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Abstract: The historical time series data or Monte Carlo simulation approaches that are often used to represent wind power in
transmission planning models will lead to large-scale optimisation problems. The complexity of such problems will be further
compounded if advanced techniques for wind variability and wind forecast uncertainty management are also endogenously
included, corresponding to a merging of the traditionally separate ‘real-time operations’ and ‘long-term planning’ analysis
timeframes in power system analysis. A stochastic mixed-integer scheduling model is applied here to investigate the likely
transmission planning model formulation impacts of advanced wind forecast techniques, and to determine whether any
additional optimal transmission planning model precisions offered justify the associated very-large-scale computational
burden. Results indicate that power-flow modelling is only significantly influenced in a small subset of the network branches
associated with major interconnections and flexible/inflexible conventional generation locations. Model sensitivity analysis
also suggests that even at high wind penetrations, such power-flow modelling differences may be overshadowed by the
impact of general uncertainty in fuel price volatility and demand profile that is systemic to long-term planning problems.
Such trade-offs have significant practical relevance to the many researchers currently investigating formulations of this class
of optimisation problem.
1 Introduction

Increasing wind energy penetration is recognised as a key
contributor to reducing carbon emissions and maintaining
diversity of primary energy supply [1]. Detailed wind-
integration studies have been carried out in many power
systems [2–4], with transmission network limitations
universally acknowledged as a significant challenge. Prudent
allocation of new wind farm connection licences or optimal
transmission development plans could be determined to
accelerate wind connection to transmission networks.
Indeed there has been significant focus in recent times on

the formulation of these types of wind and transmission
planning optimisation models. For example, an optimal firm
wind power connection model (i.e. no wind curtailment
assumed) is proposed in [5], with corresponding optimal
non-firm wind power connection models of varying levels
of detail given in [6–8]. A market-equilibrium-constrained
model is given in [9], while the model in [10] focuses on
regional interconnection investments. An interesting model
incorporating how independent generators might dynamically
respond to transmission investments by the system operator
(and vice versa) is given in [11], while the efforts of [12]
focus on determining the optimal transfer capacity and wind
curtailment trade-offs for a given transmission system
location. The focus is not limited to onshore wind power
connections either – an optimal offshore grid topology
formulation is offered in [13] for example.
Transmission access study for large-scale centralised

conventional generation was traditionally carried out either
in a deterministic manner at onerous snapshot hours such as
the ‘winter-day-peak’ and/or the ‘summer-night-valley’ of
system load profile, or by using a sliced load-demand
duration curve approach. In contrast, wind power is a low
capacity factor, geographically distributed and statistically
interdependent source of power generation. Clearly,
transmission planning methods require suitable adaptation
over a much broader number of study cases to incorporate
such characteristics – some related modelling techniques
have been studied in the recent literature as a result. For
example, a random Monte-Carlo sampling approach to
statistical dependency modelling using copula theory is
outlined in [14], while noting that simple random sampling
methods cannot recreate sequential hour-to-hour wind
variability patterns. Basic auto-regressive moving-average
sequential time series synthesis with statistical
transformation methods has been reported in [15]. Wind
production profiles based on historical data behaviour have
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Table 1 Hypotheses under consideration

1 – Does the complexity of plant scheduling model applied for
the system dispatch materially influence the annual power flows
modelled?
2 – Are these differences, if any, relative in scale to other
long-term uncertainty influences?
3 – Are there any implications for optimal transmission planning
model formulation?
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also been widely applied in practice for wind-integration
study [2]. A historical wind time series data approach is
also presented for distribution system analysis in [16] for
example. Although a practical drawback is that sometimes
there may not be enough data available to give completely
statistically robust conclusions, the benefit of using
historical data is that any multivariate statistical and
auto-correlative sequential dependencies are implicitly
contained in the recorded data set, and can be easily
incorporated to the optimal transmission planning model, if
so desired.
Equally importantly however, the recent development of

