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a b s t r a c t

Permanent magnet synchronous motors (PMSMs) are applied in high performance positioning and vari-
able speed applications because of their enhanced features with respect to other AC motor types. Fault
detection and diagnosis of electrical motors for critical applications is an active field of research. However,
much research remains to be done in the field of PMSM demagnetization faults, especially when running
under non-stationary conditions. This paper presents a time–frequency method specifically focused to
detect and diagnose demagnetization faults in PMSMs running under non-stationary speed conditions,
based on the Hilbert Huang transform. The effectiveness of the proposed method is proven by means of
Hilbert Huang
P
F
F

experimental results.
© 2010 Elsevier B.V. All rights reserved.
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. Introduction

Industry constantly demands products that are faster and more
eliable. In this context, for some critical applications, perma-
ent magnet synchronous motors (PMSMs) possess characteristics
uperior to induction motors. PMSMs are becoming widely applied
n high performance positioning and variable speed applications
ecause of their attractive features. Powerful rare earth magnet
aterials that are now cost-effective, such as Sm–Co and Nd–Fe–B,

reatly enhance their properties. PMSMs possess a higher power
ensity than induction motors with equivalent ratings. Advantages
f PMSMs include high-speed operation, precise torque control,
ompactness, high power to weight ratio and high efficiency. Every
ay they are gaining ground in the automotive, robotics and aero-
autical industries [1]. Additional applications of PMSM include
earless elevators in low- and high-rise buildings, centrifugation

quipment, as well as the medical, chemical and semiconductor
ndustries, among others.

Many of the applications where PMSMs are applied are critical,
s their faults could potentially cause plant shutdown, huge eco-

∗ Corresponding author. Tel.: +34 938035300; fax: +34 938031589.
E-mail addresses: jordi@euetii.upc.edu (J.-R.R. Ruiz), garciae@ee.upc.edu

A. Garcia Espinosa), romeral@eel.upc.edu (L. Romeral), jcusido@eel.upc.edu
J. Cusidó).

1 Tel.: +34 937398155.
2 Tel.: +34 937398510.

378-7796/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2010.04.010
nomic loss and even human casualties. Hence, fault detection and
diagnosis is one of the most serious areas of concern in the elec-
tric drives research field. Therefore, accurate diagnosis of incipient
faults in critical applications where PMSMs play an important role
can significantly improve system availability and reliability.

A new trend and challenge in the electric drives industry is
the design of fault tolerant control systems which provide con-
trol algorithms capable of maintaining stability and performance
of the controlled system despite the occurrence of faults. To meet
this objective, fault detection and diagnosis of electric drives has
become an essential tool in most fault tolerant control system
designs.

In order to measure the impact of faults, the transient process of
the machine under fault conditions must be studied, since this state
usually reflects the worst case scenario that the machine design-
ers may face [2]. While there is already a plethora of literature on
the study of induction motors, it nevertheless continues to be a
dynamic field of investigation [3–7]. Recently, Gritli et al. [8] con-
ducted an interesting study to detect rotor faults on doubly fed
induction machines due to unbalanced rotor phase windings. In
this study Gritli et al. take advantage of the multiresolution analy-
sis capabilities of the discrete wavelet transform when the machine
operates under load-varying conditions and apply a multiresolu-

tion fault indicator based on the mean power at different resolution
levels to perform a quantitative evaluation of the fault degree.

Conversely, in the case of permanent magnet synchronous
motors – whether dc or ac brushless – both drive control and fault
detection are relatively novel fields of investigation [1,9–13].
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This work presents a innovative method in order to diagnose the
emagnetization fault in PMSMs. This fault can be due to an over
urrent on the stator windings that creates a magnetic flux opposed
o the natural flux of the magnet and leads to a demagnetization
f the magnet. However, the major difficulty with PMSMs occurs
t high speed when the induced eddy currents cause heating in
he magnet. As the demagnetization curve of the material is highly
emperature-dependent, heating effects may induce changes in

agnetic properties of the material. In any case, the demagnetiza-
ion of the permanent magnet results in a reduction of the torque
roduction, generating torque pulsation, vibrations and excessive
eat. Other faults that can occur in the motor are shorted turns,
pen turns, eccentricity and damaged bearings.

