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Abstract—A method is presented to compute the switching an-
gles in a multilevel converter so as to produce the required funda-
mental voltage while at the same time not generate higher order
harmonics. Using a staircase fundamental switching scheme, pre-
vious work has shown that this is possible only for specific ranges
of the modulation index. Here it is shown that, by considering all
possible switching schemes, one can extend the lower range of mod-
ulation indices for which such switching angles exist. A unified ap-
proach is presented to solve the harmonic elimination equations for
all of the various switching schemes. In particular, it is shown that
all such schemes require solving the same set of equations where
each scheme is distinguished by the location of the roots of the
harmonic elimination equations. In contrast to iterative numerical
techniques, the approach here produces all possible solutions.

Index Terms—Harmonic elimination, multilevel inverter, sym-
metric polynomials.

I. INTRODUCTION

THE GENERAL function of the multilevel inverter is to
synthesize a desired ac voltage from several levels of dc

voltages. For this reason, multilevel inverters are ideal for con-
necting either in series or in parallel an ac grid with distributed
energy resources such as photovoltaics (solar cells), fuel cells or
with energy storage devices such as capacitors or batteries [1].
Additional applications of multilevel converters include such
uses as medium voltage adjustable speed motor drives, static var
compensation, dynamic voltage restoration, harmonic filtering,
or for a high voltage dc back-to-back intertie [2]. Transformer-
less multilevel inverters are uniquely suited for this application
because of the high VA ratings possible with these inverters [3].
It is the unique structure of the multilevel voltage source in-
verter which allows it to reach high voltages with low harmonics
without the use of transformers or series-connected, synchro-
nized-switching devices.

A fundamental issue in the control of a multilevel converter is
to determine the switching angles (times) so that the converter
produces the required fundamental voltage and does not gen-
erate specific lower order dominant harmonics. Using a stair-
case scheme as illustrated in Fig. 3(a), it has been shown in [4],
[5] that this is possible only for modulation indices between
approximately 0.38 and 0.84 (see Fig. 2 where
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and is the number of separate dc sources). However,
there are other possible switching schemes which may work
over different ranges of the modulation index or, even work for

and provide solutions with a lower total
harmonic distortion (THD) than the staircase scheme. For ex-
ample, in [6] the authors considered the output waveform shown
in Fig. 3(f) which they referred to as a “virtual stage” waveform.
Here, the objective is to systematically consider every possible
switching scheme (output waveform) that switches at nearly the
fundamental frequency. A general unified approach is presented
to solving the harmonic elimination equations for all solutions
of all possible switching schemes. That is, the approach pro-
vides both the scheme and the particular set of switching angles
that produce the lowest THD for any given modulation index.
In contrast to PWM techniques (e.g., see [7]), the switching
schemes proposed here are only slightly above the fundamental
frequency resulting in low switching losses.

The unified approach demonstrated here is accomplished by
first transforming the nonlinear transcendental harmonic elimi-
nation equations for all possible switching schemes into a single
set of symmetric polynomial equations. Then it is shown that a
particular switching scheme is simply characterized by the lo-
cation of the roots of these polynomial equations. The complete
set of solutions to the equations are found using the method of
resultants from elimination theory [8]. In contrast to iterative
numerical techniques (e.g., see [6] and [9]), the approach here
produces all possible solutions. Experimental results using the
approach are also presented and indicate close agreement with
predicted results.

II. CASCADED H-BRIDGES

The cascade multilevel inverter consists of a series of
H-bridge (single-phase full-bridge) inverter units. As stated
above, the general function of the multilevel inverter is to
synthesize a desired voltage from several separate dc sources
(SDCSs) such as solar cells, fuel cells, ultracapacitors, etc.
Fig. 1 shows a single-phase structure of a cascade inverter
with SDCSs [3]. Each SDCS is connected to a single-phase
full-bridge inverter and can generate three different voltage
outputs, , 0 and . This is accomplished by con-
necting the dc source to the ac output side by using different
combinations of the four switches, , , and . The ac
output of each level’s full-bridge inverter is connected in series
such that the synthesized voltage waveform is the sum of all
of the individual inverter outputs. The number of output phase
(line-neutral) voltage levels in a cascade mulitilevel inverter is
then , where is the number of dc sources. An example
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(a) (b)

Fig. 1. (a) Schematic layout of a multilevel inverter. (b) Staircase waveform produced by a 5 SDCS multilevel inverter.

