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Abstract: A linear-quadratic-regulator-based design methodology is proposed to design
proportional-integral-derivative (PID) controllers for multivariable systems with load disturbances.
Except for a few parameters that are preliminarily selected, most of the PID parameters are
systematically tuned using the developed plant state-feedback and controller state-feedforward
LQR approach, such that satisfactory performance with guaranteed closed-loop stability is
achieved. In order to access the plant state variables and carry out disturbance rejection, an
observer-based disturbance rejection technique is proposed, which through an ‘equivalent
disturbance’ concept, retains the observation error to be used for disturbance compensation. This
makes disturbance measurement unnecessary and the disturbance rejection tuning independent of
the set-point response adjustment. A robust stability analysis is also included for the modelling
error. An illustrative example is given for comparison with alternative techniques.

1 Introduction

The single-input single-output (SISO) proportional-integral-
derivative (PID) controller is currently widely used in
industry due to its simplicity in controller structure,
robustness to constant disturbances, and the availability of
numerous tuning methods. In principle, for any general
plant, it is possible to design a PID controller using one of
many available methods, depending on the required
performance specifications. In practice, however, a few
methods have become favoured due to their good approxi-
mation of process transfer functions produced from
simplistic step response fitting, which enables them to
work satisfactorily for certain processes. The two most
widely accepted models that have emerged are the first-
order plus dead time (FOPDT) and the second-order plus
dead time (SOPDT) models. For high-order dynamical
systems, PID parameter detuning [1–3] is sometimes
necessary due to stability or system complexity. Fortu-
nately, most real industrial processes can be accurately
approximated by a FOPDT or SOPDT model, for which
many effective design methods are available to design a PID
controller. Hence, little effort is required to de-tune the
PID parameters to meet the performance specifications of
the original high-order systems.

PID controller design for multi-input multi-output
(MIMO) systems is a much more complicated problem
compared to the SISO case. Apart from the fact that MIMO
PID controllers have many more parameters than SISO PID
controllers, loop interaction (or coupling) is a more
challenging problem. This makes it difficult for the designer
to design each loop independently, as the tuning of

controller variables of one loop will affect the performance
of the others and may even destabilise the entire system.
Whereas multivariable PID control has been researched
extensively for over 30 years, with various design
methodologies having been proposed [4–10], the task of
developing a satisfactory design procedure for MIMO PID
controllers remains a difficult problem [11]. For example,
the controller design specifications such as the gain-phase
margin, bandwidth, etc. [10], for MIMO systems are still not
well defined. So, in many existing approaches for MIMO
PID controller design, the plant is often assumed to be of, or
can be decoupled into, a set of SISO systems. Then, the
resulting decentralised (or diagonal) PID controller design
for a MIMO system is analogous to the scalar PID controller
design for the SISO system. However, if the coupling is
significant, especially for the high-dimensional system, the
decentralised PID controller may fail to give acceptable
responses. In such cases, a centralised (or fully cross-
coupled) PID controller is needed because it can inherently
compensate for the coupling [6].

We now propose a feedback=feedforward design
methodology, in which the PID tuning problem is
transformed into a linear quadratic regulator (LQR) design
through proper arrangement of the state space equation of
the cascaded system. Most of the PID parameters are
determined systematically through such a tuning process,
except for a few parameters that are preselected. Compared
with existing methods, our proposed method offers the
following advantages: (i) MIMO PID controlled system
stability is guaranteed during the tuning process; and
(ii) there are no specific requirements on system stability,
low-degree and=or low-dimension model, minimum-phase
property and plant decoupling.

While the primary focus of the proposed PID LQR tuning
method is on the set-point response of the closed-loop
system, we recognise that a good set-point response does not
necessarily guarantee acceptable disturbance rejection [12].
Therefore, in cases where load disturbances exist at the
output points, we also propose a method for disturbance
rejection. Feedforward control [13] may be used to
eliminate=reduce the output disturbance directly, making
the disturbance rejection tuning independent of the controller
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design. However, this approach requires the disturbance to
be measurable. Due to the existence of the biased load
disturbance, the exact plant state is hard to estimate, and in
some cases an integral observer has to be constructed [14].
Nevertheless, the resulting plant state is in general not very
useful in attenuating the disturbance effects. Some authors
use the extended state observer [15] or disturbance observer
[16] to estimate the disturbances, and then make appropriate
compensation. However, the resulting controller=observer
structure is usually very complicated.

Recognising that the state estimation error in conjunction
with output disturbance is difficult to remove, is it still
possible for it to be used for disturbance compensation?
This is the key point explored in the proposed
observer-based disturbance rejection technique. Using
only a conventional observer in the presence of load
disturbance will inevitably result in some estimation error.
In this case, the actual feedback control gain will be
composed of two parts: (i) the exact plant state feedback as
expected; and (ii) an additional feedback component that is
introduced by the estimation errors. This additional feed-
back component can be used as feedforward compensation
for the output disturbances, provided that the observer gain
is properly selected. The residual disturbance after
compensation will generate the so-called ‘equivalent
disturbances’ that can be used as a performance index, for
disturbance rejection in the process of observer gain
adjustment. The advantages of such a method are obvious,
as the disturbance rejection tuning is now independent of
the state-feedback gain adjustment, while the controller=
observer structure remains simple and does not require
disturbance measurement.

