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Abstract—This paper proposes a variable-dimension optimiza-
tion approach to address the high dimensionality issues in solving
the unit commitment problem. This method introduces the con-
cept of adaptive search space dimension. The proposed approach
is implemented in particle swarm optimization algorithm. The
optimization process starts with an arbitrary problem dimension,
adapts with respect to the swarm progress and finally selects the
optimal dimensional space. The efficiency of this method is tested
on a ten-unit test system. The results are compared with binary
programming and fixed duty cycle approaches. The simulation
results show that the proposed method results in considerable
reduction of problem dimension, faster convergence and improved
quality of the final solution.

Index Terms—Evolutionary programming, particle swarm opti-
mization, unit commitment.

I. INTRODUCTION

T HE objective of the unit commitment problem (UCP) is
to determine the optimal scheduling of the generating

units along with their generation levels at minimum operating
costs while satisfying the system and unit constraints. The
decision variables include the binary unit commitment (UC)
variables and real-valued economic dispatch (ED) variables.
The UC variables describe the ON/OFF status while the ED
variables indicate the generation levels of the generators at each
hour of the planning period. The dimension of the problem
increases rapidly with longer planning time and increased size
of the power system. Solving this high dimensional problem is
a challenging task.

Numerous deterministic and stochastic optimization tech-
niques such as dynamic programming [1], branch-and bound
[2], Lagrange relaxation [3], genetic algorithm [4], particle
swarm optimization (PSO) [5], tabu search [6], etc. have been
developed to solve the UCP. PSO is used to solve the UCP in
this paper. PSO is an evolutionary computational technique
proposed by Kennedy and Eberhart in 1995 [7]. The search
process is initiated by a population or swarm of particles. A
particle represents a solution to a given problem.

The particles traverse the entire search space at a certain
velocity. The particle’s flight and velocity is guided by its own
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flying experience and motivated by the social behavior of the
particles in its neighborhood. All the algorithms including PSO
suffer from the curse of dimensionality, i.e., the numerical
convergence and solution quality drastically deteriorates with
problem dimension. Many researchers have proposed hybrid
algorithms [8]–[11] to address the above issue but no attempt
was made to reduce the problem dimension. This paper presents
an innovative UCP modeling which helps in considerable re-
duction in the problem dimension.

The first attempt in this process was done by converting the
binary coding of UC schedule to integer representation [12],
[13]. The UC schedule is no more represented by the switching
status of the units at each hour but described by the continuous
operation (duty cycles) of the unit over a period of time. This
modeling brings about a huge reduction in the number of UC
variables. The number of duty cycles (integers) required to de-
scribe the schedule of any unit should be defined before the start
of the optimization process. This number is common to all units
in the power system. This is not a good procedure because some
units might supply the base load so their switching is minimum
(few duty cycles), where as some units have small start-up delay
time and might switch rapidly to support sudden changes in load
(more duty cycles). So having a common number of duty cycles
might result in idle duty cycles for base load generation units or
high delay time units and insufficient duty cycles for units with
low delay time.

This paper proposes a variable-dimension optimization
approach to address the above issue. The number of duty
cycles need not be defined beforehand and can vary from unit
to unit. The number of duty cycle required by each unit is
decided during the optimization process. The total number of
UC variables is therefore not fixed and varies during the search
process. The length or dimension of the particles is adaptive.
The dimension of the search space continuously varies until it
finds the right dimension. Hence derives the name variable-di-
mension optimization. Besides describing the duty cycles for
the units, the particle also provides information regarding the
number of duty cycles required by each unit through a header
index. This index is not an optimization decision variable but
controlled by the special reserve manager operator. The main
advantage of this process is that there are no idle duty cycles for
any unit and every dimension of the search space is effectively
utilized. The aim of this paper is to present the variable-dimen-
sion optimization approach to solve the high dimensional unit
commitment problem with reduced search dimension.

II. SWARM OUTLOOK

In variable-dimension optimization approach, the swarm con-
sists of particles which differ also in dimension. The dimension-
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ality of a particle’s search space is completely different from
its neighbors. However the particles do share information re-
garding their flying experiences among each other. This infor-
mation exchange is only between identical dimensions. The par-
ticles do not anticipate or borrow information from its alien or
unknown space dimension.