(a) (b)

Fig. 2. (a) Switching angles � , � , � versus m for the staircase scheme of Fig. 3(a). (b) The THD versus m for each solution set.

phase voltage waveform for an 11-level cascaded multilevel
inverter with five SDSCs is shown in Fig. 1. The output
phase voltage is given by .

Each of the active devices of the H-bridges switch only at
the fundamental frequency, and consequently this is referred to
as the fundamental switching scheme. Also, each H-bridge unit
generates a quasisquare waveform by phase-shifting its posi-
tive and negative phase legs’ switching timings. Further, each
switching device always conducts for 180 or 1/2 cycle regard-
less of the pulse width of the quasisquare wave so that this
switching method results in equalizing the current stress in each
active device.

Using the staircase scheme of Fig. 1 [see also Fig. 3(a)], it has
been shown in [4] that one can obtain the fundamental while
eliminating specified lower order harmonics only for certain
ranges of the modulation index. For example, the left side of
Fig. 2 is a plot of the switching solution angles in the case of
three dc sources where the fundamental is achieved while the

fifth and seventh harmonics are eliminated. Here the parameter
is related to the modulation index by where is the

number of dc sources ( in Fig. 2). Note that for in the
interval [1.15,2.52] there is a solution (with two different sets of
solutions in the subinterval [1.49,1.85]). On the other hand, for

, and there are
no solutions. As Fig. 2 illustrates, there is a significant range of
the modulation index for which there is no solution.

The objective here is to show how the range of values of the
modulation index can be extended for which the
fundamental is still achieved and the fifth and seventh harmonics
are also eliminated. This is done in the case at hand by having
one more switching per cycle than the staircase scheme. At very
low modulation indices, one would surmise that only one of
the dc sources would be used with multiple switchings on that
source. This is indeed the case and is simply the unipolar pro-
grammed PWM switching scheme of Patel and Hoft [10], [11]
[see Fig. 3(b)]. At slightly higher modulation indices one would
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Fig. 3. Possible switching schemes for a 3 dc source multilevel converter.

surmise that two dc sources would be used with a scheme such
as in [6] [see Fig. 3(f)] or a combination of the unipolar scheme
and that of two dc source multilevel scheme as in Fig. 3(e). In
the following, it is shown how the transcendental equations that
characterize the harmonic content for each of these switching
schemes can be solved to find all solutions that eliminate the
fifth and seventh harmonics while achieving the fundamental.

III. MATHEMATICAL MODEL OF SWITCHING

The scheme shown in Fig. 1 is not the only possible scheme
to eliminate harmonics in a multilevel converter. To illustrate,
let and limit the number of switchings to four per quarter
cycle. In this case, the possible switching schemes are drawn in
Fig. 3(a)–(f). Note that Fig. 3(a) is a special case of Fig. 3(c) with

. The objective is to consider the possibility that the
schemes shown in Fig. 3(b)–(f) can provide a solution at modu-
lation indices where the staircase scheme of Fig. 3(a) is unable
to do so or provide a solution with a lower THD. These schemes
use four switching angles in contrast to the three switching an-
gles used by the staircase switching scheme of Fig. 3(a). Con-
sequently, their switches turn on and off at an overall frequency
just above the fundamental frequency.

To proceed, note that each of the waveforms of Fig. 3(b)–(f)
have a Fourier series expansion of the form

(1)

where and de-
pending on the switching scheme as shown in the table given
in (2), shown at the bottom of the next page. For each of these
schemes, the Fourier series is summed over only the odd har-
monics, and as for odd, (1)
may be rewritten in the form

where if and if . In terms
of the angles , the conditions become
those in the right-most column of the table in (2). Again, the
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desire here is to use these switching schemes to achieve the fun-
damental voltage and eliminate the fifth and seventh harmonics
for those values of the modulation index for which solutions
did not exist (see Fig. 2) for the switching scheme of Fig. 3(a).
That is, choose the switching angles , , , to satisfy