advanced unit commitment and reserve scheduling
strategies to account for wind variability and forecast
uncertainty through stochastic optimisation techniques [17–
22] now necessitates a consideration of how the traditional
separation of ‘operations’ timeframe and ‘planning’
timeframe power-flow assumptions may not be as distinct
as often assumed in the past. Appropriate choice of model
formulation for combined wind-generation/transmission
optimisation studies such as in [5–13] therefore requires
detailed consideration. If integer variables are retained to
model the hourly unit commitment process, the problem
complexity will be greatly increased. On the other hand, if
the temporal link from hour-to-hour can be relaxed, then
there will be significant implications for model formulation
and solution approach [23, 24] as will be discussed further
in later sections. In the past literature, unit commitment for
wind variability (but not forecast uncertainty) issues has
been included in [5, 8] but is rarely discussed in most other
transmission planning works.
In any case, the wind generation/transmission optimisation

problem must also be formulated with some consideration of
long-term model parameter uncertainty. Although future
customer demand growth and conventional plant fuel prices
are always difficult to predict accurately, the impacts of
electric transportation or smart-meter efficiency applications
on the future power system load flow patterns are furthermore
uncertain at this present time. The future location of new
generation plants is also rather uncertain. Models
incorporating short-term operations timeframe issues such as
stochastic unit commitment, applied over the extended
number of samples necessary to represent wind variance
characteristics, and under a number of alternative long-term
demand-profile/fuel-price uncertainty scenarios will require
unprecedented computational efforts (for complexity and
dimensionality reasons) to be solved for power system
transmission networks of realistic size. The important
question of whether stochastic unit commitment issues should
in future be endogenously included in the optimal
transmission planning model formulation has not yet been
studied in detail, and is therefore the subject matter of this paper.
To this end, varying levels of operations timeframe

scheduling complexity are applied to a test power system in
this paper. A key issue explored is whether the additional
computational rigor of endogenously including either a
traditional deterministic unit commitment, or even an
advanced stochastic unit commitment, in the optimal
transmission planning model is likely to be justified, or
whether a judiciously simplified operations timeframe
model would be reasonably adequate with pragmatic
acknowledgment of the general uncertainty in the long-term
power system model itself. This hypothesis list is
summarised in Table 1.
Section 2 outlines the operations timeframe complexity

issues considered, whereas the test system is presented in
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Section 3. The results, and a contextual discussion of their
implications for optimal wind transmission planning
models, are outlined in Sections 4 and 5, respectively.

2 System power-flow modelling

2.1 Impact of operations timeframe wind issues in
long-term network planning timeframes

The ‘unit commitment’ task could be described as how to
optimally schedule the turning on and off of generators to
meet variations in net electricity demand spanning
timeframes of hours, days or weeks. The ‘economic
dispatch’ task refers to the here-and-now decision of how to
optimally decide the generation levels of generators that are
already turned on. With significant wind capacity installed,
more flexible and robust conventional plant commitment
and dispatch schedules must be produced so that the system
can balance with respect to the wind that actually occurs at
the operations timeframe time-horizons of the near future.
Operations timeframe real-time wind forecast uncertainty

can be represented with a spread of probability-weighted
‘scenarios’ [25]. Techniques such as ‘rolling-planning’ and
stochastic mixed-integer programming (MIP) using
probability-weighted wind forecast scenarios have been
reported for generation production-cost analysis in the
literature [17–20]. As the power production, and crucially
for this paper, the transmission system load flow patterns,
may now deviate somewhat from those modelled by a
simple ‘merit-order’ (MO) based economic dispatch alone
(which is generally assumed in most optimal transmission
planning models [26]), then the relevance and merits of
including the additional complexity in the long-term
transmission planning model should now be assessed.
The power flow in each transmission network branch can