2 Problem formulation

Consider a unity-output feedback MIMO analog plant
G1ðsÞ 2 Rp1�m1 in cascade with a MIMO analog PID
controller G2ðsÞ 2 Rm1�p1: Also, suppose output distur-

bance dðtÞ 2 Rp1 exists at the output point as shown in Fig. 1.
Let the minimal realisation of the analog plant G1ðsÞ be:

_xx1ðtÞ ¼ A1x1ðtÞ þ B1u1ðtÞ x1ð0Þ ¼ x10 ð1aÞ

y1ðtÞ ¼ C1x1ðtÞ ð1bÞ
where x1ðtÞ 2 Rn1; u1ðtÞ 2 Rm1; y1ðtÞ 2 Rp1; and A1;B1;C1

are constant matrices of appropriate dimensions. Let the
entire system output be the sum of the plant output and load
disturbance:

yðtÞ ¼ y1ðtÞ þ dðtÞ ð2Þ
where yðtÞ 2 Rp1; dðtÞ 2 Rp1: Each component of the
MIMO PID controller G2ðsÞ 2 Rm1�p1 is described as:

G2ijðsÞ ¼ KPij þ
KIij

s
þ

KDijs

s þ aij

ð3Þ

for i ¼ 1; 2; . . . ;m1 and j ¼ 1; 2; . . . ; p1: Parameters of the
PID controller, KPij; KIij; KDij; and filter factor aij are
constants to be determined.

The filter factor a for the derivative term can be
chosen by design specifications [17]. Based on the
internal model principle (IMP) [13], steady-state distur-
bance compensation requires that the disturbance gen-
erating polynomial be included as part of the controller
denominator. Thus, we can determine denominators of
the controller through setting the filter factors (i.e. s þ aij

in (3)) as those of the load disturbance denominators.
When the load disturbance is different for each
subsystem, we can adjust the filter factors accordingly.
Then, the transfer function matrix of the controller can
be rewritten from (3) as follows:

G2ðsÞ ¼
E1s p1þ1 þ E2s p1 þ . . .þ Ep1þ1s þ Ep1þ2

s
Qp1

j¼1 ðs þ ajÞ
ð4Þ

where parameter matrices E1; E2 . . .Ep1þ2 are unknowns
to be determined.

Remark 1: It should be noted that when the poles of a high-
degree asymptotically stable disturbance model are known,
the first-degree filter in (4) can be approximately determined
via model reduction methods [18, 19], or we can use the
smallest pole as the filter factors. The designed PID
controller can eliminate the steady-state disturbance and
control errors. However, it is unable to completely eliminate
the steady-state disturbance errors if the load disturbance is
a sinusoidal disturbance.

Although our proposed methodology for MIMO PID
controller design does not require that the plant be of, or can
be decoupled into a form of, SISO systems, we let the plant
be diagonally dominant, so that the designed controller
would be near to being decentralised. The static decoupler
[13, 20] is widely used as a precompensator in MIMO
system design for achieving approximate decoupling.
In general, this decoupler is defined as D2 ¼ G�1

1 ð0Þ;
where G1ð0Þ is non-singular. We can make the plant
statically decoupled by setting E1 ¼ D2 ¼ G�1

1 ð0Þ in (4),
which then gives:

G2ðsÞ ¼ D2 þ
F2s p1 þ F3s p1�1 þ � � � þ Fp1þ1s þ Fp1þ2

s
Qp1

j¼1 ðs þ ajÞ
ð5aÞ

where F2; F3; . . . ;Fp1þ2 are constant matrices to be
determined.

For simplicity, we can first select the MIMO PID
controller as:

G2ðsÞ ¼ D2 þ diag
1

sðs þ ajÞ

� �
for j ¼ 1; 2; . . . ; p1

ð5bÞ

and leave further parameter adjustment to the next tuning
phase.

Then, the minimal realisation of the preliminarily
designed cascaded PID controller G2ðsÞ can be written as:

_xx2ðtÞ ¼ A2x2ðtÞ þ B2u2ðtÞ x2ð0Þ ¼ 0 ð6aÞ

y2ðtÞ ¼ C2x2ðtÞ þ D2u2ðtÞ ¼ u1ðtÞ ð6bÞ

u2ðtÞ ¼ �yðtÞ þ EcrðtÞ ð6cÞ

where x2ðtÞ 2 Rn2; u2ðtÞ 2 Rp1; y2ðtÞ 2 Rm1; rðtÞ 2 Rp1; and
A2;B2;C2;D2;Ec are constant matrices of appropriate
dimensions.Fig. 1 Continuous-time cascaded system
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3 The MIMO PID controller tuning with
state-feedback and state-feedforward LQR