(3)

and the inequalities (2). Here and the mod-

ulation index is given by where (= 3 here) is the
number of dc sources. This is a system of three transcendental
equations in the four unknowns , , , . In order to get
a fourth constraint, consider the possibility of also eliminating
the 11th harmonic using this extra switching. In other words,
one appends the condition

(4)

to the conditions (3). The fundamental question is “When does
the set of transcendental equations (3) and (4) have a solution?”
The correct solution to the conditions (3) and (4) would mean
that the output voltage would not contain the fifth, seventh and
11th order harmonic components. One approach to solving
the set of nonlinear transcendental equations (3), (4) is to use
an iterative method such as the Newton–Raphson method [2],
[12]. In contrast to iterative methods, the approach here is based
on solving polynomial equations using the theory of resultants
which produces all possible solutions [8], [13]. The first step
requires transforming the transcendental equations (3) and (4)
into polynomial equations using the change of variables

and the trigonometric identities

The (3) and (4) then become the equivalent conditions

(5)

where , and the angle conditions become

(6)

System (5) is a set of four polynomial equations in the four un-
knowns , , , . In the next section, a systematic method
is presented to solve these equations for all of their possible so-
lutions. Further, for each with , there is a unique
solution to for the with . This then
implies a unique solution for the switching angle in the in-
terval via if and
if .

Polynomial systems were also considered to compute the so-
lutions of the harmonic elimination equations by iterative nu-
merical methods in [14]. In contrast, here it is shown how all
possible solutions of (5) can be found.

IV. SOLVING POLYNOMIAL EQUATIONS

The first equation of (5) can be solved as
to eliminate from the remaining three equations

obtaining

(7)

(2)
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Fig. 4. Switching angles versus m which give the smallest THD.

Fig. 5. THD versus m for the switching schemes and angles that give the
smallest THD.

However, one is still left with three polynomial equations in
the three unknowns ( , , ). The pertinent question is
then, “Given two polynomial equations and

, how does one solve them simultaneously
to eliminate (say) ?” A systematic procedure to do this is
known as elimination theory and uses the notion of resultants
[8], [13]. Briefly, one considers and
as polynomials in whose coefficients are polynomials in ( ,

). Then, for example, letting and
have degrees 3 and 2, respectively in , they may be written
in the form

The Sylvester matrix , where
, is defined by the equation shown at

the bottom of the next page. The resultant polynomial
is defined by

(8)

TABLE I
SCHEME THAT RESULTS IN THE LOWEST

THD FOR A GIVEN INTERVAL OF m

Fig. 6. Gate driver boards and MOSFETs for the mulitlevel inverter.

TABLE II
SDCS VOLTAGE VALUES

and is the result of solving and
simultaneously for ( , ), i.e., elimi-

nating . See the Appendix for more details on resultants.
To proceed, one then eliminates from the system (7) by

computing

and finally, eliminating from and
by computing

results in a single polynomial in the single variable . For each
, one solves for the roots . Each root is

then used to solve for the roots . Each
pair is then used to solve to
obtain the roots . The set of 4-tuples
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(a) (b)

Fig. 7. (a) Scheme a voltage waveform for m = 1:84. (b) Corresponding FFT.

are
then the only possible solutions to (5).

V. COMPUTATIONAL RESULTS

Using the above techniques, the switching angles for each
switching scheme versus the parameter (modulation index is

) were computed. For each value of , it is possible
that more than one waveform switching scheme of Fig. 3 will
result in eliminating the fifth, seventh, and 11th harmonics. Fur-
ther, each such waveform scheme may have also more than one
set of angles for which the fifth, seventh, and 11th harmonics
are eliminated. The scheme and set of switching angles that pro-
duced the smallest THD were chosen for each value of and
are plotted in Fig. 4. The corresponding harmonic distortion in
percent defined by

(9)

produced in the output waveform using the switching angles of
Fig. 4 is plotted versus in Fig. 5

In summary, the polynomial (5) are solved for all possible so-
lutions (sets of switching angles) for any given value of . The
THD produced by the output waveform using each of these sets

of switching angles is then computed and the particular solution
(set of switching angles) that produces the smallest THD is then
chosen. That is, the particular waveform and switching angles
are simply dictated by the process of solving the harmonic elim-
ination equations for the solution that produces the lowest THD.
Detailed information on the exact intervals of for which each
scheme gives the lowest THD according to Fig. 5 is given in
Table I.