Different fault detection and diagnose methods have been
pplied to detect motor faults, the most common of which are
otor current signature analysis (MCSA), vibration analysis and

xial flux. Among them MCSA is one of the most popular as it is a
on-invasive method, needing only to acquire the line currents of
he motor and then to perform the fast Fourier transform (FFT).

It is well known that when the FFT is performed in a PMSM with
faulty rotor, different harmonics appear in the spectrum. They can
e identified as [14–16],

f = fe

(
1 ± k

P

)
(1)

here ff is the fault frequency, fe is the electrical fundamental fre-
uency, k is an integer and P is the number of pole pairs.

In the study carried out in this work, healthy and faulty PMSMs
ith three pairs of poles are analyzed. The faulty motors studied
ave just one rotor pair of poles which are partially demagnetized.

n this particular case, Eq. (1) can be rewritten as

f = fe

(
1 ± 2k + 1

P

)
(2)

eing k = 0,1, 2, . . . an integer.
Taking into account the number of pole pairs of the analyzed

otors, in one electrical fundamental period 1/3 of a complete rota-
ion of the rotor is produced. Thus, due to the damaged magnets,
here is a pronounced change in the flux density curve around the
otor [15]. This results in an electrical frequency component at the
otating frequency of the rotor, that is, the odd harmonics such as
/3 and 5/3 among others.

In case of non-stationary motor speed, faulty frequencies are not
xed and fault detection is not evident when using standard FFT. In
his paper, a novel method for demagnetization fault detection of
MSMs under non-stationary speed conditions is presented, based
n stator current signal decomposition using the Hilbert Huang
ransform (HHT).

This paper is divided into four sections. Following the introduc-
ion, Section 2 presents and discusses signal-processing methods
or transient analysis. Section 3 introduces HHT and corresponding
lgorithms to obtain the time–frequency representation of a non-
tationary signal. Experimental results are presented in Section 4,
s well as feature extraction by means of energy content of the
ignal. Finally, conclusions are stated in Section 5.

. Analysis methods for fault detection

Most of the signals obtained from natural phenomena and from
easurements in industrial applications are of a transient nature.

herefore, these types of signals are essentially nonlinear and non-

tationary, and traditional signal analysis methods such as Fourier
ransform fails when dealing with them [17]. Among them, the

ost likely applied method in industrial environments is based
n the Fourier analysis of the steady-state stator currents and the
tudy of the harmonic components that appear around the fun-
s Research 80 (2010) 1277–1285

damental component. Fourier analysis of stator currents provides
robust results when the machine operates under a certain load level
and stationary regime, but has important drawbacks when applied
to diagnose the condition of light-loaded machines or machines
running under non-stationary load conditions [18].

The Fourier transform is not well suited for analyzing non-
stationary signals since it projects the signal on infinite sinusoids
which are completely delocalized in time. In dealing with non-
stationary signals this is a very important drawback as it is essential
to take into account both time and frequency variables. Conse-
quently, a time–frequency representation (TFR) is needed. TFR can
be understood as a two-dimensional view of a time-dependent
signal represented over both time and frequency axes.

Several time–frequency analysis methods (some of them based
on Fourier analysis) have been developed, although successful
application of these techniques require a thorough understand-
ing of their respective limitations. For example, the short-time
Fourier transform (STFT) allows time–frequency analysis using the
widely applied fast Fourier transform (FFT) algorithm. STFT implic-
itly assumes the signal behaves as stationary during the window
interval of computation. The selection of a suitable window size is
required to match with the specific frequency content of the signal,
which is generally not known a priori. This provokes an inconsis-
tent treatment at different frequencies due to the fixed length of
the window. Therefore, its application for fault detection is limited
to signals where frequency content changes very slowly over time.