Initially, consider a disturbance-free system with a pre-
designed analog PID controller. Based on such a prede-
signed controller, further tuning is necessary to achieve
satisfactory closed-loop performance. The basic idea of our
methodology is to transform the PID tuning problem to that
of optimal design. To achieve this aim, we formulate the
closed-loop cascaded systems in Fig. 1 into an augmented
system as:

_xxeðtÞ ¼ AexeðtÞ þ Beu1ðtÞ þ EerðtÞ
yeðtÞ ¼ y1ðtÞ ¼ CexeðtÞ ð7Þ

where

Ae ¼
A1 0

�B2C1 A2

� �
Be ¼

B1

0

� �
Ee ¼

0

B2Ec

� �

xe ¼
x1ðtÞ
x2ðtÞ

� �
Ce ¼ C1 0½ 


and

u1ðtÞ ¼ �K1x1ðtÞ � K2x2ðtÞ � D2u2ðtÞ ð8Þ
where the state-feedback control gains K1 and K2 are to be
designed in the following. For the convenience of LQR
design of u1ðtÞ; given the existence of the feedforward input
term D2u2ðtÞ in (8), an alternative representation of the
augmented system (7) can be described as:

_xxeðtÞ ¼ ÂAexeðtÞ þ Beûu1ðtÞ þ ÊEerðtÞ ð9aÞ

y1ðtÞ ¼ yeðtÞ ¼ CexeðtÞ ð9bÞ
where

ûu1ðtÞ ¼ u1ðtÞ þ D2u2ðtÞ ð9cÞ

u2ðtÞ ¼ �y1ðtÞ þ EcrðtÞ ð9dÞ
and

ÂAe ¼
A1 þ B1D2C1 0

�B2C1 A2

� �
Be ¼

B1

0

� �

ÊEe ¼
�B1D2Ec

B2Ec

� �
xe ¼

x1ðtÞ
x2ðtÞ

� �
Ce ¼ C1 0½ 


The state-feedback LQR for the augmented system (9) can
be chosen as:

ûu1ðtÞ ¼ �KexeðtÞ ð10Þ
where Ke ¼ ½K1;K2
 with K1 2 Rm1�n1 and K2 2 Rm1�n2:

Let the quadratic cost function for the system (9) be:

J ¼
Z 1

0
½xT

e ðtÞQxeðtÞ þ ûuT
1 ðtÞRûu1ðtÞdt ð11Þ

where Q � 0; R>0; ðÂAe;BeÞ controllable and ðÂAe;QÞ
observable. The optimal state-feedback control gain Ke in
(10) that minimises the performance index (11) is given
by:

Ke ¼ R�1BT
e P ð12aÞ

in which the matrix P>0 is the solution of the Riccati
equation [21]:

PÂAe þ ÂA
T
e P � PBeR

�1BT
e P þ Q ¼ 0 ð12bÞ

The resulting closed-loop system becomes:

_xxeðtÞ ¼ ðÂAe � BeKeÞxeðtÞ þ ÊEerðtÞ ð13Þ
which is asymptotically stable due to the property of
LQR design.

Remark 2: Note that the closed-loop performance of the
LQR-based design depends on the specification of the
weighting matrices Q and R in (11). In order to achieve
a specific performance, sometimes a trial-and-error
process is needed for selection of the weighting matrices.
This becomes increasingly more difficult, however, with
the increase in system dimension. Alternatively, there are
some other systematical ways in selecting the weighting
matrices such as regional pole assignment [22–25].

Lemma 1 [24]: Let ðÂAe;BeÞ be the pair of the given open-
loop system in (9) and h > 0 represents the prescribed
degree of relative stability. Then the closed-loop system
ÂAe � BeR

�1BT
e P has all its eigenvalues lying in the left

of the �h vertical line in the complex s-plane, where the
matrix P is the solution of the following Riccati
equation:

PðÂAe þ hIÞ þ ðÂAe þ hIÞT P � PBeR
�1BT

e P ¼ 0 ð14Þ
where the matrix I is an n � n identity matrix and R>0:

In the illustrative example shown later, we also utilise the
approach introduced in lemma 1 to carry out the regional
pole assignment. This considerably simplifies the weighting
matrices selection by assigning the weighting matrix R ¼ I
and adjusting the single variable h.

