Nelem¡1)=2X

m=1

am cos[(mÃ)Ã] (33)

for odd Nelem where Ã = (2¼d=¸)cos(μ) +®, ® is the
element phase shift, μ is the radiation angle from
the plane of the array, d is the element spacing,
and ¸ is the wavelength. We now consider the case
where the window functions appearing in (32) and
(33) are not unity and determine an expression that
relates the weighted broadside dwell time twB to the
unweighted tuB for static and rotating arrays (see for
example Table V). We use five different window
functions namely: Chebyshev, Hamming, Kaiser,
Hann, and Blackman-Harris [11—13]. Recalling that
tB = ¿frame=(h¿iNbeams) (once again the same procedure
also applies to rotating arrays) (28) can be rewritten as

tuB =
·0

N2elemPelemAelem
(34)

where z ´N2elemPelemAelem is the power-aperture
product of an unweighted array and

·0 = 4¼2R4maxNFkTDLsin
2(Ã=2)=¾´2: (35)

Similarly we have for a weighted array

twB =
·0

zw
(36)
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Fig. 4. Ratio of unweighted broadside dwell times tuB to weighted
broadside side dwell times twB using different windows is

compared as function of number of elements. Chebyshev and
Kaiser windows were calculated using sidelobe level

(SLL) =¡40 dB.

Fig. 5. Ratio of unweighted broadside dwell times tuB to weighted
broadside side dwell times twB versus number of elements for
arrays with different weights for both transmit (TX ) and receive
(RX ) modes. For windows with superscript (1) transmitted power
is unweighted but reception is weighted. Sidelobe level (SLL) is
chosen to be SLL =¡40 dB for Chebyshev and Kaiser windows.
For windows with superscript (2) both transmit and receive modes
are weighted and here SLL =¡20 dB for Chebyshev and Kaiser

windows.

where zw is the weighted power-aperture product.
Dividing (34) by (36) gives the ratio

tuB
twB
=

zw
N2elemPelemAelem

: (37)

Let the power-aperture product of a weighted array
be given as zw = ParrayAarray where we define Parray to
be the average power of the array and Aarray to be the

effective area of the array. Then we have

zw =

24NelemX
i=1

a(i)t a
(i)
r

352PelemAelem (38)

with Pelem as the average power of the unweighted
element (assumed identical across the array), a(i)t
are the normalised amplitude weights applied on
transmission to element i, a(i)r are the normalised
amplitude weights applied on reception to element
i. Where the element normalisation is such that
max(a(i)t,r) = 1, it reflects the practical issue that the
antenna weighting is normally achieved by attenuating
an element. For an unweighted antenna a(i)t = 1
and a(i)r = 1, reducing the previous result to the
well-known z =N2elemPelemAelem shown above. From
(37) and (38) we have

tuB
twB
=

1
N2elem

24NelemX
i=1

a(i)t a
(i)
r

352 : (39)

We can define the relative efficiency ² of the weighted
array to the unweighted array to be

²=
1

N2elem

24NelemX
i=1

a(i)t a
(i)
r

352 PelemGelem
PelemGelem

(40)

where Gelem is the gain of the unweighted element,
(this is related to the window function loss [14]). Thus
we finally have that the weighted broadside dwell time
is related to the unweighted broadside dwell time by
the inverse of the array efficiency,

twB =
tuB
²
: (41)

We find that for any given window the power-aperture
product increases as the number of elements is
increased except for the Chebyshev window which
decreases beyond a critical point as the number of
elements is increased. The reason for this is due to
the fact that as the array size increases beyond a
certain limit the Chebyshev weights must transfer
power from the mainlobe to the sidelobes in order to
maintain the required sidelobe ratio. Fig. 4 shows this
in terms of the efficiency of the arrays for different
windows. For all windows the efficiency “saturates”
for large arrays except for the Chebyshev weights
which drop significantly. Fig. 5 addresses the issue
of whether for a given two-way sidelobe level it
is more efficient to weight both transmission and
reception or just the one, which is usually reception
because of interference rejection considerations.
Windows with superscript 1 represent an unweighted
transmission and weighted reception of ¡40 dB (for
Chebyshev and Kaiser). On the other hand windows
with superscript 2 represent the case of both transmit
and receive modes being weighted and with ¡20 dB
sidelobes for the Chebyshev and Kaiser windows.
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Broadly speaking, the efficiency is greatest for all
cases when the transmit mode is unweighted and the
receive mode is weighted except for the Chebyshev
window applied to small arrays where both Tx and
Rx are the most efficient. From these results we can
determine the behaviour of the unweighted broadside
dwell times for the different subregions (see Table V
for example), to the case where they are weighted
by different window functions. Equation (41) and
Figs. 4 and 5 show in particular that rotating arrays
have better system performance charactersitics than
static phased arrays but this is only true if the same
window functions are used in order to carry out the
comparison. If the wrong window function is chosen
it is evident that this could lead to the reverse scenario
where a static array outperforms a rotating array. Thus
the choice of windows is critical in discerning the
differences between the two systems.

VI. CONCLUSION

We have developed a method for determining
the search functions for static and rotating phased
array radars that in turn has allowed us to investigate
the surveillance occupancy of different subregions.
Rotating phased arrays give greater flexibility in
the selection of the broadside dwell time needed to
scan different subregions under varying constraints
compared with the static array case. Rotating arrays
also require less Rx and Tx elements to perform
surveillance although this difference is decreased as
NF increases. Finally, we examine what effect the
weighting of arrays has on the broadside dwell times
and therefore how the performance differences can be
reversed if different window functions are used.
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