Another widely applied time–frequency method is the wavelet
transform (WT) which overcomes some of the limitations related
to the STFT. WT allows decomposing the raw signal by means of a
set of wavelets (basis functions) which are localized both in time
and frequency [19]. However, WT presents a serious drawback due
to the necessity of a priori knowledge about the kind of scale ele-
ments which are present in the signal for isolating and analyzing
them. As pointed out by Antonino-Daviu et al. [18,20] the selec-
tion of the mother wavelet is somewhat arbitrary, since there is no
clear rule for selecting the optimal mother wavelet for a specific
application. Furthermore, the possible overlap between frequency
bands associated with the wavelet signals or the dyadic frequency
decomposition of the Mallat algorithm (especially when dealing
with the discrete wavelet transform) can result in a limited reso-
lution of some frequency components closer to the fundamental.
Another drawback related with this method is the boundary dis-
tortion introduced by the WT that in some cases might make the
identification of some frequency components difficult.

Some of the drawbacks related to the FT and the WT can be
overcome by applying the HHT. HHT possesses advantages over WT
because it avoids the selection of the mother wavelet. It also allows
for a more valuable study of some frequency components closer
to the fundamental as it does not perform the dyadic frequency
decomposition of the Mallat algorithm.

3. Hilbert Huang transform

The HHT was proposed by Huang et al. [21] and it has been suc-
cessfully applied in diverse areas such as geosciences and remote
sensing applications [17], nonlinear structural dynamics [22], anal-
ysis of sea waves [23], analysis of electroencephalogram (EEG)
signals [24], gear fault diagnosis [25], analysis of torsional shaft
oscillations [26], analysis of electrical generator coherency [27] and
detection of broken rotor bars in induction machines [18], among
others.
However, as pointed out by Antonino-Daviu et al. [20] the
patterns arising from the HHT appear less clear when compared
with the DWT approaches. Furthermore, constraints such as the
boundary distortion are not completely avoided. HHT performs the
empirical mode decomposition (EMD) of the raw signal. This pro-
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edure allows extracting some components with zero mean from a
on-stationary signal, called intrinsic mode functions (IMFs), which
re related to characteristic frequency bands of the original signal.
MFs allow the spectral composition of the original signal to be ana-
yzed. Once the EMD has been performed, the Hilbert transform of
he IMFs is realized in order to study the instantaneous frequencies
f the original signal, allowing a detailed time–frequency analysis
f the non-stationary original signal to be carried out.

The Hilbert transform (HT) allows computing a time–frequency
istribution from a non-stationary narrow band signal. This is a very

imiting drawback of this method [28] because this condition is not
ormally satisfied by non-stationary signals of interest in practical
pplications. Huang et al. [21] proposed the application of the EMD
o overcome this difficulty. The Hilbert transform can be applied to
he IMFs arising from the EMD because each one contains a narrow
and component of the signal at a given time.

.1. Empirical mode decomposition (EMD)

In this section the procedure to perform the empirical mode
ecomposition is detailed. The EMD of a measured signal x(t)
xtracts its intrinsic oscillations through their characteristic time
cales [29]. The IMFs are extracted by means of an iterative process.
ote that the original signal x(t) can be designated as a time series.
he procedure usually applied to extract the IMFs of the measured
ignal can be summarized as follows [27,29]:

. Extraction of local maxima and minima of the signal x(t). Connect
local maxima by applying preferably cubic spline interpolation
[30]. Huang et al. [21] have shown that more complex fitting
functions marginally improves the resolution while significantly
increasing the computational burden. Hence, the upper envelope
eu(t) is generated. Similarly, the lower envelope el(t) is generated
by connecting local minima by means of cubic spline interpola-
tion.

. Compute the mean envelope from upper and lower envelopes
as,

em(t) = 0.5[eu(t) + el(t)] (3)

. Obtain the difference series d(t), calculated as the difference
between the original series and the mean envelope as,

d(t) = x(t) − em(t) (4)

. The difference series d(t) might be the first IMF if it meets two
requirements. Firstly, the number of local extremes of d(t) and
the number of zero crossings must differ at most by one. Sec-
ondly, the mean value of d(t) must be close to zero according
to some well-established stopping criterion in order to keep the
resulting IMFs to be physically meaningful. Detailed information
about stopping criterion can be found in [28]. If d(t) is not an IMF,
then replace x(t) by d(t) and repeat steps 1–4 until the new d(t)
satisfies the conditions of being an IMF. In this case IMF1 = d(t).

