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� Effects of weather forecast uncertainty on a predictive control concept is investigated.
� Two different years in a temperate climate are simulated for 24 building scenarios.
� Energy savings demonstrated despite of weather forecast uncertainties.
� Thermal indoor environment improved despite of weather forecast uncertainties.
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a b s t r a c t

This paper investigates the effects of weather forecast uncertainty on the performance of a concept for
predictive control of building systems operation. The concept uses a computational physically-based
building model and weather forecasts to predict future heating or cooling requirement. This information
enables the building systems to respond proactively to keep the operational temperature within the ther-
mal comfort range with the minimum use of energy. The effect of weather forecast uncertainty was
assessed using weather data from two different years in a temperate climate in the simulation of 24
building design scenarios. Despite the uncertainty in the weather forecasts, the predictive control concept
demonstrated a potential for energy savings and/or improvements in thermal indoor environment when
compared to a conventional rule-based control.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The recast of the European Performance of Buildings Directive
(EPBD) in 2010 states that all new buildings constructed after
2020 should consume ‘‘near zero energy’’ for building operation
[1]. Furthermore, it is expected that the demand for better comfort
in buildings will continue to increase as it has within the last few
decades. This leads to an increasing pressure on the building indus-
try to produce low-energy buildings with a high quality of indoor
climate. In this relation, the reduction of energy for heating,
ventilation and air conditioning (HVAC) is essential as HVAC cur-
rently accounts for approximately half of the energy consumed in
buildings corresponding to around 10–20% of the total energy con-
sumption in developed countries [2]. Minimising the energy use
for HVAC is a combination of (1) reducing the overall energy
needed for building operation using non-energy-consuming means
such as building orientation and geometry, insulation, thermal
mass and solar shading, (2) designing energy-efficient HVAC plants
and routings, and (3) optimizing building systems operation. In the
latter case, the current research efforts evolve around the concept
of predictive control. The basic idea of predictive control for build-
ing systems operation is to use a virtual model of the building and
weather forecasts to predict the future evolution of the indoor cli-
mate. This information is used to compute control actions which
anticipate this evolution by fulfilling indoor climate requirements
while minimising utility and energy costs.

There are a number of different approaches to predictive control
for building systems operation. The approaches can in general be
divided into the use of statistically derived models (‘‘black-box’’)
[3–5], physically-based models (‘‘white-box’’) [6–8]and combina-
tions hereof (‘‘grey-boxes’’) [9,10]. However, no matter the model-
ling technique, the performance of predictive control depends on
the accuracy of the weather forecasts, modelled system dynamics
and predictions of occupant behaviour. This paper aims at
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investigating the effect of weather forecast uncertainty in a predic-
tive control concept for building systems operation.
1.1. Literature review

Existing predictive control concepts for building systems oper-
ation have shown a theoretical potential for energy savings and
improved indoor climate compared to more conventional systems
operation. Wittchen et al. [11] identified a theoretical annual en-
ergy saving of 5% and thermal indoor climate improvements in a
Danish office building by using predictive control. A test case for
a predictive control concept developed by Petersen and Svendsen
[12] shows a theoretical energy saving of 7% for heating and venti-
lation while improving the quality of the thermal indoor environ-
ment. In the more comprehensive OptiControl project [13], a
theoretical energy saving potential of 16% to 41% was identified
varying with location, building case, and technical system charac-
teristics [14]. How much of an identified theoretical potential that
can be achieved depends on the effect of uncertainty in weather
forecasts, predictions about user behaviour and precision in the
thermal modelling. The rest of this literature review focuses on
the effect of uncertainty in weather forecasts in predictive control
concepts for building systems operation.

Henze et al. [15] investigate a number of short-term weather
prediction models and test the effect of their uncertainty on the
performance of a predictive control concept. The conclusion is that
almost the full theoretical potential in the concept is realised
despite the uncertainty in the weather predictions. Furthermore,
it is highlighted that this can be obtained using very simple
short-term weather prediction models. Oldewurtel et al. [16] re-
port on the development and analysis of a stochastic model predic-
tive control (SMPC) strategy for building climate control that takes
into account the uncertainty due to the use of weather predictions.
The findings suggest that this control strategy outperforms current
control practice both in terms of energy usage and comfort viola-
tions. It was also shown that SMPC performed clearly better using
a complex weather prediction model compared to simple models.
The fact that the performance of SMPC depends on the quality of
the weather prediction is in contrast to the previously described
findings of Henze et al. [15]. There are, however, various reasons
that make the two studies incomparable, e.g. different climates,
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Fig. 1. Illustration of the terminology used in the description of the concept. The predictio
hours belonging to the following period.
the chosen concept and/or different investigated buildings. Lamo-
udi et al. [17] use a modification of one of the simple forecast mod-
els from Henze et al. [15] in their predictive controller. The result is
a maximum increase of 4% in energy invoice due to weather
forecast uncertainty.