be considered (in a first-order simplistic manner at least) as
the superposition of individual power-flow ‘contributions’
from generator source nodes and customer demand sink
locations. From a ‘real-time’ network operations timeframe
perspective, any one of the wind forecast uncertainty
scenarios could potentially occur for each stage of the 24–
36–48 h scheduling horizon ahead [27]. Various alternative
network congestion management plans would need to be
prepared accordingly in advance [28]. From the
transmission planning perspective however, only one of the
wind power forecast uncertainty scenarios (that help define
the forecast error probability) will actually occur at any
given operations timeframe time-step and therefore result in
a specifically wind-related power-flow contribution which
the network design must accommodate – the other wind
forecast scenarios that do not end up occurring (once
real-time for that given forecast horizon actually arrives)
will therefore not influence the power flows directly.
Therefore if a historical wind power time series of a
number of years’ length is available to clarify the actual
wind-power-flow contribution requirements in the
133
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transmission planning model, the wind-related operations
timeframe power-flow contribution uncertainty in itself is
(to a good approximation) not so relevant in the
transmission planning timeframe. This is a key distinction
between the implications of wind forecast uncertainty for
the transmission network operations timeframe real-time
and long-term planning problem contexts.
However, the generation unit commitment task must be

carried out in the hours and days prior to real-time due to
conventional plant inter-temporal constraint limitations (i.e.
start-up times, minimum up/down times, ramp limits etc.),
before the true resultant wind power production scenario is
known. Therefore the specifically conventional-plant-related
power-flow ‘contributions’ may indeed be influenced (in a
manner distinct from a simpler MO approximation) by the
choice of operations timeframe wind uncertainty
management strategy. To a large extent, this specific issue
is the basis for investigating whether or not the stochastic
unit commitment model should be endogenously included
in the optimal transmission planning model formulation.

2.2 Scheduling model power-flow investigations

The investigative approach carried out in this paper does not
directly implement a transmission network optimisation
model in itself. Instead, the power-flow modelling impacts
of different operations timeframe wind forecast uncertainty
management strategies are studied in detail for a given
transmission network topology – this is a more practical
approach that will allow the relevance of the various issues
to be established without the necessity for a massive
computational burden to be tackled.
Three different system operations timeframe wind

management strategies are therefore investigated for the
same fixed load and wind time series profiles (of one year’s
timeframe length) in each case:

1. MO economic dispatch applied only –without any start-up
costs or inter-temporal unit commitment constraints linking
the separate hours, and no account of wind forecast
uncertainty, this option is analogous to studying the
power-flow outcomes of a random Monte-Carlo (i.e.
non-chronological) simulation such as in [14], and relates to
the assumption used in most transmission planning analyses
and optimisation algorithms [26].
2. Deterministic unit commitment applied with the
simplifying assumption of perfect wind/load forecasting
(DUC-PF) – this option includes a full MIP deterministic
optimisation and allows a consideration of the effect of
system operations timeframe variability alone on the
network power-flow model – as was included by [5, 8].
3. Stochastic unit commitment (SUC) – using a wind forecast
error scenario tree tool and a stochastic MIP optimisation
model – this option allows a complete analysis of both
operations timeframe variability and forecast uncertainty
effects on transmission network power-flow modelling.

The stochastic programming methodology proposed in [18]
for generation production costing studies (i.e. without study
of transmission planning implications) is used for the SUC
analysis of this paper. This is a stochastic mixed-integer
hourly-resolution model of the operations timeframe unit
commitment and economic dispatch problem, incorporating
load and wind forecast uncertainty scenario trees,
conventional generation forced outages, spinning and
replacement reserve, fuel, carbon and start-up costs, and
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detailed conventional plant inter-temporal constraint
limitations. Operations timeframe wind and load forecast
uncertainty is updated with a rolling planning timeframe of
3-hourly periods, so that the system schedule is effectively
re-planned eight times per day. The concise DUC-PF and
SUC scheduling model formulations as applied here are
thoroughly detailed with mathematical equations and so on
in [18]. For very high wind penetration, additional
constraints were also implemented, to ensure minimum
number of large conventional plants remain online for
inertial support reasons [29].
The generation power dispatch results can be taken from