Defining K1 as the plant state feedback gain, K2 as the
controller feedforward gain in (10), then the desired state-
feedback and state-feedforward control law u1ðtÞ in (8) can
be indirectly determined from the state-feedback control
law (10) and the relationships shown in (9c) and (9d) as:

u1ðtÞ ¼ � KexeðtÞ � D2u2ðtÞ
¼ � K̂K1x1ðtÞ � K2x2ðtÞ þ ÊEcrðtÞ
¼ � K̂KexeðtÞ þ ÊEcrðtÞ ð15Þ

where K̂K1 ¼ K1 � D2C1; K̂Ke ¼ bK̂K1; K2c and ÊEc ¼ �D2Ec:
Substituting the control law in (15) into (7), the designed
closed-loop system becomes:

_xx1ðtÞ
_xx2ðtÞ

� �
¼

A1 � B1ðK1 � D2C1Þ �B1K2

�B2C1 A2

� �
x1ðtÞ
x2ðtÞ

� �

þ
�B1D2Ec

B2Ec

� �
rðtÞ ð16aÞ

y1ðtÞ ¼ C1x1ðtÞ ð16bÞ
The block diagram of the designed augmented system (7)
with the controller (15) is shown in Fig. 2.

The closed-loop stability of the PID controlled system is
guaranteed due to the property of the LQR design. For the
plant, its state space model is changed from ðA1;B1;C1Þ to
ðA1 �B1K1;B1;C1Þ; indicating that the poles of the plant
are optimally relocated. As for the PID controller, its state
space representation is tuned from ðA2;B2;C2;D2Þ to
ðA2;B2;K2;D2Þ; which means that all transmission zeros
of the PID controller are optimally adjusted. Compared with
existing methods, the advantages of our method are: (i) the
MIMO PID parameters are systematically tuned with
respect to both plant and controller, while the closed-loop
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system stability is guaranteed; and (ii) there are no
specific requirements on system stability, low-degree
and=or low-dimension model, minimum-phase property
and plant decoupling.

4 Observer-based disturbance rejection

So far, only steady-state disturbance compensation based on
IMP has been considered, through setting the filter factor of
the PID controller as that of the load disturbance
denominator in the preliminary design phase. For our
proposed disturbance rejection method, a multi-objective
observer is used for both state estimation and disturbance
rejection. The idea is to retain the observation error, which
when properly adjusted provides feedforward compensation
for the output disturbance. Thus, disturbance rejection can
be achieved through the simple structure of a conventional
observer.

For simplicity, we assume that both the plant and the
observer have zero initial conditions. The initial condition
error, which is regarded as part of the output disturbance, is
discussed later. Suppose that the state space model of the
plant G1ðsÞ is:

_xx1ðtÞ ¼ A1x1ðtÞ þ B1u1ðtÞ ð17aÞ

y1ðtÞ ¼ C1x1ðtÞ ð17bÞ
with the entire system output being the sum of the plant
output and load disturbance as:

yðtÞ ¼ y1ðtÞ þ dðtÞ ð18Þ
We then design an observer, whose dynamic function is the
same as that of the plant:

_̂xx̂xx1ðtÞ ¼ A1x̂x1ðtÞ þ B1u1ðtÞ � Jo½C1x̂x1ðtÞ � yðtÞ
 ð19Þ
in which x̂x1ðtÞ represents the observed state, corresponding
to the real state x1ðtÞ:

Then we have:

_̂xx̂xx1ðtÞ ¼ A1x̂x1ðtÞ þ B1u1ðtÞ � Jo½C1x̂x1ðtÞ � C1x1ðtÞ � dðtÞ

ð20Þ

with the observation error defined as:

eðtÞ ¼ x̂x1ðtÞ � x1ðtÞ ð21Þ

Subtracting (17a) from (20), we get the observation error
dynamic function as:

_eeðtÞ ¼ ðA1 � JoC1ÞeðtÞ þ JodðtÞ ð22Þ

Taking the Laplace transform of both sides, we get:

eðsÞ ¼ ½sI � ðA1 � JoC1Þ
�1Jo � dðsÞ ð23Þ

From (22), we find that a high observer gain Jo is
needed in order to quickly remove the observation error;
while on the other hand, high Jo will also amplify the
disturbance. According to the existing observer design
theory [21], a compromise has to be made between speedy
response and sensitivity to disturbances and noise. However,
this view is incomplete in one important aspect; it neglects
the plant state-feedback dynamics. In fact, a high gain
observer does not necessarily amplify the output deviation
caused by disturbance, but may even provide some
compensation for it.

From (20), we find that the observation error will
inevitably exist due to output disturbance, and that the
observed state feedback can be regarded as:

K1x̂x1ðtÞ ¼ K1x1ðtÞ þ K1eðtÞ ð24Þ

where, the first term K1x1ðtÞ in the right-hand side of (24) is
the exact plant state feedback as in the previous derivation,
while the other term K1eðtÞ comes from the observation
error. The configuration is shown in Fig. 3.

From (23), we get:

K1eðsÞ ¼ K1½sI � ðA1 � JoC1Þ
�1Jo � dðsÞ ð25Þ

from which we can further separate K1eðtÞ from K1x1ðtÞ as
shown in Fig. 4.

The observation error feedback can then be isolated
from the exact state feedback, as shown in Fig. 5, in which

GPðsÞ ¼ C1½sI� ðA1 � B1K1Þ
�1B1; ĜGoðsÞ ¼ K1½sI � ðA1�
JoC1Þ
�1Jo; and GcðsÞ ¼ �½K2ðsI � A2Þ�1B2 þ D2
:

We find that this additional feedback component, which
comes from the feedback of the observation error, actually
acts as feedforward control for the output disturbance.