III. PROBLEM DEFINITION

The objective of the UC problem is to minimize the total
operating costs of all the generators, , subjected to a set of
system and unit constraints over the scheduling period, . The
UC problem can be formulated as a minimization problem as
follows:

(1)
The fuel costs (FC) are assumed to be a quadratic function of the
generator output power, . The start-up costs are expressed as an
exponential function of the down time. The decision variables
include the binary UC variables, U, describing the commitment
of the units and the continuous or economic dispatch variables,
Z, describing the generation level of the units at every hour of
the planning period.
The system constraints include:

— power balance constraint;
— spinning reserve constraint.

The unit constraints include:
— initial operating status;
— minimum and maximum generation limits;
— ramp rates;
— minimum up/down time (MUT/MDT) limits.
The constraints are handled using adaptive penalty func-

tion approach [12]. The challenging task in UC problem is
handling the binary UC variables and their related constraints
(MUT/MDT constraints). In evolutionary programming, the
binary variables are handled by a probability calculated using
the sigmoid function. This probability decides whether a binary
variable can be either zero or one. So it is very difficult to
control a set of binary variables together in order to satisfy the
MUT/MDT constraints. Repair techniques are usually used for
this purpose. More over modeling the UC by binary program-
ming results in a high dimension problem. Highly efficient
algorithms are required to solve these problems.

IV. PARTICLE FORMULATION

The binary programming approach for UC problem results in
a binary particle representing the on/off status of the generators
at each hour of the planning period. So for a scheduling period
of one day, the particle coding for one unit consists of 24 binary
bits as shown in Fig. 1.

The duty cycle approach presented in [13] and [14] converts
the binary programming to integer programming as shown in
Fig. 2.

Fig. 1. Particle representation using binary programming.

Fig. 2. Particle representation using integer programming.

Fig. 3. Particle coding in fixed duty cycle approach for N units.

Fig. 4. Particle coding in variable-dimension approach.

The point of time representation in binary programming is
converted to period of time representation in integer program-
ming. Instead of representing the status of a unit at each hour,
the operation of the unit over a period of time is described in
duty cycles. The 24 bits in the binary particle in Fig. 1 can
be represented by three duty cycles as shown in Fig. 2. Each
integer represents the continuous on/off period of a generator.
Positive/Negative sign indicates that the unit is up/down respec-
tively. But in this modeling, the number of duty cycles or in-
tegers required by each unit should be defined before the start
of the optimization process. This method is referred to as the
fixed-duty cycle approach. The particle coding with this ap-
proach for N generators is as shown in Fig. 3. In this case the
number of duty cycles for each unit is fixed to five. So there are
five ve integers describing the commitment of the each unit for
the entire planning period. This may not be well defined in all
situations because the number of duty cycles required by each
unit depends not only on the technical and operational delay
times of the units but also on the nature of demand profile over
the planning period.

The proposed variable-dimension optimization approach has
an adaptive particle size. It means the number of duty cycles
required by each unit is not predefined but decided during the
optimization process. For the UCP with N generators, the par-
ticle is as shown in Fig. 4.

The particle consists of a string of positive and negative
integers. It has the information regarding the number of UC
variables required for each unit referred to as the header and
the operation periods describing the commitment of the unit
at each hour of the planning period. For instance, the particle
in Fig. 4 requires four integers to describe the scheduling of
unit 1. The first integer represents header 1 ( 3) and this
describes the number of UC variables required for unit 1. The
remaining three integers represent the duty cycles. Similarly,
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Fig. 5. Flowchart illustrating the basic PSO algorithm.

unit 2 is represented by six integers. The first integer or header
2 ( 5) indicates that five integers are used for describing the
scheduling of unit 2 and the next five integers represent the
operation periods of unit 2.

V. VARIABLE-DIMENSION APPROACH

For simplicity, the proposed approach is described using the
standard PSO algorithm. The algorithm basically consists of
three major processes: initialization, fitness evaluation, and pop-
ulation update as shown in Fig. 5.