There are also a number of studies where the effects of weather
forecast uncertainty are not investigated directly, but are indirectly
represented in the identified savings. An example is Siroky et al.
[18] who investigate the heating savings potential of a model pre-
dictive control concept with weather forecasts in three different
building blocks. The saving for heating was between 15% and
28% compared to a heating curve strategy depending on mainly
insulation level and outside temperature. Another example where
weather forecast uncertainty is indirectly represented in the sav-
ings is in Henze et al. [19] where a saving of 27% in electrical utility
costs is identified.

From the literature it can be learned that it is not always clear
how significant the effect of uncertainty in weather forecasts is
compared to the theoretical potential of predictive control. The
effect seems to depend much on the chosen predictive control
concept, climatic region and test cases.

1.2. Aim and outline of the paper

The aim of this paper is to investigate how significant the effect
of uncertainty in weather forecasts is when a certain deterministic
predictive control concept is compared to the performance of a
conventional rule-based control and the theoretical potential (i.e.
perfect weather forecast). Section 2 explains the investigated con-
cept. Section 3 presents the data and the process used in the inves-
tigation. Section 4 presents and discusses the simulation results,
and Section 5 gives conclusions.
2. A predictive control concept for building systems operation

The predictive control concept used in this investigation is as
described in details in Petersen and Svendsen [12] and summarised
in the following. The concept was initially developed for temperate
climates, i.e. climates where free cooling is plentiful compared to
solar gains. The concept is deterministic, i.e. it determines control
decisions under the assumption that weather forecasts are perfect.
egend
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n horizon for hour n is the sum of the remaining hours in the current period and the
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The concept provides access to a building simulation tool which is
able to perform dynamic simulations, i.e. take the time constant of
the building into consideration. The tool must as a minimum be
able to calculate in hourly steps and provide values for the internal
surface temperature of constructions, the air temperature and the
energy needed to maintain thermal comfort using (if made avail-
able by the user) solar shading, increased venting, increased
mechanical ventilation, and/or mechanical cooling.

The concept requires that an in-use period is defined, for exam-
ple from 8 a.m. to 4 p.m. every day of the week all year, except Sat-
urday and Sunday. All other periods than the defined in-use period
will be considered as out-of-use periods. The hours of the year thus
shifts between belonging to an in-use period or an out-of-use per-
iod. If a certain hour belongs to an out-of-use period then this per-
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Fig. 2. Flow chart of suggested
iod is called the current period and the following in-use period is
called the following period. However, if the hour belongs to an
in-use period then this period becomes the current period and
the following out-of-use period becomes the following period.
Using these period definitions, the concept operates with a dy-
namic prediction horizon which always consists of the remaining
hours of the current period and the hours of the following period
as illustrated in Fig. 1.

The concept also requires a minimum and a maximum accep-
tance criterion for thermal comfort in the in-use period which
applies for the entire year. The premise of a single comfort range
covering the entire year requires that occupants are able to adapt
their clothing level over the day to maintain thermal comfort. For
example, if the building is cooled to 20 �C during the night to
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prevent a cooling demand or overheating the next day, occupants
can be assumed to have a clothing of 1 clo in the morning, which
they are able to change to 0.5 clo if the temperature rises above
24 �C during the day.

A flow chart of the concept is shown in Fig. 2. Overall, the con-
cept is divided in two parts (marked with dotted boxes) with dif-
ferent purposes: Predictions and Testing.