the three different scheduling investigations and
subsequently input to a linear ‘DC’ network power-flow
assessment [30]. Using histograms to compare the
probability density functions (pdf) of yearly power flows in
each transmission branch under the three different
operational strategy modelling options allows a direct
appreciation of the value of additional wind/transmission
optimisation model complexity. Transmission network
capacity limits are not enforced with an optimal power flow
specification in these studies as the unconstrained power flow
requirement of the network must be observed for planning
purposes, and the power-flow pdf edges would be truncated
at the network branch capacity levels otherwise. As the exact
same wind and load time series are applied in the three
scheduling approaches described above, then it follows from
the nuanced reasoning of Section 2.1 that any differences
between the power-flow pdfs will therefore be caused only
by the differing generating patterns of conventional plant
when both variability and forecast uncertainty are accounted
for at the operations timeframe real-time stages.

2.3 Long-term uncertainty sensitivity analysis

Sensitivity analyses were also carried out using the SUC
approach to understand the influence of long-term
transmission planning model parameter uncertainty on the
system power-flow model:

† Case I – Gas, oil and distillate fuel costs were scaled to 75
and 125% of their base case values to illustrate the impact of
long-term fuel price volatility on network power-flow
requirements.
† Case II – Load profiles were linearly scaled across the
system to 105 and 95% of their base case patterns to
investigate the influence of projected peak load growth
uncertainty on network power-flow requirements.

The range of load profile and fuel price sensitivities
arbitrarily chosen here is consistent with previously observed
parameter deviations – for example, the customer electrical
energy demand in the Republic of Ireland dropped by ∼7%
in the year 2008 alone because of unforeseen economic
conditions [31], and significant gas price volatility is
routinely observed in international commodity markets [32].
In isolation, it might be considered relatively trivial that

these model uncertainties will influence the future system
power-flow requirements in some way. However, the basis
for including this aspect of the analysis is to allow a relative
comparison of any differences in the estimated network
power-flow requirements due to long-term model
uncertainty with those resulting from different levels of
operations timeframe unit scheduling complexity applied in
Section 2.2, thus allowing a pragmatic consideration of the
importance of including detailed operations timeframe
IET Renew. Power Gener., 2014, Vol. 8, Iss. 2, pp. 132–140
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issues endogenously in the long-term optimal transmission
planning model itself.
 

3 Test system description

The test system used in the analyses of this paper is illustrated
in Fig. 1. This has a 35-bus, 54-line network, denoted as
‘Area 1’ (based on a very simplified model of the Irish
‘All-Island’ 220/275/400 kV high-voltage transmission
system). It contains a mixture of base-load and mid-merit
fossil-fuel (coal and peat) steam turbine generation,
combined-heat-and-power gas plants (CHP),
combined-cycle gas turbines (CCGTs), higher-efficiency
aero-derivative gas turbines (ADGTs), lower-efficiency
open-cycle gas turbines (OCGTs), as well as a few gas/
oil-distillate ‘peaking’ units, amounting to 10.4 GW
conventional plant capacity overall. 500 MW of
high-voltage DC (HVDC) interconnection capacity to a
much larger separate power system denoted as ‘Area 2’
(based on an approximate model of the Great Britain
generation portfolio) is available at both buses 12 and 34.
Conventional plants in Area 2 are grouped approximately
into multiple generation capacity blocks of similar
plant-type, all connected at a single transmission node.
Conventional plant performance data, seasonal natural gas
fuel price variations, load profile, load magnitude
(accounting for projected load growth to a maximum peak
value of 9.61 GW), and the assumed load geographic
distribution are consistent with [4]. Additional information
on the test network branch reactance parameters (Table 4),
the assumed system geographical load spread (Table 5),

 

 

Fig. 1 Test power system under investigation
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indicative conventional plant unit-commitment inter-
temporal constraints (Table 6), and the conventional
generation portfolio network locations (Table 7) as applied
in this investigation are presented in the Appendix.
Recorded historical wind power output from the Irish