. Compute the residue r1(t) as,

r1(t) = x(t) − IMF1(t) (5)

. Successive IMFs are extracted with an iterative process. They are
designed as IMFi, being i = 1, 2, . . ., n the number of IMFs of the
decomposition. For this purpose, the new signal can be replaced
by the residue r1(t), and steps 1–5 of the process are repeated to
extract the rest of the IMFs inherent to the original signal x(t) as,⎧

x(t) = IMF (t) + r (t)
⎪⎪⎪⎨
⎪⎪⎪⎩

1 1

r1(t) = IMF2(t) + r2(t)

...

rn−1(t) = IMFn(t) + rn(t)

(6)
s Research 80 (2010) 1277–1285 1279

The signal decomposition process is completed when rn(t) becomes
a monotonic function, from which no further IMFs can be extracted
[31].

Finally, it is easily deducible that by applying Eq. (6) the original
measured signal x(t) can be reconstructed as:

x(t) =
n∑

i=1

IMFi(t) + rn(t) (7)

rn(t) being the residue resulting from the empirical mode decom-
position.

The IMF extraction process guarantees that they are obtained in
decreasing order of their local frequency content. This means that
the first IMF to be obtained contains the modes with highest local
frequency content [27]. EMD allows an effective construction of the
frequency spectrum of a non-stationary signal containing multiple
frequency components. As described in Eq. (7), EMD separates a
signal into several IMFs and a residual, all of which can be used
for extracting spectral information as well as filtering the signal. As
each IMF contains a specific interval of frequencies, they can also
be used to perform a digital filtering of the sampled signal x(t).

The IMFs arising from the EMD of the original signal x(t) have
narrow band frequency content. Therefore, the Hilbert transform
can be applied to the IMFs. From the output of the Hilbert transform
the instantaneous frequency and energy contained in the IMFs at
each instant of time are computed and a time–frequency matrix is
generated which can be represented as a contour plot.

3.2. Hilbert transform (HT)

When dealing in the time domain, the Hilbert transform y(t) of
a non-stationary and narrow band signal x(t) can be defined as a
convolution between the Hilbert transformer 1/(�t) and the signal
x(t) [32],

y(t) = H[x(t)] = 1
�

P

∫ +∞

−∞

x(�)
t − �

d� (8)

P being the Cauchy principal value.
The improper integral defined in Eq. (8) frequently does not exist

due to the pole placed at t = �. The Cauchy principal value P allows
expanding the type of functions for which the integral exists [33].
Let x(t) be a function defined on [a,b]. If x(t) is unbounded near a
point � of [a,b], the integral of x(t) over [a,b] does not always exist.
However, the two limits of Eq. (9) still may exist.

Lim
∈ →0

∫ �− ∈

a

x(t)dt, Lim
∈ →0

∫ b

�+ ∈
x(t)dt (9)

If the sum of the two above limits exists, the result is the principal
value integral of x(t) over [a,b] and is denoted by,

P

∫ b

a

x(t)dt = Lim
∈ →0+

∫ �− ∈

a

x(t)dt + Lim
∈ →0+

∫ b

�+ ∈
x(t)dt (10)

An analytic signal z(t) is defined as [21,18,31],

z(t) = x(t) + iH[x(t)] = x(t) + iy(t) (11)

i being the imaginary unit. Eq. (11) can be rewritten in polar form
as,

z(t) = x(t) + iH[x(t)] = M(t)ei�(t) (12)
From the phase angle of the polar form, the instantaneous fre-
quency of the analytical signal is then calculated as,

ω(t) = d�(t)
dt

(13)
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Firstly, the amplitude spectrum of a healthy and a par-
tially demagnetized motor operating both at a constant speed of
6000 rpm (fe = 300 Hz) and under rated load are obtained (Fig. 3).
280 J.-R.R. Ruiz et al. / Electric Power S

ccordingly, the real part of the signal x(t) can be written in terms
f the amplitude and instantaneous frequency as a time-dependent
unction,

(t) = Real(z(t)) = Real

(
M(t)e

i
∫

ω(t)dt

)
(14)

y combining Eqs. (7) and (14) the result is,

(t) = Real

(
n∑

i=1

MIMF,i(t)ei
∫

ωIMF,i(t)dt

)
(15)

eing [21],

MIMF,i(t) =
√

IMFi
2(t) + H[IMFi

2(t)]

ωIMF,i(t) = d�IMF,i(t)
dt

= d

dt

[
tan1

(
H[IMFi(t)]

IMFi(t)

)] (16)

n Eq. (15) the term rn has been omitted since it is a monotonic func-
ion and does not contain information about the frequency content
f the signal.