VI. EXPERIMENTAL RESULTS

A prototype three-phase 11-level wye-connected cascaded
inverter has been built using 100 V, 70 A MOSFETs as the
switching devices. The gate driver boards and MOSFETs are
shown in Fig. 6. A battery bank of 15 SDCSs each feed the in-
verter configured with five SDCSs per phase [15]. In the exper-
imental study here, this prototype system was configured to be
seven-levels or equivalently, three SDCSs per phase.

The ribbon cable shown in the figure provides the commu-
nication link between the gate driver board and the real-time
processor. In this work, a real-time computing platform from
OPAL TECHNOLOGIES [16] was used to interface the computer
(which generates the logic signals) to this cable. This system
allows one to implement the switching algorithm as a lookup
table in SIMULINK which is then converted to C code using RTW

(real-time workshop) from Mathworks. The RTLAB software
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(a) (b)

Fig. 8. (a) Scheme a current waveform form = 1:84. (b) Corresponding FFT.

(a) (b)

Fig. 9. (a) Scheme b voltage waveform for m = 0:49. (b) Corresponding FFT.

[16] provides icons to interface the SIMULINK model to the dig-
ital I/O board and converts the C code into executables.

The time step size of the control loop was 32 m or, in other
words, the precision error for the time at which a switch is turned
on or off was bounded by 32 m. The real-time implementation
is accomplished by placing the data (i.e., Fig. 4) in a lookup table
and therefore does not require high computational power for im-
plementation. The voltage level for each separate dc source was
nominally charged to 38.6 V. The actual voltages were measured
and are given in Table II.

The multilevel converter was attached to a three phase induc-
tion motor with the following nameplate data

Rated hp hp

Rated Current A

Rated Speed rpm

Rated Voltage V RMS line to line Hz

The following set of experiments were chosen to illustrate
each of the possible output waveforms. For each such waveform,
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(a) (b)

Fig. 10. (a) Scheme b current waveform form = 0:49. (b) Corresponding FFT.

(a) (b)

Fig. 11. (a) Scheme c voltage waveform for m = 1:93. (b) Corresponding FFT.

a value of was chosen for which that waveform produced the
smallest THD. The phase voltages and currents of the motor
were collected and analyzed as given below.

A. Scheme a

For , scheme a gives the smallest THD. Fig. 7
shows the output waveform for phase a and its corresponding
FFT with . In this case, the fifth and seventh har-
monics are zero as expected. Note that the 11th harmonic is not
zero, but this is the only scheme in Fig. 3 that does not guar-
antee the 11th harmonic is zero. The THD in the voltage wave-
form was computed according to (9) using the FFT data of Fig. 7

giving 3.2%. This corresponds well with the theoretically pre-
dicted value of 2.64% given in Fig. 5. The current waveform for
phase a and its corresponding FFT are given in Fig. 8. The THD
in the current was computed and found to be 1.8% which is less
than the voltage THD due to filtering by the motor’s inductance.

B. Scheme b

Here and scheme b (unipolar PWM) produces the
smallest THD. Fig. 9 shows the output waveform for phase a
and its corresponding FFT. In this case, the fifth, seventh, and
11th harmonics are zero as predicted. The THD in the voltage
waveform was computed according to (9) using the FFT data
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(a) (b)

Fig. 12. (a) Scheme c current waveform form = 1:93. (b) Corresponding FFT.

(a) (b)

Fig. 13. (a) Scheme d voltage waveform. (b) Corresponding FFT.

of Fig. 9 giving 13.6%. This corresponds well with the theo-
retically predicted value of 11.4% given in Fig. 5. The current
waveform for phase a and its corresponding FFT are given in
Fig. 10. The THD in the current was computed and found to be
6.2%.

C. Scheme c

For , scheme c produces the smallest THD. Fig. 11
shows the output waveform for phase a and its corresponding
FFT. As predicted, the fifth, seventh, and 11th harmonics are

all zero. The THD in the voltage waveform was computed ac-
cording to (9) using the FFT data of Fig. 11 giving 3.37%. This
corresponds well with the theoretically predicted value of 2.77%
given in Fig. 5. The current waveform for phase a and its corre-
sponding FFT are given in Fig. 12. The THD in the current was
computed and found to be 2.14%.