‘All-Island’ power system, at hourly resolution over a time
period of one year, was used for this study – this power
output data were linearly scaled, depending on the total
wind capacity level under investigation in Area 1. Equal
wind capacity connection to buses 3, 5, 7, 9, 11, 13, 15, 17,
25 and 33 was investigated by linearly scaling this
historical time series trend for each location. Up to 6 GW of
installed wind capacity (corresponding to up to ∼34%
annual wind energy penetration) was studied, with total
capacity equally spread among the ten wind plant locations.
The historical time series data are derived from the total
aggregated wind power output in the Irish All-Island power
system – as such the ten wind capacity locations will then
have identical correlated output in this analysis. This is not
significant however, as the issue under study is the impact
of aggregated wind power output variability and uncertainty
on unit commitment, and any modelling influences on
transmission network flows that result from it. Furthermore,
as explained in Section 2.2 above, the same wind time
series are used in the three MO/DUC/SUC analyses, so the
only differences observed in power-flow pdfs will be solely
the impact of aggregated variability and uncertainty on
transmission flows through changes in the generation
scheduling process.
All model development was carried out in MATLAB [33],

GAMS [34] or using the MATLAB/GAMS interface
available at [35].
135
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Table 2 Plant capacity factors for different scheduling
approaches – 6 GW installed wind

Unit type MO,% DUC-PF, % SUC,%

Coal steam turbine 67.12 69.02 70.5
CCGT 1 79.76 79.06 77.13
CCGT 2 74.00 79.75 79.83
CCGT 3 42.34 47.04 43.1
ADGT 1 6.76 8.25 8.65
OCGT 1 0.73 2.48 2.97
HVDC Interconnector 30.26 9.6 29.02

www.ietdl.org

4 Results

4.1 Scheduling model plant capacity factor impact
results

As illustrated in Table 2 (and consistent with other generation
analysis studies) major system interconnection points and a
few of the mid-merit conventional plants such as CCGTs
and ADGTs will exhibit different capacity factors under the
three different operations timeframe scheduling approaches
– individual plant flexibility/inflexibility may require that it
be brought online or kept offline (i.e. out-of-merit) for a
particular operations timeframe situation. Base-load plants
generally operate similarly across the three models. For the
test power system in this paper, the large size of the Area 2
system with respect to Area 1 often results in the two
HVDC interconnectors being used as sources/sinks for
least-cost system variability and uncertainty management in
Area 1 – hence the significant deviations in their usage. It
should be noted that while generation capacity factors will
merely influence the transmission network annual-average
power-flow values, changes in their respective values
suggest that the system is being dispatched slightly
differently depending on the operations timeframe wind
management strategy applied, and that more general
differences in the line power-flow pdf extreme values
(which are of primary importance for the network planning
context of this paper) may also be evident.

 
 

 

4.2 Scheduling model power-flow impact results

The pdf of yearly line power flows from bus 12 to bus 19 is
illustrated in Fig. 2 for 6 GW of wind capacity installed. As
implied from Table 2, this transmission line (adjacent to the
HVDC interconnection point to Area 2) exhibits a different
spread of possible power flows, depending on the
scheduling model complexity applied. For example, the
DUC-PF model overestimates the maximum power-flow
requirement by ∼100 MW when compared to the MO or
SUC results – transmission power-flow model differences
have greatest significance if they occur at distribution tails,
which influence most the system congestion and reliability
indices. Similar differences (though less extreme) occur in
Fig. 2 Power flow histograms for line adjacent to HVDC
interconnection (lines from bus 12 to bus 19)
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lines adjacent to other conventional plants that are
scheduled differently due to increased operations timeframe
variability and uncertainty in the system – see the pdf of
yearly line flows from bus 6 (the location of an ADGT
plant) to bus 11 in Fig. 3. However, a reasonable majority
of the transmission lines exhibit little or no difference in
power flows, as illustrated by Fig. 4, implying there is no
additional value obtained from the stochastic MIP
scheduling model in their case. Furthermore, it is worth
noting that power-flow modelling differences in a
transmission line will have most significant influence on the
solution of a network planning optimisation model only if
that line is congested, which in practice may be the case for
a limited subset of the network branches only.
4.3 Long-term planning model uncertainty
sensitivities