The Fourier series representation of a signal x(t) is given by the
ext equation,

(t) = Real

(
n∑

i=1

MFou,ie
iωFou,i(t)t

)
(17)

Fou,i and ωFou,i both being constants. Conversely, both coefficients
IMF,i and ωIMF,i arising from Eq. (15) are time-dependent. In com-

aring (15) and (17) it is easy to deduce that (15) can be understood
s a generalized Fourier expansion. As shown in Eq. (16), the HT of
he IMFs allows the amplitude and the frequency components to
e separated. Performing the EMD previous to the HT enables the
eneration of a variable amplitude and frequency representation,
vercoming the limitations imposed by the Fourier analysis, specif-
cally, the independence of amplitude and frequency with respect
o time. Thus, the EMD process followed by the Hilbert trans-
orm enables time–frequency representation of a non-stationary
ignal by computing its time-dependent amplitude and the char-
cteristic frequency components at different time instants. This
ime–frequency representation of a non-stationary signal x(t) is
nown as the Hilbert Huang spectrum.

. Experimental results

In this section experimental results are presented. A PMSM with
pairs of poles manufactured by ABB, rated torque of 2.3 Nm,

30 VAC and rated speed of 6000 rpm was used in experiments.
he motor was driven by an ABB power converter model DGV 700.
he drive control was a vector control, with a set point id = 0 and
PID speed control loop. The motor was loaded by an additional

MSM driven by a torque controller as shown in Fig. 1. A constant
oad was imposed during experiments.

Demagnetization of the motor was carried out during manu-
acture. A special motor with reduced magnetization was ordered
o perform this task, with 50% of nominal flux in one pair of poles.
ominal flux density is 0.85 T and remanent flux density Br is 1.19 T.

Experiments were carried out with healthy and faulty motors
unning under dynamic speed conditions (speed changes from
000 to 5500 and 3000 to 2500 rpm were induced, see Fig. 2) and
nder rated load and one-half load.
Stator currents of the PMSM were measured with a Tektronix
C/DC current probe model A622. Motor currents were sampled
uring approximately 0.26 s at a rate of 6 kHz, obtaining 1601 sam-
les. Data acquisition is done with a DAQ NI PCI-6251 multifunction
oard, with 16 input channels, 16 bits of resolution and 4k samples
Fig. 1. (a) Voltage source inverters with the current probes. (b) PMSMs experimental
rig.

of inner memory. The HHT-related algorithms have been imple-
mented in Matlab using the toolbox for Matlab programmed by
Rilling [34].

4.1. Fast Fourier transform (FFT)

In this section FFT is used to carry out a preliminary study
to detect the exact experimental harmonic frequencies for both
healthy and faulty motors.
Fig. 2. Speed changes applied from 6000 to 5500 and 3000 to 2500 rpm.
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Fig. 3. FFT stator current spectrum for a con

Fig. 3 corroborates the predictions of Eq. (2). Whereas a healthy
otor has a dominant harmonic placed in fe, a partially demagne-

ized motor presents the main faulty harmonics placed in fe/3, 5fe/3
nd 15fe/3.

More complex is the interpretation of the FFT analysis of the
tator currents when the PMSM runs under non-stationary speed
onditions. Fig. 4 shows the resulting FFT spectrum of a healthy and
partially demagnetized motor under a speed change from 6000 to
500 rpm operating at one-half full load (one-half rated load). As it

s shown, FFT mixes frequency harmonics when the motor operates
t variable speeds between 6000 and 5500 rpm.
However, without prior knowledge of the signal displayed in
ig. 4, it is impossible to diagnose if the harmonics related to 6000
nd 5500 rpm appear at different times due a change of speed of
he PMSM or if, on the contrary, they appear simultaneously for a
etermined speed of the PMSM. Thus, even though FFT is extremely

Fig. 4. FFT stator current spectrum for a speed change from
speed of 6000 rpm operating at rated load.

useful when dealing with stationary signals, amplitude and fre-
quency outputted by the FFT do not contain information about time,
a serious drawback that can lead to an erroneous diagnostic. As
stated in Ref. [21], the Fourier analysis has some restrictions; the
system must be linear and the data must be strictly periodic or sta-
tionary. The Fourier transform of a non-stationary signal tends to
average the frequency content of the signal over time. Therefore,
FFT is not well suited to perform a correct diagnostic of the machine
when dealing with non-stationary conditions.