2.1. Prediction

The purpose of the prediction part is to predict the appropriate
system control strategy for a time step n (e.g. an hour) to reach cer-
tain operative temperature at the end of the period to which n be-
longs. First, the start temperature of the following period is
simulated using weather forecasts for the remaining hours of the
current period. The simulation is made with free-floating control
systems, i.e. without the intervention of the mechanical heating or
cooling systems. The operative temperature is thus only influenced
by the weather data, the energy properties of the building construc-
tions, and any user-defined minimum values for ventilation, lighting
and internal loads. Next, the maximum temperature in the following
period is found in free-float by simulating the following period using
weather forecasts. This maximum temperature is used to determine
the cooling set point (Tcool) for time step n. The appropriate Tcool is
found within an operative temperature range constituted by the
minimum and maximum acceptance criterion for thermal comfort.
Bearing the assumption of adaptive thermal comfort in mind, the
setting of Tcool is based on the following assumptions:

1. There is a heating requirement if the operative temperature at
some point in the future period becomes lower than the lower
value of the thermal comfort range. The cooling systems are
deactivated.

2. There is most probably a heating requirement rather than a
cooling requirement if the maximum operative temperature
at some point in the future period is between Tc,min and Tc,av,
Fig. 3. Distribution of difference between weather forecast data and actual weather data
forecast has 168 occurrences where the difference is �1 W/m2 which is not plotted for

Fig. 4. Distribution of difference between weather forecast data and actual weather data
forecast has 340 occurrences where the difference is �1 W/m2 which is not plotted for
where Tc,av is 0.5 � (Tc,max + Tc,min). The potential solar heat gain
is fully used to minimise the heating requirement by setting
Tcool to Tc,max.

3. There is a predominant need for cooling in time step n to pre-
vent overheating in the future period if the maximum operative
temperature at some point in the future period is between Tc,av

and Tc,max. However, to avoid generating a heating requirement
due to excessive cooling, Tcool is set to Tc,av.

4. There is a need for cooling in time step n to prevent overheating
in the future period if the maximum operative temperature at
some point in the future period is above Tc,max. In this case Tcool

is set to Tc,min.

Now the overall cooling strategy is to reach Tcool at the end of
the current period by gradually cooling down the building in the
remaining hours of the current period. The purpose of the gradual
cooling strategy is to prevent that the operative temperature be-
comes less than Tc,min in the remaining hours of the current period
and thereby create a heating demand. The next simulation there-
fore suggests a cooling strategy for time step n based on the aver-
age value of the weather forecasts for the remaining hours of the
current period. The cooling strategy is formed by activating cooling
systems, if they are made available in the model, in the following
predefined order: (1) solar shading, (2) increased venting, (3) in-
creased mechanical ventilation, and (4) mechanical cooling. This
simulation marks the end of the prediction part of the suggested
concept. The output is a cooling set point and a suggested cooling
strategy for time step n.

2.2. Testing

The purpose of the testing part is to test the predicted cooling
set point and system control strategy to ensure that it maintains
the operative temperature within the thermal comfort range in
time step n. If so, the predicted strategy is applied. If not, the
predicted system control strategy is revised using actual weather
(difference equals forecasted value minus actual value) for the year 2010. The solar
graphical reasons.

(difference equals forecasted value minus actual value) for the year 2011. The solar
graphical reasons.



Fig. 5. Concept for determining the theoretical and practical potential of MPC, and
the effect of weather forecast uncertainties. Modified from [14].

Table 1
Overview of the four variants in the differential sensitivity analysis.

Variant Name Description

Façade orientation South
North
Westa

Construction type Lightweight Specific effective heat capacity 144 kJ/K per m2 floor area.
Heavyweight Specific effective heat capacity 432 kJ/K per m2 floor area.

Window area fraction Medium Height 1.5 m, width 1.8 m, offset is symmetrical, 0.8 m from floor.
Fully Height 2.0 m, width 2.8 m, offset is symmetrical, 0.8 m from floor.

Glazing system 3-layer glazing with
external blinds

Glazing: U/g/LT = 0.76/0.49/0.68. Solar shading is activated when the operative temperature
exceeds the cooling set point.

Solar-coated glazing Glazing: U/g/LT = 0.73/0.34/0.58

a This variant also represents the performance of east-oriented rooms as east-oriented and west-oriented rooms virtually have the same annual performance in Danish
weather conditions.

RBC PF PC

Scenario no.

Fig. 6. Illustration of how the simulation results are presented in Fig. 5, this figure,
and Figs. 7–10. RBC is Rule-based Control, PF is Perfect Forecast, and PC is the
Predictive Control.
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data for time step n to reach the predicted set point and then
applied.