4.3.1 Conventional plant fuel price uncertainty: The
impact of the conventional plant fuel price volatility (as
modelled in Case I) on the relative MO positions of typical
base-load coal and CCGT generators is illustrated in Fig. 5.
Natural gas fuel price can exhibit reasonably strong
seasonal dependence due to increased space-heating
demand in the colder winter months (in northern latitudes),
with coal prices generally more stable throughout the year.
As evidenced by Fig. 5 for the ‘base-case’ fuel price
assumptions, the CCGT plant unit average energy costs
Fig. 3 Power flow histograms for line adjacent to flexible ADGT
plant location (lines from bus 6 to bus 11)
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Fig. 4 Sample power flow histogram from elsewhere in the system
(lines from bus 17 to bus 21)

Fig. 6 Sample pdf of line flows under the influence of fossil fuel
price uncertainty (Case I, lines from bus 23 to bus 24)

Fig. 7 Sample pdf of line flows under the influence of fossil fuel
price uncertainty (Case I, lines from bus 28 to bus 31)
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may become cheaper than those of the coal plants in the
summer months, and thus replace them in the merit order.
With the respective 75 or 125% average trend shifting
sensitivities applied in Case I, however, the coal plants are
either more expensive or less expensive for the full 12 months
of the year (all other parameters kept fixed). Such merit order
position uncertainty will have significant impact on the system
dispatch patterns, and thus the unconstrained network power
flows. This is evidenced by the considerable deviations in
Fig. 6 for the power-flow modelling in the network branch
from bus 23 to bus 24, and from bus 28 to 31 in Fig. 7.
The power-flow pdf differences in Figs. 6–7 due to such
long-term model uncertainty are clearly of similar or greater
magnitude than those resulting from alternative operations
timeframe wind management strategies as evident in Figs. 2
and 3. Analysis of the pdfs of other line flows in the test
system suggests that the impact of fuel price uncertainty is
furthermore much more widespread in the network, and
thus may overshadow the power-flow modelling effects of
operations timeframe wind management strategy.

4.3.2 Load profile uncertainty: The impact of customer
demand profile peak uncertainty (Case II) on transmission
power-flow modelling is illustrated using the pdf of power
Fig. 5 Seasonal baseload coal and CCGT average unit costs
(Case I)

IET Renew. Power Gener., 2014, Vol. 8, Iss. 2, pp. 132–140
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flows in the line from bus 27 to bus 28 in Fig. 8. Future
peak customer demand projection errors will obviously
affect the customer load bus injections themselves, but
more importantly they will also significantly impact the
usage of specific mid-merit and peaker conventional
Fig. 8 Sample pdf of line flows under the influence of peak
customer demand uncertainty (Case II, line from bus 27 and 28)
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generators and their resultant network power-flow injections.
It was observed that the worst-case power-flow modelling
impact of peak load demand profile uncertainty was
generally of lesser absolute magnitude than that of the
operations timeframe strategy model results in Section 4.2.
Notably however, such distributed load profile related
uncertainty impacted power-flow modelling in a greater
number of lines throughout the system, whereas the detailed
operations timeframe model power-flow differences are
evident in the few lines associated with flexible/inflexible
conventional plant and interconnection locations only.