4.2. Hilbert Huang transform (HHT)
As mentioned previously, FFT is not the best choice when dealing
with non-stationary signals. For fault detection in PMSMs work-
ing in non-stationary conditions, we propose the Hilbert Huang
transform.

6000 to 5500 rpm operating at one-half rated load.
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of interest, Figs. 6 and 7 plot the information provided by the matrix
M in the frequency band between 0 and 500 Hz.

It is evident that from Figs. 6 and 7 that it is difficult to
discriminate between faulty and healthy conditions because the
ig. 5. Stator current EMD decomposition for a speed change from 6000 to 5500 rpm
hen the motor operates at rated load. (a) Healthy motor and (b) demagnetized
otor.

Once the experimental signal has been acquired (in the case
tudied it is the stator current acquired at 6 kHz), the first step
nvolved with the HHT is performing the empirical mode decompo-
ition, from which the IMFs emerge. Fig. 5 shows the IMFs resulting
rom the stator current of a healthy motor under a speed change
rom 6000 to 5500 rpm operating at full load (rated current).

Although some authors use the information provided by the
MFs to compute a finite set of features that allows discrimina-
ion between both healthy and faulty states, the number of IMFs
btained from the EMD is not constant, as shown in Fig. 5. This
eans that different stator current acquisitions can lead to a differ-

nt number of IMFs computed by the EMD algorithm. Therefore, we
refer to compute the discriminating features not directly from the

MFs, but from the Hilbert Huang time–frequency representation
f the acquired stator current instead.

Once the EMD has been performed, the second step involved in
he HHT is computing the Hilbert transform. This algorithm takes
s inputs the IMFs obtained from the EMD and outputs a matrix
ontaining the time–frequency representation of the original data,
lso called Hilbert Huang spectrum.

The Hilbert Huang spectrums for both a healthy and a partially
emagnetized PMSM when running under a speed change from
000 to 5500 rpm are shown in Figs. 6 and 7. In these plots, the

orizontal axis represents time and the vertical axis is frequency.
dditionally, a third dimension indicating the amplitude of a par-

icular frequency at a particular time is represented by the intensity
r color of each point in the image. The colorbar on the right-hand
Fig. 6. Stator current time–frequency representation from the HHT output of a
healthy PMSM for a speed change from 6000 to 5500 rpm operating at rated load.

side of the figure indicates the range of amplitudes displayed in the
time–frequency HHT spectrum plot. The dotted white line super-
imposed in Figs. 6 and 7 shows the applied speed change.

The color of the points of Fig. 6 indicate the strength of the
amplitude of the HHT spectrum at a given time–frequency point.
Therefore, a dark blue point indicates that its value is close to 0,
whereas a red point indicates that its value is close to 2.5.

The Hilbert Huang transform outputs a r × c matrix M, r being the
number of rows (frequency samples) and c the number of columns
(time samples). In the case analyzed in the present study we have
imposed 300 rows (frequency samples) and 1601 columns (time
samples). As the sampling frequency is 6 kHz, due to the Nyquist
criterion, the rows of matrix M contain information between 0 and
3000 Hz. Thus, the frequency (row) resolution is approximately
10 Hz (300 rows from 0 to 3000 Hz) while the time (column) resolu-
tion is 1/6000 s. In order to visualize in detail the main frequencies
Fig. 7. Stator current time–frequency representation from the HHT output of a par-
tially demagnetized PMSM for a speed change from 6000 to 5500 rpm operating at
rated load.
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Table 1
Relation between rows of the time–frequency matrix outputted by HHT and fault frequencies under the speed changes analyzed.