D. Scheme d

For , scheme d produces the smallest THD. Fig. 13
shows the output waveform for phase a and its corresponding
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(a) (b)

Fig. 14. (a) Scheme d current waveform form = 1:39. (b) Corresponding FFT.

(a) (b)

Fig. 15. (a) Scheme e voltage waveform for m = 1:45. (b) Corresponding FFT.

FFT. As predicted, the fifth, seventh, and 11th harmonics are
all zero. The THD in the voltage waveform was computed ac-
cording to (9) using the FFT data of Fig. 13 giving 8.17%. This
corresponds well with the theoretically predicted value of 7%
given in Fig. 5. The current waveform for phase a and its corre-
sponding FFT are given in Fig. 14. The THD in the current was
computed and found to be 4.3%.

E. Scheme e

For , scheme e produces the smallest THD. Fig. 15
shows the output waveform for phase a and its corresponding

FFT. Again, as predicted, the fifth, seventh, and 11th harmonics
are all zero. The THD in the voltage waveform was computed
according to (9) using the FFT data of Fig. 15 giving 6.1%.
This corresponds well with the theoretically predicted value of
5.75% given in Fig. 5. The current waveform for phase a and its
corresponding FFT are given in Fig. 16. The THD in the current
was computed and found to be 3.6%.

F. Scheme f

For , scheme f produces the smallest THD. Fig. 17
shows the output waveform for phase a and its corresponding
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(a) (b)

Fig. 16. (a) Scheme e current waveform form = 1:45. (b) Corresponding FFT.

(a) (b)

Fig. 17. (a) Scheme f voltage waveform for m = 1:67. (b) Corresponding FFT.

FFT. Again, as predicted, the fifth, seventh, and 11th harmonics
are all zero. The THD in the voltage waveform was computed
according to (9) using the FFT data of Fig. 17 giving 8.73%.
This corresponds well with the theoretically predicted value of
8.9% given in Fig. 5. The current waveform for phase a and its
corresponding FFT are given in Fig. 18. The THD in the current
was computed and found to be 4.8%.

VII. CONCLUSION

A unified procedure to eliminate harmonics in a multilevel
inverter has been presented along with experimental verifica-

tion. The methodology transforms the sets of transcendental har-
monic elimination equations for all of the possible output wave-
forms into a single set of polynomial equations. For each value
of , the complete set of solutions to these polyno-
mial equations are found using resultant theory. The particular
solution chosen is that one which results in the smallest value
of the THD computed according to (9). The output waveform is
simply dictated by the particular set of switching angles com-
puted for that value of which give the smallest THD. This
procedure results in a lookup table that gives the switching an-
gles as a function the parameter . Experimental results were
in agreement with the predicted results.
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(a) (b)

Fig. 18. (a) Scheme f current waveform form = 1:67. (b) Corresponding FFT.

APPENDIX

RESULTANTS

Given two polynomials and how does one
find their common zeros? That is, the values ( , ) such that

Consider and as polynomials in whose
coefficients are polynomials in . For example, let
and have degrees 3 and 2, respectively in so that
they may be written in the form

In general, there is always a polynomial (called the resul-
tant polynomial) such that

So if then , that is, if
( , ) is a common zero of the pair ,
then the first coordinate is a zero of . The roots of

are easy to find (numerically) as it is a polynomial in one
variable. To find the common zeros of ,
one computes all roots of . Next, for each
such , one (numerically) computes the roots of

(10)

and the roots of

(11)

Any root that is in the solution set of both (10) and (11) for
a given results in the pair ( , ) being a common zero
of and . Thus, this gives a method of solving
polynomials in one variable to compute all of the common zeros
of .

To see how one obtains , let

Next, see if polynomials of the form

can be found such that

(12)

Equating powers of , this equation may be rewritten in matrix
form as

The matrix on the left-hand side is called the Sylvester matrix
and is denoted here by . The inverse of has the
form
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where is the adjoint matrix and is a 5 5 poly-
nomial matrix in . Solving for , gives

Choosing this becomes

and guarantees that , , , , are
polynomials in . That is, the resultant polynomial defined by

is the polynomial required for (12).
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