A. Initialization

This process consists of generating initial conditions for each
particle in the swarm. The header for each unit is generated ran-
domly between lower and upper bound using (2). The minimum
number of variables required for each unit is described by min-
imum up/down time and the maximum extends to the planning
period. When header equals to the lower bound, the approach
resembles fixed duty cycle method and to binary method when
header equals the upper bound:

(2)

The remaining dimensions of the particle are calculated using
(3). The first dimension for each unit is generated with
consideration to the previous state, of the unit. For
(3) at the bottom of the page, , the dimensions are gener-
ated using MUT/MDT and unscheduled planning time, where

and A,B,C are random integers
which can either be 1 (ON) or 1 (OFF). The func-
tion generates random integers between the specified lower and
upper bounds. If the upper bound happens to be less than the
lower bound, the function returns zero. This type of initialization

will ensure that the sum of UC variables for each unit sum up
to the planning period and always satisfy the MUT/MDT con-
straints. Apart from the UC variables, the particle also has eco-
nomic dispatch, ED variables. These are continuous variables
and are randomly generated between the maximum and min-
imum generation limits of the generators.

B. Fitness Evaluation

The procedure for fitness calculations is explained by the
flowchart in Fig. 6. Let us consider a particle to consist of two
sets of variables: UC variables, Y, and ED variables, Z. The
flowchart takes the current position of the particle as the input
and delivers a new corrected particle position, fitness value and
the magnitudes of the constraint violations. Initially the integer
based UC variables are converted to binary variables, . Be-
fore evaluating the fitness and validating the constraints, the par-
ticle traverses through the reserve manager and demand equal-
izer operations. The reserve manager ensures that the reserve
requirement is always fulfilled. This is done by switching some
of the economical units. This operator also takes care of the un-
wanted reserve by switching off some of the committed units.
This operator therefore generates a new set of UC variables,

. The demand equalizer ensures that the economical units
share the maximum load. This operator maintains the balance
between generation and load. This operation leads to a new set
of ED variables, . Before terminating the fitness evalua-
tion algorithm, the new binary UC variables, are converted
back to integer variables, .

C. Population Update

The particles in the swarm explore and exploit the search
space by traveling at a certain velocity. The current velocity,

, is guided by its previous velocity, , the distance of
the particle to its local best, , and the distance to the global
best, as shown in (4). The current position, , is obtained
by adding the current velocity to the previous position, . In
variable-dimension optimization approach, the vectors , ,

, and have different dimensions. So information has to be
shared among different dimensional particles. The association
between and to generate is illustrated in Fig. 7. Unit
1 in is three dimension where as is two dimensions. The
first two dimensions of and can communicate to result in

for the corresponding dimension. The third dimension in
is an alien space for , so there is no contribution of to

this dimension. If the other vectors and also do not con-
tribute to this dimension, then a random velocity is added to this
dimension. For unit 2, has five dimensions where as has

for and
for and

(3)



PAPPALA AND ERLICH: A VARIABLE-DIMENSION OPTIMIZATION APPROACH TO UNIT COMMITMENT PROBLEM 1699

Fig. 6. Flowchart illustrating the fitness evaluation process.

Fig. 7. Information exchange between particle k and its local best.

six dimension. Since has the same dimension as the ,
the first five dimension of can correspond to their

(4)

respective dimensions in to contribute to . Since the
sixth dimension is missing in , no information is required in
this dimensional space and therefore omitted from this update
process. Similar procedures are utilized in communicating with

and . After a particle is updated, it is ensured that the sum
of the absolute values of UC variables for each unit sum up to
the planning period.

VI. SIMULATION ALGORITHM

The variable-dimension optimization approach illustrated
above is implemented in a new version of PSO algorithm. The
motive behind the new version of PSO is to develop a black
box optimization tool. The algorithm should involve minimum
human assistance and should provide good solutions to a wide
variety of real-time applications. PSO should be used like a
built in function call. The function should only have inputs like
problem dimension, lower and upper bounds of the decision

variables, number of equality and inequality constraints and a
stopping criteria. This function call should be associated with
an external function which can take an instance of decision
variables and return the corresponding fitness value and con-
straint violations. No other information about the problem can
be exchanged. The particles should be able to adjust their flight
and the swarm should maintain a suitable population diversity
to automatically self tune their search process and discover
good solutions.