 
 

 

Table 3 Main conclusions from hypotheses considerations

1 – Scheduling model complexity influences transmission
system planning issues at a limited number of transmission
network paths
2 – Influence of long-term uncertainty will tend to be more
consistently critical than short-term operations timeframe
complexity issues
3 – Optimal transmission planning model formulation
significantly impacted – both in model formulation/compression,
and indeed solution approach
5 Transmission optimisation model
formulation impacts

A detailed consideration of the optimal transmission planning
model implications of simplified operations timeframe
assumptions has been outlined in this paper. Instead of
attempting to solve the optimal transmission planning
model itself, various levels of operations timeframe
scheduling complexity were applied to a representative
generation portfolio and a fixed network topology. This
allowed a practical exposition of the major sensitivities
without the need for excessive computational resources.
Reasonably different network power flows were evident in
specific parts of the test transmission network depending on
the operations timeframe wind management strategy
applied. However, these power-flow differences were
contrasted with the impact of long-term load-profile/
fuel-price parameter uncertainties using sensitivity analysis.
In general, the network flow differences associated with the
long-term uncertainty were more widespread throughout the
test network, and (in the case of the fuel-price uncertainty)
of much greater magnitude than those associated with the
variations of operations timeframe strategy applied. This is
important given that long-term fuel-price and load-profile
parameters can in any case only be subjectively included in
optimisation models due to their more general uncertainty.
For example, it may difficult to objectively propose any
particular probability weighting of the alternative gas-price
scenarios in Fig. 5. Given the level of vague uncertainty in
other influential optimal transmission planning model
formulation parameters such as these, then for most power
systems it might be unwise to insist on inclusion of
comparatively excessive precision for the operations
timeframe aspects.
Although a lack of flexibility in different systems’

generation portfolios (e.g. pre-eminence of nuclear and/or
base-load coal plants) could magnify the impacts of their
operations timeframe wind variability and uncertainty
patterns, the discussion in this paper should nonetheless be
relevant to many diverse power systems. Power systems
with larger demand levels than the test case presented here
tend to have more base-load demand as a fraction of overall
demand, and hence their individual generators traditionally
used to serve this constant base-load, which might be larger
and more inflexible. On the other hand, however, there will
be more power plants to share the wind variability and
uncertainty tracking in a larger system, which might lessen
the effects of wind integration. Also, wind integration in
larger power systems could be aided by the geographical or
spatial smoothing of the wind power plant locations. Hence,
the normalised variability and forecast uncertainty could be
less than observable for the geographically-concentrated
Irish All-Island power system used here. Precise
138
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extrapolation of the wind variability and uncertainty effects
might be dependent on the system characteristics under
consideration therefore.
It may be reasonable to conclude (see Table 3) for many

power systems though, that the inclusion of stochastic
mixed-integer unit commitment models endogenously
within the optimal long-term transmission planning context
will not give significant added value in proportion to their
associated computational burden. The power-flow model
differences shown in Section 4 should also be framed
within the context of the computational requirements of the
three distinct yearly simulation approaches – in the order of
minutes for the MO approach, hours for the DUC model and
more than 1.5 days for the SUC implementation on a
contemporary desktop PC [18]. Note additionally that the
time requirements to solve the optimal transmission planning
model with endogenous inclusion of SUC would likely be
much greater than reported for the analyses here, as the
SUC-driven year-long network analysis task of this paper
would essentially comprise a sub-problem stage of any
optimal transmission planning decision evaluations.
Of course, this is not to say that operations timeframe

issues should be completely ignored in the transmission
planning task. Indeed, there is a great discussion on both
the power system research and industrial communities at
present about the fact that short-term operations timeframe
and long-term planning timeframe assumptions may need to
be somewhat more consistent in future [36]. In that sense,
the discussion outcomes of this paper do not preclude the
fact that post-optimal solutions from simplified transmission
optimisation models could be ‘sanity-checked’ with a fully
rigorous and detailed operations timeframe analysis to ensure
that critical aspects of system economics and/or reliability are
not unduly degraded by necessary optimisation model
formulation trade-offs. In future, this may provide a
pragmatic approach to merging any overlapping operations
timeframe and planning concerns, which by their distinct
timeframes, must generally focus on quite distinct issues.
Although there are obvious computational advantages to