2.3. Implementation

The suggested concept is implemented in an existing simplified
building simulation tool for integrated daylight and thermal anal-
ysis called iDbuild [20] which is based on the simulation routines
described in Refs. [21,22]. The tool calculates daylight levels,
energy demand and the operative temperature in discrete hourly
values on a yearly basis based on hourly weather data.

3. Investigating the effect of weather forecast uncertainty on
predictive control concept

A case study featuring a single-sided, single-zone two-person
office with a one window located in Aarhus, Denmark is used to
investigate the effect of weather forecast uncertainty on the
suggested concept. The investigative concept is to analyse perfor-
mance data generated by a differential sensitivity analysis of build-
ing design parameters in the tool iDbuild. Each parameter variation
is simulated with three different control strategies: a rule-based
control, the suggested concept taking into consideration the imper-
fect weather forecasts and the suggested concept assuming perfect
weather forecasts. The purpose of the different control strategies is
benchmarking. Details about weather forecasts, the control strate-
gies and their purpose as benchmarks, as well as details about the
sensitivity analysis are explained in the following sections.

3.1. Weather forecast data

The analysis is performed using annual weather forecast data
and corresponding actual weather data sets for the year 2010 for
a location north of Aarhus, Denmark (coordinates: 56.3�N 10.7�E,
elevation 61 m), and the year 2011 for a location north of Copenha-
gen, Denmark (coordinates: 55.9�N 12.4�E, elevation 38 m). Both
data sets contain hourly outdoor temperature and global solar irra-
diation for the entire year. The forecasts have a range of 72 h and
are updated every 12th h in 2010, and every 6th h in 2011. Figs. 3
and 4 show the normal distribution of differences between fore-
casted and actual weather data for temperature and solar irradia-
tion for year 2010 and 2011, respectively. In these figures, the
actual data is always compared with data from the most recent
forecast update.

In 2010, the temperature differences have a mean value of
�0.2 �C and a standard deviation of 1.8 �C. The differences in solar
irradiation have a mean value of 4.5 W/m2 and a standard devia-
tion of 102 W/m2. In average, the forecasted temperature and solar
irradiation is almost the same as the actual solar irradiation. How-
ever, in both cases the standard deviations indicates the presence
of a significant amount of overestimated and underestimated
values. The distribution graphs illustrate an almost normal distri-
bution for temperature but for solar irradiation the values are
mainly underestimated.

In 2011, the temperature differences have a mean value of
�0.5 �C and a standard deviation of 1.0 �C. The differences in solar
irradiation have a mean value of 46 W/m2 and a standard deviation
of 103 W/m2. In average, the forecasted temperature is a bit
underestimated compared to the actual temperature and solar
irradiation is somewhat overestimated. The distribution graphs
illustrate an almost normal distribution for temperature but for
solar irradiation the values are mainly overestimated.



316 S. Petersen, K.W. Bundgaard / Applied Energy 116 (2014) 311–321
3.2. Control strategies and benchmarks

The impending investigation of data requires the formulation of
benchmarks to quantify the effect of weather forecast uncertainty
on the predictive control concept. One benchmark is found by run-
ning simulations assuming perfect weather forecasts, i.e. the fore-
casted weather is the same as the actual weather. The result of
such a simulation is called perfect forecast (PF). A rule-based control
(RBC) is also formulated. The chosen RBC accommodate the long
transitional periods in the Danish climate by dividing the year into
Table 2
Data assumptions for test case.

Parameter

Room dimensions Height �width � depth
Window Frame

Constructions Façade
Systems Infiltration

Mechanical ventilation in occupied hours

Mechanical ventilation in unoccupied hours
Heat exchanger
General lighting

Task lighting

Internal load
External conditions Shadows from surroundings

Weather data

Fig. 7. Result from sensitivity analysi
four seasons: a heating season from 16th October to 15th April, a
transitional period from 16th April to 31st May (spring), a cooling
season from 1st June to 15th September, and a transitional period
from 16th September to 15th October (autumn). In the RBC, the
night ventilation is only available in the cooling season with a
set point of 20 �C, and in the transitional periods with a set point
of 23 �C. Fig. 5 illustrates how the PF simulations and the simula-
tions with RBC can be used as benchmarks to identify the theoret-
ical and practical potential of the suggested concept, as well as the
effect of weather forecasts uncertainty (see Fig. 12).
Description