Fig. 2 PID controlled system

Fig. 3 Observer structure
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The residual disturbance after feedforward compensation
generates the so-called ‘equivalent disturbance’ as:

deqðsÞ ¼ ½I � GPðsÞĜGoðsÞ
 � dðsÞ ð26Þ

When the observer gain Jo is properly selected, the
‘equivalent disturbance’ will be close to zero. Note that it
is almost impossible to reach complete compensation,
because GPðsÞĜGoðsÞ is only partially controllable only
through the observer gain Jo; and the final output value of
GPðsÞĜGoðsÞ cannot be precisely adjusted through a weight-
ing matrix due to its being unrealisable at the disturbance
input point. Nonetheless, this partial compensation con-
siderably attenuates the disturbance effects.

The proposed ‘equivalent disturbance’ concept provides
an interesting viewpoint to evaluate the state observation
error. It can be applied in the adjustment of the observer
gain Jo; so that the resulting system would have less output
deviation caused by output disturbance. The advantage of
such a method is obvious, as the disturbance rejection tuning
is independent of the state-feedback gains, and disturbances
do not need to be measurable. Also, no extra components are
needed to implement the proposed feedforward
compensation.

Next, we investigate the effect of initial conditions.
Suppose the state space model of the plant G1ðsÞ
described in (17) has initial condition x1ð0Þ; with the
designed observer having zero initial conditions. Taking
the Laplace transform of both sides and simplifying
we get:

y1ðsÞ ¼ ½C1ðsI � A1Þ�1B1
uðsÞ þ C1ðsI � A1Þ�1x1ð0Þ
ð27Þ

with corresponding time-domain solution as:

y1ðtÞ ¼ C1x1ðtÞ þ yDðtÞ ð28Þ

where yDðtÞ ¼ L�1½C1ðsI � A1Þ�1x1ð0Þ
:
Then, the overall system output is obtained from (18) as:

yðtÞ ¼ C1x1ðtÞ þ �ddðtÞ ð29Þ

in which, �ddðtÞ ¼ yDðtÞ þ dðtÞ: This means the output
deviation caused by the initial condition error can be
regarded as part of the output disturbance. So, the designed
system based on the ‘equivalent disturbance’ concept is also
less influenced by the initial condition error.

5 Robust stability analysis

There always exists some mismatch between the math-
ematical plant model and the real physical system, which is
called the modelling error. The modelling error may arise
from the time-delay rational approximation, non-linear
system linearity, and parameter uncertainty, etc. Some
robustness analysis is needed if the modelling error cannot
be ignored. The additive modelling error is defined as the
difference between the true plant model and the nominal
plant model:

DG1ðsÞ ¼ ĜG1ðsÞ � G1ðsÞ ð30Þ

Correspondingly, there will exist an additional output term
due to the modelling error:

Dy1ðsÞ ¼ DG1ðsÞ � uðsÞ ð31Þ

Next, we analyse the robust stability in the case of
modelling errors (Fig. 6). Since the external output
disturbance has no effect on the stability analysis, we
assume there is no external disturbance in the following.

Similar to the output disturbance consequence in (22), the
additional output term due to modelling error will also lead
to a similar observation error of:

_eeðtÞ ¼ ðA1 � JoC1ÞeðtÞ þ JoDy1ðtÞ ð32Þ

with the corresponding Laplace transfer function of:

eðsÞ ¼ ½sI � ðA1 � JoC1Þ
�1Jo � Dy1ðsÞ ð33Þ

Then, the observed state feedback can be regarded as:

K1x̂x1ðtÞ ¼ K1x1ðtÞ þ K1eðtÞ ð34Þ

where the first term K1x1ðtÞ on the right-hand side of (34) is
the exact state feedback of the nominal plant as previously
derived, with the second term K1eðtÞ from the observation
error due to modelling error. From (33), we get:

K1eðsÞ ¼ K1½sI � ðA1 � JoC1Þ
�1Jo � Dy1ðsÞ ð35Þ

Thus, we can further separate the observation error as shown
in Fig. 7.

Fig. 4 Observation error separation

Fig. 5 ‘Equivalent disturbance’ structure
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Define GAðsÞ¼ðsI�A1Þ�1B1; GcðsÞ¼�½K2ðsI�A2Þ�1B2

þD2
; GKðsÞ ¼ K1ðsI�A1Þ�1B1; and ĜGoðsÞ ¼ K1½sI �ðA1

�JoC1Þ
�1Jo:
Obviously, G1ðsÞ ¼ C1ðsI � A1Þ�1B1 ¼ C1GAðsÞ:
Assuming the upper bound �llðsÞ of the additive modelling

error as:

DG1ðsÞ ¼ �llðsÞ � D ð36Þ

where D is the normalised perturbation, that is, kDk1 ¼ 1;
then we get the configuration shown in Fig. 8.