excluding the many integer variables that would be
necessary to endogenously include the unit commitment
issues for the transmission optimisation model, there are
also potentially very important implications for the
approach required to model the characteristics of spatially
distributed wind power resources. In power systems that are
not significantly dominated by hydroelectricity and/or other
energy-limited storage resources, then if a unit-commitment
is not included, the requirement to maintain the
chronological hour-to-hour sequence of wind power
variations can be relaxed. This allows model compression
techniques to focus on the combination of historically
recorded wind power data-points from temporally separate
hours, using probability-discretisation [37] and/or scenario
reduction [23] (and chapter 7 of [24]) methods. When such
model compression approaches can be combined with
IET Renew. Power Gener., 2014, Vol. 8, Iss. 2, pp. 132–140
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standard decomposition techniques and/or advanced parallel
processing solution methods, the implications of the model
formulation choices outlined in this paper are magnified
significantly.
Although the analysis presented here does not include any

specific analytical or algorithmic innovations in itself (instead
focusing on judicious application of various generation-
production-costing models in a refined transmission
planning context), the gravity of the arguments outlined in
this paper will have profound relevance to the many
researchers around the world currently investigating the
formulation of the optimal wind power and power system
expansion planning model.
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8 Appendix

See Tables 4–7. 

 

Table 4 Test power system network branch information

From-to
bus

XL (100 MVA
base)

From–to
bus

XL (100 MVA
base)

1–2 0.02 18–21 0.044
1–3 0.02 19–20 0.01
2–3 0.011 19–22 0.01
3–4 0.039 20–21 0.01
3–5 0.075 20–22 0.01
3–10 0.073 21–24 0.02
4–7 0.084 21–26 0.038
5–6 0.02 22–23 0.003
6–11 0.06 23–24 0.008
6–12 0.076 24–27 0.053
7–8 0.007 25–27 0.095
7–10 0.061 25–29 0.025
8–9 0.042 26–27 0.03
8–15 0.077 27–28 0.025
9–13 0.023 28–29 0.011
9–17 0.079 28–31 0.0185
10–16 0.08 28–34 0.036
11–17 0.051 29–30 0.011
12–19 0.046 29–33 0.0135
13–14 0.04 29–35 0.0282
13–24 0.046 30–33 0.02
14–15 0.029 31–32 0.005
15–25 0.076 31–34 0.0294
16–21 0.094 31–35 0.02
17–18 0.022 32–35 0.0196
17–19 0.036 33–34 0.0065
17–21 0.016 33–35 0.0198

Table 5 Maximum bus load values

Bus Load(MW) Bus Load(MW)

1 312.9 19 621.2
2 013.8 20 618.1
3 400.3 21 408.0
4 108.9 22 1010.8
5 392.7 23 107.4
6 050.5 24 0
7 196.3 25 432.5
8 0 26 400.3
9 131.9 27 391.1
10 339.0 28 521.5
11 155.4 29 184.1
12 257.7 30 457.1
13 026.8 31 397.3
14 0 32 306.8
15 480.1 33 222.4
16 335.9 34 0
17 092.0 35 247.0
18 0

Table 6 Typical unit commitment inter-temporal constraints
applied

Unit type Start-up time, h Min up/down time, h

coal 4–5 1–8
peat 1–5 1–6
CCGT 1–4 1–4
CHP 4 4
OCGT/ADGT/Peaker <1 <1

Table 7 Conventional generation portfolio information

Unit type Number
of units

Bus
locations

Average
fuel price,

€/GJ

Total
capacity,

MW

coal 5 9, 34 1.75 1257
peat 3 11 3.71 345
base
renewables

1 16 2.78 182

CCGT 11 8, 14, 19,
22, 23, 24,

30

5.91 5890

CHP 2 10 5.91 166
ADGT 7 1, 6, 8 6.46 735
OCGT 14 2, 15, 21,

22, 30, 32,
34, 35

6.46 1442

peakers 8 11, 25 8.33 383

140
& The Institution of Engineering and Technology 2014

IET Renew. Power Gener., 2014, Vol. 8, Iss. 2, pp. 132–140
doi: 10.1049/iet-rpg.2011.0272

 