2.8 m � 3 m � 6 m
Standard wooden frame, U = 1.6 W/m2 K, width = 0.08 m,
w = 0.05 W/m K
U = 0.15 W/m2 K
0.10 l/s m2, always active
Min. ventilation rate 1.48 l/s m2 corresponding to class II in EN
15251:2007. Max. ventilation rate is 2.96 l/s m2. Average specific
fan power of 1.0 kJ/m3 air. No mechanical cooling available
Min. ventilation rate is 0 l/s m2, max. ventilation rate 2.96 l/s m2

Efficiency of 85%
Dimming control, set point 200 lux, min. power 0.5 W/m2, max.
power 6 W/m2, 3 W/m2/100 lux. Only active in occupied hours
On/off control, set point 500 lux, min. power 0 W/m2, max. power
1 W/m2. Only available in occupied hours
300 W in occupied hours, 0 W in unoccupied hours
None
Danish design reference year [23]

s. Orientation: South. Year: 2010.



Fig. 8. Result from sensitivity analysis. Orientation: South. Year: 2011.

Fig. 9. Result from sensitivity analysis. Orientation: North. Year: 2010.
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3.3. Sensitivity analysis

The purpose of the sensitivity analysis is to assess how sensitive
various building design parameters are to weather forecast uncer-
tainty in terms of building energy performance (heating, ventila-
tion and lighting) and thermal indoor climate (hours above 26 �C
during time-in-use). The sensitivity analysis is performed as a
one-at-the-time analysis [24] and encompasses four variants: ori-
entation, thermal mass, solar shading and window area. An over-
view of the variant is shown in Table 1.

The combination of all variants makes in total 24 cases. The sen-
sitivity analysis is performed for the two different weather data
sets with different weather forecast uncertainty as described in
Section 3.1 making a total of 48 simulations in the investigation.
The global assumptions for the simulation model are:

� The occupied period from 8 a.m. to 4 p.m. every weekday.
� The lower limit for thermal comfort is 20 �C and the upper limit

is 26 �C.
� It is assumed that the occupants use clothing for adaptive ther-

mal control throughout the entire year.
� The thermal response of the room is perfectly represented by

the building model, i.e., there is no mismatch between the mod-
elled and actual building dynamics and user behaviour.

All other parameters defining the model are fixed as shown in
Table 2.

4. Results

The results from sensitivity analysis are presented for each year
(2010 and 2011) and grouped for each orientation (south, north
Fig. 10. Result from sensitivity analysi
and west) in Figs. 6–11. Thus, eight scenarios are presented in each
figure and for each of these eight simulations the results from the
three control strategies are presented. Table 3 and Fig. 6 explain
how to read Figs. 6–11.

Results for the light thermal mass scenarios (1–4) in the south-
oriented room, Figs. 7 and 8, show that the RBC simulations have
the lowest heating demand compared to predictive control but a
high amount of hours above 26 �C in both years. When compared
to RBC results, the PF results show potential for overall energy sav-
ings and improvement of thermal indoor climate for offices with
moderate window size (1 and 3) but not for fully glazed facades
(2 and 4). This applies for both years and for both of the investi-
gated solar shading types. However, when comparing the simula-
tions for year 2010 and 2011, the realisation of the PF potential
in predictive control in terms of energy use depends on the accu-
racy of the weather forecasts.

In the year 2010, the predictive control often performs better
than the PF in terms of energy use. The reason is that energy use
for heating is lower in predictive control than in PF primarily due
to underestimations in the outdoor temperature prediction in the
heating season. In scenario 3 and 4, the energy for ventilation in
the occupied hours is lower in predictive control than in PF be-
cause the solar irradiation prediction (and thereby the cooling
need) is overestimated.

In the year 2011, the predictive control for the offices with
external venetian blinds (1 and 2) exceeds the energy use of RBC
and PF due to a higher heating demand, but in comparison with
RBC, the thermal indoor climate is improved significantly. The
main reason is overestimations in the solar irradiation predictions
which result in excessive use of ventilation and solar shading to
compensate for future solar heat gain and thereby avoid future
overheating. Instead, this system control leads to a heating
s. Orientation: North. Year: 2011.



Fig. 11. Result from sensitivity analysis. Orientation: West. Year: 2010.

Fig. 12. Result from sensitivity analysis. Orientation: West. Year: 2011.
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Table 3
Description of the scenarios presented with the numbering and signatures used in Figs. 6–10.