It follows from robust stability analysis [26] that the
system in Fig. 8 is asymptotically stable if:

kTabðsÞk1 ¼
����llðsÞ � GxðsÞ � ĜGoðsÞ � SðsÞ

� ĜG
�1
o ðsÞGcðsÞ; I

h i���
1
< 1; ð37Þ

where S(s) is the sensitivity function of the closed-loop
system, i.e. SðsÞ ¼ ½I þ GcðsÞGPðsÞ
�1; GPðsÞ is the
state-feedback controlled nominal plant, i.e. GPðsÞ ¼
C1½sI � ðA1 � B1K1Þ
�1B1 ¼ G1ðsÞGxðsÞ; and GxðsÞ ¼
½I þ GKðsÞ
�1: Through the above analysis, we find that

the system is still robustly stable in case of modelling error,
as long as condition (37) is satisfied.

6 An illustrative example

Consider a model of an industrial-scale polymerisation
reactor [20]:

y1ðsÞ
y2ðsÞ

" #
¼

22:89e�0:2s

4:572s þ 1

�11:64e�0:4s

1:807s þ 1

4:689e�0:2s

2:174s þ 1

5:80e�0:4s

1:801s þ 1

2
6664

3
7775 u1ðsÞ

u2ðsÞ

" #

þ

�4:243e�0:4s

3:445s þ 1

�0:601e�0:4s

1:982s þ 1

2
6664

3
7775dðsÞ ð38Þ

where y1ðsÞ and y2ðsÞ are two measurements representing
the reactor condition, u1ðsÞ and u2ðsÞ are the set-points
of two reactor feed-flow loops and disturbance d(s) is the
purge flow rate of the reactor. Due to the existence of
the small dead time compared with the dominant time
constant [27], a first-order Pade approximation model
[28] is introduced as:

e�sT � 2 � sT

2 þ sT
ð39Þ

It is noted that if the dead time is relatively large
compared with the dominant time constants, a high-order
Pade approximation model is suggested.

Substituting (39) into (38), we get the parameter
matrices of the minimal realisation of nominal plant
G1ðsÞ as:

Fig. 6 Observation error due to modelling error

Fig. 7 Observation error (due to the modelling error) separation

Fig. 8 Modelling error structure for robust analysis
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A1 ¼

�10 0 0 0 0 0

0 �5 0 0 0 0

0 0 �0:5552 0 0 0

0 0 0 �0:5534 0 0

0 0 0 0 �0:4600 0

0 0 0 0 0 �0:2187

2
666666664

3
777777775

B1 ¼

1 0

0 1

0 1

0 1

1 0

1 0

2
666666664

3
777777775

C1¼
�10:2370 14:4866 0 �8:0450 0 5:2304

�4:5217 �7:2454 4:0250 0 2:3649 0

� �
ð40Þ

The initial design for the PID controller G2ðsÞ can be carried
out as (5b) of Section 2 to get:

G2ðsÞ ¼ D2 þ diag
1

sðs þ ajÞ

� �
for j ¼ 1; 2; . . . ; p1

ð41aÞ

where D2 is selected as the static decoupler, i.e.
D2 ¼ G�1

1 ð0Þ. The filter factor aj can be chosen as the
load disturbance denominator for steady-state disturbance
compensation according to IMP. Particularly note that the
time-delay term in the load disturbance is not necessarily
considered in the PID controller design, because it makes
no difference for the closed-loop performance if a load
disturbance enters directly at the plant output or after
passing through a time delay [29]. The preliminarily
designed PID controller G2ðsÞ is given as:

G2ðsÞ¼
0:0310 0:0621

�0:0250 0:1222

� �
þ

1

sðsþ0:2903Þ 0

0
1

sðsþ0:5045Þ

2
664

3
775

ð41bÞ

with its corresponding minimal realisation as:

A2 ¼

0 0 0 0

0 0 0 0

0 0 �0:2903 0

0 0 0 �0:5045

2
6664

3
7775 B2 ¼

1 0

0 1

1 0

0 1

2
6664

3
7775

C2 ¼
3:4447 0 �3:4447 0

0 1:9822 0 �1:9822

� �

D2 ¼
0:0310 0:0621

�0:0250 0:1222

� �
ð42Þ

Based on the preliminarily designed PID controller, a
further tuning process with respect to the plant (40) is
necessary to guarantee satisfactory performance. Following
the proposed methodology, the PID tuning problem has
been converted to that of LQR design. Formulating the plant
(40) and controller (42) into a cascaded system as (7), the
optimal controller u1ðtÞ in (8) can be obtained through the
afore-mentioned method shown in Section 3, by choosing
Q ¼ diag 1; 100; 1; 1; 2; 10; 1; 1; 0:2; 0:1f g; R ¼ I; as:

u1ðtÞ ¼ �K1x1ðtÞ � K2x2ðtÞ � D2u2ðtÞ ð43aÞ

where

K1¼
�1:1196 1:8037 2:3540 �4:6493 1:5795 4:0912

0:3253 1:0764 3:1699 4:0756 1:9950 �2:8120

" #

K2¼
�0:7877 �0:6160 �0:0580 �0:0157

0:6160 �0:7877 0:0445 �0:0193

" #

D2¼
0:0310 0:0621

�0:0250 0:1222

" #

This indicates the tuned PID controller ðA2;B2;K2;D2Þ has
the form of:

G2ðsÞ ¼ D2 þ K2ðsI � A2Þ�1B2

¼
�0:1688 þ�0:7877

s
þ 0:1998s

s þ 0:2903

0:1283 þ 0:6160

s
þ �0:1533s

s þ 0:2903

2
664

0:0310 þ�0:6160

s
þ 0:0311s

s þ 0:5045

0:0839 þ�0:7877

s
þ 0:0383s

s þ 0:5045

3
775
ð43bÞ

The eigenvalues of the optimally designed closed-loop
system (16a) are:

�11:2347; �10:0564; �2:7758; �1:5596� 1:0223i;
�1:6316; �0:2645; �0:3386; �0:4797; �0:5548

� �

indicating that the system is asymptotically stable. Note that
this is an advantage of the proposed methodology as the
closed-loop system stability is guaranteed during tuning, so
that the designer is free from stability post check.

Remark 3: From the controller in (43b), it is observed
that the designed centralised controller has the undesir-
able feature that numerical coefficients for each individ-
ual PID controller have both positive and negative
signs, which is contrary to decades of tradition of
having the same signs. This is probably the common
feature [4, 6, 9, 10] and disadvantage of multivariable
PID controller design for high-degree and=or high-
dimension systems.

In the above setting, parameters in the weighting
matrices Q and R are selected based on the trial-and-
error method, which will be increasingly more difficult
with increasing system dimension. If the designer prefers
some systematic way of selecting the weighting matrices,
there are some other methods available, like the
regional pole assignment [24]. If we select the variable
h ¼ 0:45 and R ¼ I in lemma 1, where h represents the
relative stability, then solve the alternative Riccati
equation (14), such that the optimal controller u1ðtÞ in
(8) is obtained as:

u1ðtÞ ¼ �K1x1ðtÞ � K2x2ðtÞ � D2u2ðtÞ ð44Þ

where
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K1 ¼
�0:3692 0:0078 2:1573 �2:1740 1:6054 0:6904

�0:0950 �1:1860 2:7349 0:5702 2:0903 �2:0042

� �

K2 ¼
�0:1382 �0:2673 0:0021 0:0000

0:1702 �0:3042 �0:0694 0:0000

� �

D2 ¼
0:0310 0:0621

�0:0250 0:1222

� �

The eigenvalues of the optimally designed closed-loop
system (16a) are:

�10:5804 �6:1092 �0:6097 �0:5132 �0:5545

�0:5045 �0:9000 �0:9000 �0:9000 �0:9000

� �
;

from which we find that all the closed-loop eigenvalues
lie to the left of the �h vertical line in the complex
s-plane.

In Fig. 9, the set-point responses with different PID
settings are shown. Unit set-point changes were introduced
in y1ðtÞ (at t ¼ 0) and y2ðtÞ (at t ¼ 20 h), and all the system
states are supposed to be measurable. The proposed system
with PID setting 1, has its PID parameters obtained through
solving the Riccati equation (12b), in which weighting
matrices are selected based on a trial-and-error method. The
other proposed system with PID setting 2 is for PID
parameters obtained through solving the alternative Riccati
equation (14), in which only one variable h is needed for
adjustment based on the regional pole assignment method
[24]. Observe that the controller tune up is much easier in
this case and the set-point response of the system with PID
setting 2 is comparable with that of setting 1.

The designed system gives a satisfactory set-point
performance, but is rather sensitive to load disturbances.
Its performance (with PID setting 1) will be shown in
Fig. 11, in which system plant states are assumed to be
accessible. In practical systems, an observer is needed for
both state accessibility and disturbance rejection. According
to the derivation in Section 4, the additional feedback

component due to the observation error caused by the load
disturbance, can serve as feedforward compensation for the
output disturbance. The residual disturbance after compen-
sation generates the so-called ‘equivalent disturbance’,
which is defined as:

deqðsÞ ¼ ½I � GPðsÞĜGoðsÞ
 � dðsÞ ð45Þ

where GPðsÞ ¼ C1½sI � ðA1 � B1K1Þ
�1B1; ĜGoðsÞ ¼
K1½sI � ðA1 � JoC1Þ
�1Jo:

The ‘equivalent disturbance’ can be used as an index
to measure the disturbance compensation. Defining a dual
system as Adual ¼ AT

1 ; Bdual ¼ CT
1 ; Cdual ¼ BT

1 ; and Qdual

¼ CT
dual � W � Cdual; in which the weighting matrix W can

be tuned to achieve a less ‘equivalent disturbance’ in
(45). Let W ¼ diagf1000; 1g and Rdual ¼ I; then solving
the Riccati equation:

PdualAdualþAT
dualPdual�PdualBdualR

�1
dualB

T
dualPdualþQdual ¼ 0

ð46Þ
yields the desired observer gain as

Jo ¼ ðR�1
dualB

T
dualPdualÞT ¼

0 0

0 0

�0:3036 0:6555

�0:3039 0:6562

26:1560 11:9660

27:4783 12:6016

2
6666666664

3
7777777775

ð47Þ

Remark 4: Despite the availability of systematic approaches
[22–25] to select the respective weighting matrices in (11)
for the controller design, a trial-and-error method may still
be required for selecting appropriate weighting matrices in
(46) for the observer design. This is because the designed
observer performs the function of not only state estimation,
but also disturbance rejection. Fast state estimation can be
achieved by appropriately selecting the pole assignment
region, so that the observed states quickly converge to the
system states. However, as stated before, due to the
existence of the biased load disturbance, observation errors
inevitably exist. If the weighting matrices are selected
properly, the observation error can just serve as a
feedforward compensator for the output disturbance. So, a
trial-and-error method may still be needed in finding
suitable weighting matrices in (46) to find the multi-
objective observer, which is used for both state estimation
and disturbance rejection.

The resulting ‘equivalent disturbance’ and the original
disturbance, or disturbances before and after compen-
sation, are compared in Fig. 10, from which we see that
considerable disturbance compensation has been achieved.

Simulation results are shown in Fig. 11, comparing
different PID controller settings. Unit set-point changes
were introduced in y1ðtÞ (at t ¼ 0) and y2ðtÞ (at t ¼ 20 h),
with a unit step disturbance occurring at t ¼ 40 h: The solid
line represents the output performance of the real system
(38) with the PID controller (43b) and observer (19) with
observer gain (47). The dash-dot line represents the output
of the nominal system (40) without an observer, in which
plant states are assumed to be accessible. The best
performance as cited in [20], with PID setting (b ¼ 0;
f ¼ 1), is shown with the dotted line in Fig. 11. It is
observed that the proposed method successfully achieves a
better result, especially for disturbance rejection.

Fig. 9 Set-point responses with different PID settings

a y1 as a function of time
b y2 as a function of time
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Remark 5: It is fair to point out that the method developed in
[20] considered traditional decentralised PID control and
did not require knowledge of the poles of the disturbed
model. As a result, the proposed centralised control method
performs somewhat better than the method in [20].

Next, let us investigate the sensitivity of the designed
system to the disturbance poles variation. Suppose the
disturbance poles are off by þ25% and �25%
respectively, that is the disturbance models are respectively
the following:

d̂d1ðsÞ ¼

�4:243e�0:4s

1:25 � 3:445s þ 1

�0:601e�0:4s

1:25 � 1:982s þ 1

2
6664

3
7775dðsÞ ð48aÞ

d̂d2ðsÞ ¼

�4:243e�0:4s

0:75 � 3:445s þ 1

�0:601e�0:4s

0:75 � 1:982s þ 1

2
6664

3
7775dðsÞ ð48bÞ

Then, the same controller (43a) and observer gain (47) are
applied to the system with the nominal disturbances in (38),
and the above-mentioned disturbances d̂d1ðsÞ and d̂d2ðsÞ in
(48), respectively.

The simulation results are shown in Fig. 12. It is observed
that the proposed controller=observer still achieves
robust performance for disturbance rejection in cases
where the disturbance poles are off by þ25% and �25%
respectively.

7 Conclusions

An LQR-based design methodology has been presented to
design MIMO PID controllers for multivariable analog
systems with load disturbances. While the proposed method
uses a more complicated MIMO PID controller, requires an
observer and may have lower integrity to loss of a sensor or
actuator due to failure or maintenance than the traditional
controller, it offers the following notable advantages over
existing traditional design methods. Firstly, the MIMO
optimal PID parameters are determined by tuning the
weighting matrices in the performance indices. Secondly,
during tuning processes, the closed-loop system stability is
guaranteed. Thirdly, there are no specific requirements on
system stability, low-degree and=or low-dimension model,
minimum-phase property and plant decoupling. Fourthly,
the developed observer-based optimal PID controller is able
to act as a set-point controller and disturbance controller for
a high-degree and=or high-dimension multivariable system
with unmeasurable disturbance.

The simulation results indicate that the proposed
methodology is easy to implement, and provides good
performance in both set-point response and disturbance
rejection. Further research extending the presented meth-
odology to the design of multivariable PID controllers for
MIMO analog systems with large modelling errors caused
by time delays is currently ongoing.

Fig. 10 Comparison between disturbances before and after
compensation

a d1 as a function of time
b d2 as a function of time

Fig. 12 Proposed system responses in cases of disturbance poles
variation

a y1 as a function of time
b y2 as a function of time

Fig. 11 Closed-loop responses

a y1 as a function of time
b y2 as a function of time
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