The above requirements are fulfilled by the new version of
PSO called Self-adaptive particle swarm optimization, here
after referred to as APSO [15]. It is a parameter free optimiza-
tion tool. The particles of this algorithm have the capability
to modify their search strategy based on their personal perfor-
mances. The particles and the swarm adapt to the situations to
find the global optimal solution. It is free from the burden of
selecting the most appropriate swarm size. The algorithm is
inspired from the nomad community. Nomads are groups of
people who move from place to place following the seasonal
availability in search for a better living. This algorithm simu-
lates the moving strategy of different sized groups of nomads
called “Tribes”. The basic structure of the algorithm is derived
from the TRIBE-PSO introduced by Clerc [16].

A. Swarm Evolution

The search process is ignited by minimal set of tribes.
Each tribe consists of a fixed set of particles, . Each particle
is associated with a certain velocity and fitness. The particles try
to memorize its previous two performances and also its best per-
formance. At the end of generations, the tribes are evaluated.
The particle is judged based on its two previous performances.
The performances can be an improvement , status quo ,
or a deterioration . A bad particle is one which deteriorates
or shows no progress . On the other
hand a good particle is one whose performances are improve-
ments . The TRIBE is also labelled as good or
bad based on the majority of its good or bad particles. At the first
iteration, the previous two performances of the particles are ini-
tialized to their current position. If the TRIBE happens to be a
bad performer, it indicates that its current information about the
search space is not enough to find good solution. At this instant,
this tribe will add more information by generating a new tribe
with particles. Two-third of the new particles are randomly
generated while the remaining one-third particles are generated
in the close proximity of the best particle in the current TRIBE.
The second bad TRIBE will add another particles to the
newly generated TRIBE, whereas the good TRIBE has majority
of good particles. It means that the TRIBE has enough informa-
tion about the good solution. If this TRIBE has more than one
particle, the worst performing particle is identified. This particle
may also be good but its close associates in the same TRIBE are
much better and this particle has the same or less information as
the rest of its associates. So there is no risk in deleting this par-
ticle. The good TRIBE therefore will eliminate one of its least
performing particle. The updated swarm is again allowed to ex-
plore for iterations. This process continues until the stop-
ping criteria is reached. The process of evolution indicates that
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new particles will be born only when they are required. Particles
which do not contribute to the search process are eliminated.
The swarm always has potential particles enthusiastic enough
to search for an optimal solution. This substantially helps the
algorithm to find the solution within few iterations.

B. Flying Strategies

Different particles in the TRIBEs have different levels of
performances. Before each TRIBE evaluation, the particles
are given enough time to explore. During the evaluation, the
particles are compared based on their performance and least
performing particles may be eliminated. But, are all the particles
given a fair chance to improve? Both good and bad particles
are allowed to explore for the same amount of time. Since all
particles have the same flying strategies, the good particles will
always perform better and the bad particle will never reach
the standards of the good particle. In order to remove this
bias, different particles have different flying strategies. Based
on their previous performances, the particles automatically
judge the right flying strategy. The particles are categorized
into three groups. A worst particle is one whose performances
are deterioration . Bad particles and good parti-
cles comprise the following combinations ,

, respectively. The worst particles follow
a random search strategy, the bad particle prefers pivot strategy
and the good particles follow Gaussian update strategy. These
strategies are explained in [17].

C. Neighborhood Topologies

The standard PSO version employs a star topology where
each particle is directly connected to the global best performer
of the swarm. When the global best performer catches a local
minima, all particles are naturally attracted to it. Since each
particle is directly connected to the global best, information is
rapidly propagated and the whole swarm may prematurely con-
verge on this local minima. In order to avoid such untoward con-
vergence, several information or neighborhood topologies are
suggested. In APSO algorithm, each particle has a fixed neigh-
borhood. The flight of the particle is consistently monitored and
guided by these neighbors. The global best performer is no more
common to all the particles. Each particle selects its own global
best performers from its neighborhood and not from the whole
swarm.