Fault frequency (Hz) Lower and upper rows Lower and upper frequencies (Hz)

6000–5500 rpm (fe: 300–275 Hz, FR = 10 Hz)
E10 (fe/3) 100–91.7 8–12 80–120
E30 (fe) 300–275 24–36 240–360
E50 (5fe/3) 500–458 40–60 400–600
E150 (15fe/3) 1500–1375 120–180 1200–1800

3000–2500 rpm (fe: 150–137.5 Hz, FR = 10 Hz)
E5 (fe/3) 50–45.8
E15 (fe) 150–137.5
E25 (5fe/3) 250–229.2
E75 (15fe/3) 750–687.5

F
f

i
d
a
i

b

F
d
l

ig. 8. Stator current time–frequency representation around fe/3 of a healthy PMSM
or a speed change from 6000 to 5500 rpm operating at rated load.

nformation contained in the time–frequency matrix M with
imensions 300 × 1601 is too vast for practical applications. Thus,

feature extraction method capable of condensing the essential

nformation in a finite set of appropriate features is desirable.
In this paper the use of a reduced set of features to discriminate

etween a healthy and a faulty motor is proposed. These features

ig. 9. Stator current time–frequency representation around fe/3 of a partially
emagnetized PMSM for a speed change from 6000 to 5500 rpm operating at rated

oad.
4–6 40–60
12–18 120–180
20–30 200–300
60–90 600–900

are selected in order to provide information about the faulty har-
monic frequencies underlying in the original signal. The first step
is to identify the rows of the time–frequency matrix M containing
the faulty frequencies. Selection of a security or tolerance interval
around each faulty frequency of interest is also suggested in order to
account for possible experimental errors of the measured speed as
well as potential uncertainties due to the data processing method.

The criterion shown in Eq. (18) for selecting the rows of the
HHT output matrix M according to the harmonic frequencies to be
detected is proposed.

[r min, r max] = [0.8FR−1ffault, 1.2FR−1ffault] (18)

ffault being the fault frequency to be detected, r is the row position
in matrix M and FR is its frequency resolution. In the case studied
FR = 10 Hz. Factors 0.8 and 1.2 are the tolerance of the interval of
frequencies analyzed around the fault frequency of interest which
can be modified.

Next, the percentage of energy contained in each interval is
computed as explained in Eq. (19).

Ez = 100 ×
∑r max

i=r min i

∑c
j=1M2

i,j∑r
i=1

∑c
j=1M2

i,j

(19)

c and r being, respectively, the total number of columns and rows
of the time–frequency matrix M, [r min,r max] the interval of rows
to be considered and z the central row of the selected interval.

The objective of the energy-related features computed in this
work is to reduce the amount of data arising from the HHT, simpli-

fying notably the data structure of the problem – it allows reducing
the computational burden of the problem in the diagnosis stage
– while retaining as much as possible of the relevant information
contained in the data outputted by the HHT. Although under this
approach the information of each frequency band is reduced to a

Table 2
Energy in percentage for the 4 computed energy-related features (mean value of Ia ,
Ib and Ic) computed from the HHT output matrix M.

Motor E10 E30 E50 E150

6000–5500 rpm, full load
Healthy 1.83 87.39 9.61 1.17
50% Dm 7.43 77.25 13.97 1.35

6000–5500 rpm, one-half load
Healthy 5.57 77.72 12.61 4.10
50% Dm 16.72 62.94 16.66 3.68

Motor E5 E15 E25 E75

3000–2500 rpm, full load
Healthy 2.71 83.96 12.15 1.17
50% Dm 4.24 80.28 14.91 0.58

3000–2500 rpm, one-half load
Healthy 4.19 78.39 12.37 5.06
50% Dm 11.06 69.94 17.42 1.58
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ig. 10. Values of the energy-related features. (a) Speed change from 6000 to 5500
hange from 3000 to 2500 rpm and rated load and (d) speed change from 3000 to 2

ingle value, this value is obtained from the integral over the whole
ime domain of the square of the amplitudes arising from the HHT.
hus, this single value has been obtained from the “average” of
he square of the amplitudes arising from the HHT over the whole
ime-domain interval. This procedure is necessary to generate a
ystem fast enough to carry out an automatic on-line diagnostic in
ndustrial applications.