Scenario No. Thermal mass Solar shading Window area Signature

1 Lightweight External venetian blind Moderate

2 Lightweight External venetian blind Fully

3 Lightweight Coating Moderate

4 Lightweight Coating Fully

5 Heavyweight External venetian blind Moderate

6 Heavyweight External venetian blind Fully

7 Heavyweight Coating Moderate

8 Heavyweight Coating Fully
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demand because the expected solar gain is absent in the actual
weather. As special case in both years is scenario 4 (fully glazed
façade with solar coated glass) which has a lower energy use but
a lot more hours above 26 �C compared to the PF. The reason is that
the fully glazed façade with no possibility of regulating solar heat
gain and the low thermal mass makes the energy use and operative
temperature very sensitive to differences between weather fore-
cast and actual weather. Periods with underestimation in the solar
irradiation prediction is therefore very quickly leading to operative
temperatures above 26 �C.

Results for the scenarios with heavy thermal mass (5–8) show
that the predictive control is outperforming RBC in both years if
not in energy use then in hours above 26 �C. One exception is sce-
nario 6 in Fig. 8 (fully glazed façade with external blinds) which
has a higher energy use for heating and ventilation than PF because
the solar shading is activated too often and night ventilation is too
excessive due to overestimations of solar irradiance prediction. In
scenario 6 and 8 in Fig. 7, the predictive control performs even bet-
ter than the PF which is primarily due to many instances of under-
estimations in the outdoor temperature prediction and solar
irradiation in winter time.

Results for the north-oriented room, Figs. 9 and 10, show that
the predictive control is outperforming RBC in energy use and
hours above 26 �C for all scenarios in both years. Compared to
RBC results, the PF results show potential for energy savings and/
or improvement of thermal indoor climate for all scenarios in both
years. The realisation of the PF potential in predictive control in
terms of energy use only slightly depends on the accuracy of the
weather forecasts.

In the year 2010, the PF potential is taken up by the predictive
control in all cases (except case 5 in 2010). In the cases with very
light thermal mass, the predictive control performs better than the
PF due to the overestimation of the solar irradiation prediction
which leads to lower need for ventilation in the daytime.
In the year 2011, the predictive control performs better than the
PF in all cases because of lower needs for ventilation in the daytime
due to the overestimation of the solar irradiation prediction which
is somewhat higher and more frequent in 2011 compared to 2010.

Results for the west-oriented room, Figs. 11 and 12, show the
same tendencies with the same reasons as explained for the
south-oriented scenarios.
5. Conclusion

This paper presents an analysis of the effects of weather fore-
cast uncertainty on energy use and indoor climate of a building
which uses a deterministic predictive control concept for building
systems operation. The effects are quantified by comparing the
performance of the concept including any differences in forecasted
and actual weather data with a rule-based control (RBC) and with a
theoretical simulation where perfect forecasts (PF) are assumed in
the predictive control concept. The effects were identified through
a differential sensitivity analysis of four building design parame-
ters: orientation, thermal mass, solar shading and window area.
The analysis was performed using Danish weather data (temperate
climate) from two different years, i.e. a variation of weather fore-
cast uncertainty resulting in 48 scenarios. The results from this
large-scale simulation study showed, with a few exceptions, a po-
tential for energy savings and/or improvements in thermal indoor
environment when using the suggested concept compared to RBC
despite the uncertainty in the weather forecasts. In the scenarios
with heavy thermal mass, the concept realisation of the PF poten-
tial was less dependent on the accuracy of the weather forecasts
compared to the scenarios with very light thermal mass. The per-
formances of the scenarios with very light thermal mass were
especially sensitive to the precision of solar irradiance forecasts.
It is noticed that predictive control concept might outperform
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the PF depending on the compositions of variants and uncertainty
in the weather forecasts.

Conclusions have been made regarding the effect of weather
forecast uncertainty on the performance of the concept in a tem-
perate climate. Future studies could test the concept in other types
of climates. The study in this paper used fixed weather data update
intervals. Studies investigating the effect of the update interval of
the weather forecast are therefore relevant. The performance of
the concept in real applications can also be expected to vary due
to deviations between modelled and actual conditions and devia-
tions between the user pattern of the real building and the user
patterns assumed in the simulation model. Further work is re-
quired to assess the effect of these issues. Finally, it is desirable
to implement the concept in a more sophisticated building simula-
tion tool to assess the effect of a more detailed modelling of the
building energy management systems.
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