D. Description of the Proposed Approach

The optimization process starts with tribes and eventually
evolves to explore the entire problem space. Each particle in a
tribe is assisted by a set of associates in its neighborhood. Each
tribe will try to locate a minimum and in the process also com-
municate with the other tribes to discover the global solution.
The algorithm consists of two iterative loops. One loop con-
trols the ultimate termination of the search process. The second
loop allows the swarm to explore and exchange information
among its neighbors before they are finally evaluated. So this
loop controls the evolutionary process. A fixed set of genera-
tion, , is set as the termination criteria for this loop.
The algorithm is explained in the following steps:

1) Swarm initialization

FOR to

FOR to TOTAL_PARTICLES_TRIBE[i]
a) Randomly generate a particle with position,

X and velocity, V
b) Assign a fitness value, f (X) for each particle
c) Initialize the local best and previous

two performances to the current
position, X.

d) Generate a neighborhood for the particle.
The neighborhood list of a particle consists
of all the particles in the current tribe and a
random parent from the other tribe.

END

END

2) WHILE

DO

FOR to TOTAL_TRIBES

FOR to
TOTAL_PARTICLES_TRIBE[i]

1) choose the right flying strategy
and update velocity and position

2) correct the BOUND violations
3) evaluate the fitness
4) memorize ,
5) update ,
6) COUNT++
7) IF

GOTO
STEP 7

END

END

CYCLE++

END WHILE

4) Evaluate the TRIBES and perform the necessary adaptations

FOR to TOTAL_TRIBES
a) Evaluate the TRIBE (GOOD or BAD)
b) IF

i) Identify the best performer in the TRIBE
ii)

, for the first
BAD TRIBE only

iii) Generate a new TRIBE with particles
• Two-third particles are randomly

generated
• One-third particles are generated close

to best performer of TRIBE[i]
iv) Generate the neighborhood for these

particles. The neighbors of a particle
include all the particles in the new TRIBE
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TABLE I
PROBLEM DIMENSION AND OPERATION COSTS FOR THE THREE METHODS

and the best performer of the current BAD
TRIBE

c) IF
i) Identify the worst particle and remove it.

ii) Update the neighborhood topologies by
replacing the deleted particle with its
global best performer.

END

,

6) GOTO STEP 2

7) END

VII. NUMERICAL RESULTS

The proposed variable-dimension optimization approach was
tested on a bench set UCP adapted from [18]. The test case has
ten generators supplying the load for a scheduling period of 24 h.
The spinning reserve is assumed to be 5% of the load. In order to
illustrate the effectiveness of the proposed approach, the results
are compared with binary programming approach and fixed duty
cycle approach. All the approaches are implemented using the
adaptive PSO algorithm. Since this PSO version is a black box
optimization tool, no algorithm related parameter tuning is re-
quired.

In binary programming approach, the particle consists of 10
24 ( , ) binary UC variables

and 10 24 ED variables. A total of 480 variables are required
for this approach, whereas in fixed duty cycle approach only 5

10 UC variables are required. There is a reduction of 80%
in the number of UC variables. In variable-dimension approach
only 30 UC variables were needed (Table III). Unit 1, 2, and 10
required one UC variable, unit 3, 4, 8, and 9 required three vari-
ables and the remaining used five UC variables. The reduction
of UC variables in this case is 88%. The numbers of ED vari-
ables required are 10 24 and are the same for all the methods.
This information is shown in Table I.

The total operation cost using the binary approach amounts
to 567 062. The fixed duty cycle approach was able to find a
solution which is 6389.57 cheaper than the solution obtained
from the binary approach. The variable-dimension approach
produced the best results among the three methods. The op-
eration costs were 6723.94 and 334.37 less compared to
binary and fixed duty cycle approaches, respectively. The
total fuel and start-up costs for the global best particle in the
swarm are shown in Figs. 8 and 9, respectively. The final fuel
costs for fixed duty cycle and variable-dimension approach are

Fig. 8. Improvement in the total fuel costs with the search progress.

Fig. 9. Improvement in the total start-up costs with the search progress.

almost equal. But the variable-dimension approach requires
more function evaluations to converge on the final solution.
This is because the dimension of the search space is not fixed
until 7500 function evaluations. The ambiguity in the search
space dimension results in extra exploration of the swarm. The
binary approach had fewer start-up costs compared to fixed
duty cycle method. But the variable-dimension approach was
the best among the three methods at any point of time during
the search process. The changes in the search space dimension
with respect to the best particle in the swarm are illustrated in
Fig. 10. The best particle starts with an initial search dimension
of 278 (240 ED variables 38 UC variables), gradually reduces
to 274 (240 34) and finally settles at 270 (240 30). The cost
curves closely follow the dimension change pattern. When ever
there is a reduction in the search space dimension, the particles
were able to efficiently exploit the reduced search space to
produce considerable reduction in the costs. This implies that
with reduced dimensionality, the algorithm was able to generate
better UC schedule. The results obtained by duty cycle and
variable dimension PSO approach are better than the results
obtained by various other evolutionary algorithms presented in
[19].