Table 1 summarizes the rows chosen to compute the features Ez

elected for the problem under study.
Figs. 8 and 9 show, respectively, the time–frequency represen-

ation of rows 8–12 (corresponding at faulty frequency fe/3) of the
tator current of a healthy and a partially demagnetized motor
nder a speed change from 6000 to 5500 rpm when operating at
ated load.

As depicted in Figs. 8 and 9, the energy content around the faulty
armonic fe/3 is much higher when dealing with a partially demag-
etized PMSM compared to a healthy one. Essential information
rovided by Figs. 8 and 9 is condensed in coefficient E10, which

s more useful for diagnosis purposes than the above mentioned
gures.
Table 2 summarizes the information provided by the 4 com-
uted energy-related features. It clearly shows that some of these
eatures allow discrimination between a healthy and a partially
emagnetized motor condition.

Fig. 10 shows the results of Table 2 in graph form.
nd full load, (b) speed change from 6000 to 5500 rpm and one-half load, (c) speed
m and one-half rated load.

It is important to highlight that fault harmonic frequencies
change with rotor speed. Thus, under non-stationary conditions,
information provided by the proposed features may change regard-
ing rotor speed. Fortunately, the speed controller which drives the
PMSM provides the actual speed of the machine. Thus, a simple
algorithm can compute Eq. (18) and adjust automatically the row
intervals of the time–frequency matrix M from which the set of fea-
tures is calculated. Thus, the method proposed in this work allows
fault detection for different speeds and load conditions.

5. Conclusion

In this paper the effect of demagnetization faults that are
reflected on the stator current spectrum of a PMSM has been ana-
lyzed by applying a time–frequency approach.

Results of FFT of acquired stator currents for a PMSM driven
by a vector control have indicated that faulty harmonics are visi-
ble in the current spectrum. However, fault detection by means of
FFT is not clear when the PMSM runs under non-stationary speed
conditions. Although FFT allows detecting demagnetization faults

by analyzing the amplitude of harmonics in stationary signals, it
is not the best choice to detect motor failures when dealing with
non-stationary signals.

In order to detect faults in motors running under non-stationary
conditions, time–frequency processing methods are proposed.
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pecifically, a HHT-based method has been successfully applied in
his paper to discriminate between healthy and partially demagne-
ized PMSM running under non-stationary speed conditions.

The proposed HHT-based method computes a reduced set of
iscriminating features that are specific for each fault frequency
armonic of the stator currents. Thus, this method is well suited
o detect possible motor failures for on-line diagnostic systems
n industrial applications when the motor is running under non-
tationary conditions.

Fault harmonic frequencies change when the motor operates
nder dynamic conditions. Information provided by the proposed
eatures also changes relative to rotor speed. Fortunately, the speed
ontroller that drives the PMSM provides the actual speed of the
achine. Thus, a simple algorithm can be computed that automat-

cally adjusts the interval of data from which feature extraction is
ade. Consequently, the method proposed in this work allows fault

etection regardless of the speed or load conditions.
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30] G. Rilling, P. Flandrin, P. Gonçalves, On empirical mode decomposition and its
algorithms, in: IEEE-EURASIP Workshop on Nonlinear Signal and Image Pro-
cessing NSIP-03, Grado, Italy, June, 2003.

31] R. Yan, R.X. Gao, Hilbert-Huang transform-based vibration signal analysis for
machine health monitoring, IEEE Trans. Instrum. Meas. 55 (2006) 2320–2329.
32] E.B. Saff, A.D. Snider, Complex Analysis for Mathematics, Science and Engineer-
ing, Prentice-Hall Inc., New York, 1976.

33] H. Peter, Applied and Computational Complex Analysis, vol. 1, John Wiley &
Sons Inc., New York, 1988.

34] G. Rilling, Empirical Mode Decomposition, http://perso.ens-lyon.fr/patrick.
flandrin/emd.html.

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://perso.ens-lyon.fr/patrick.flandrin/emd.html

	Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions
	Introduction
	Analysis methods for fault detection
	Hilbert Huang transform
	Empirical mode decomposition (EMD)
	Hilbert transform (HT)

	Experimental results
	Fast Fourier transform (FFT)
	Hilbert Huang transform (HHT)

	Conclusion
	References