The UC schedule generated by the binary method is presented
in Table II. The economical units 3–6 are under utilized and the
expensive units 7–9 had longer operation periods. This was the
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Fig. 10. Evolution of the search dimension with search progress.

TABLE II
BEST SOLUTION OBTAINED FROM THE BINARY METHOD

reason for higher overall operation cost. The operation sched-
ules obtained using fixed duty cycle and variable-dimension ap-
proaches are presented in Table III(a) and (b), respectively. Both
the methods had completely different scheduling schemes for
most of the generators. In common, both the methods had al-
located longer operation schedules for low cost units and the
expensive units are scarcely used. The high cost units are used
only during the peak load periods and are shut down during the
off-peak periods. Variable-dimension approach proved to be the
most efficient among the two methods. The operation periods
of the cost ineffective units are further reduced in the proposed
approach. More over the schedules of the cost effective units
(especially units 3 and 4) are arranged so that the frequency of
the start-ups are reduced to the minimum. This is the reason for
the reduction in the start-up costs as shown in Fig. 9. The final
solution using the variable-dimension approach is presented in
Table IV.

The effect of reserve manager operator on the quality of the
solution can be seen from Fig. 11. The amount of reserve al-
located by various methods is shown in this figure. In binary
method without reserve operator, there was huge unwanted re-
serve allocated during the low demand hours. When there was
a sudden reduction in demand between hours 15:00 to 19:00,
the algorithm was unable to reschedule the units efficiently. The
units that are in operation during the first peak demand continue
to operate even during this sudden dip. The excess unwanted re-
serve allocated during this period comes at a price and accounts
for the additional operation costs. All the methods with reserve
operators provided optimal reserve allocation which was very
close to the required reserve capacity.

The convergence properties of the three methods are shown
in Fig. 12. The binary method had the worst convergence. The

TABLE III
BEST SOLUTION OBTAINED FROM THE (A) FIXED DUTY

CYCLE AND (B) VARIABLE-DIMENSION APPROACH

TABLE IV
OPTIMAL SOLUTION OBTAINED FROM THE VARIABLE-DIMENSION METHOD

Fig. 11. Reserve allocated by different methods with and without reserve op-
erator.

fixed duty cycle method provided better convergence than the
variable-dimension approach. In the proposed approach, lot of
information is either lost or ignored during the early stages of
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Fig. 12. Convergence properties of the three UC methods.

TABLE V
BEST SOLUTION FOR LARGE SYSTEMS

the optimization process due to the differences in the dimen-
sionality among the particles in the swarm. But once the search
process identified the right problem dimension, the convergence
property was better than the fixed dimension approach.

The proposed variable-dimension approach is further tested
on 20-,40-,60-,80-, and 100-unit system. The larger systems are
obtained by duplicating the ten-unit system in [4]. The demand
and reserve are scaled accordingly. The simulation results ob-
tained for these systems are compared with other evolutionary
algorithms such as ICGA [4], hybrid PSO-Langrangian relax-
ation [20], Evolutionary Programming [21], and Memetic Al-
gorithm [22] and listed in Table V. The computational time re-
quired to solve the UCP ranged from 50 s for ten-unit system
to 60 min for the 100-unit system. Although the proposed ap-
proach required more time for the larger systems, the quality of
the end results are much better than the results obtained by other
binary and integer based evolutionary algorithms.

VIII. CONCLUSION

A new innovative UC variable modeling using variable-di-
mension optimization approach is presented in this paper. The
simulation results on a ten generator test problem imply that
nearly 88% reduction in problem dimension is possible. The
idle duty cycles present in the fixed duty cycle can be com-
pletely eliminated. The advantage of reduced search dimension
is reflected in the improved quality of the final solution. Due to
few decision making UC variables, the swarm was able to effec-
tively optimize the scheduling of various generation units. This

research has proved that it is possible to define an optimization
problem even without declaring the problem dimension.
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