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Abstract—The potential breakthrough of pluggable (hybrid)
electrical vehicles (PHEVs) will impose various challenges to the
power grid, and esp. implies a significant increase of its load.
Adequately dealing with such PHEVs is one of the challenges and
opportunities for smart grids. In particular, intelligent control
strategies for the charging process can significantly alleviate peak
load increases that are to be expected from e.g. residential vehicle
charging at home. In addition, the car batteries connected to
the grid can also be exploited to deliver grid services, and in
particular give stored energy back to the grid to help coping
with peak demands stemming from e.g. household appliances. In
this paper, we will address such so-called vehicle-to-grid (V2G)
scenarios while considering the optimization of PHEV charging
in a residential scenario.

In particular, we will assess the optimal car battery
(dis)charging scheduling to achieve peak shaving and reduction
of the variability (over time) of the load of households connected
to a local distribution grid. We compare (i) a business-as-usual
(BAU) scenario, without any intelligent charging, (ii) intelligent
local charging optimization without V2G, and (iii) charging
optimization with V2G. To evaluate these scenarios, we make use
of our simulation tool, based on OMNeT++, which combines ICT
and power network models and incorporates a Matlab model that
allows e.g. assessing voltage violations. In a case study on a three-
feeder distribution network spanning 63 households, we observe
that non-V2G optimized charging can reduce the peak demand
compared to BAU with 64%. If we apply V2G to the intelligent
charging, we can further cut the non-V2G peak demand with
17% (i.e., achieve a peak load which is only 30% of BAU).

I. INTRODUCTION

Plug-in-(hybrid)-electric vehicles (PHEVs) will represent a
significant new load on the existing distribution grids, espe-
cially as their penetration level increases (cf. the much debated
goal in US of having one million plug-in EVs by 2015 [1]). In-
deed, charging a single EV at home, for the average household
means a doubling of the average load [2]. These changes in
load patterns may require upgrades to (distribution) power grid
components such as transformers. Uncoordinated charging
also has an impact on the performance of the distribution
grid in terms of power losses and power quality [3]. Hence,
the charging of these vehicles must carefully be managed to
avoid overloads or other power grid problems, by for example
shifting the charging in time. This is possible, as personal
vehicles are only used 4% of the time for transportation, and
the remaining 96% can be used for other purposes [4].

However, PHEVs can also be of benefit towards the power
grid, for example to store renewable energy which is inter-

mittent by nature. If power generation becomes increasingly
dependent on such renewable sources, supply and demand
matching will obviously become more challenging [5]. Ex-
ploiting the flexibility in deciding when to charge a PHEV
battery can partly alleviate this problem of intermittent (and
unpredictable) energy supply. Moreover, the batteries may also
be exploited as temporary storage of the fluctuating energy
supply, and serve as energy storage resource that can give
energy back to the grid while parked, also known as vehicle-
to-grid (V2G) power [4]. Thus, not only can the renewable
energy be used to power the transport functions of the PHEV,
but V2G can also be exploited to deliver applications to the
grid (peak power, spinning reserves, regulation, etc.).

Note that intelligent control strategies for (dis)charging EVs
is part of a broader context called demand-side management
(DSM), which is an active research topic. e.g., [6] proposes
a distributed DSM approach based on game-theoretic energy
scheduling (to reduce energy costs and the peak-to-average
ratio, while maintaining privacy). Multi-agent systems based
on virtual markets such as PowerMatcher [7] are another
approach to DSM, where agents bid on an electronic market to
determine an equilibrium price matching demand and supply.

In this paper, we will assess the optimal peak load re-
duction as well as the flatness of the load profile that can
be achieved by intelligently scheduling EV battery charging.
We investigate the maximal reduction achievable by an all-
knowing scheduling algorithm that has full knowledge of the
energy consumption (load profile) of a household, the arrival
and departure times of an EV and its state-of-charge. We will
compare scheduling with/without V2G and a baseline scenario
without any intelligent charging. Thus, we set the performance
boundaries of the peak load reduction and load flattening
which would be achievable by any real-time, local control
mechanism (such as aforementioned DSM approaches). To
determine these boundaries in a case study, we use quadratic
programming and our simulation tool [8].

The remainder of this paper is structured as follows: our
problem statement is summarized in Section II. A brief
overview of our simulation tool is listed in Section III.
The mathematical formulation of the resulting optimization
problem is detailed in Section IV. In Section V, we present the
results of our case study comprising 63 households. Finally,
conclusions and future work are synthesized in Section VI.
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II. APPROACH AND PROBLEM STATEMENT

Our earlier work [9] indicated that a distribution trans-
former’s peak load caused by uncontrolled charging can be
greatly reduced through local or iterative global energy control
of the charging process of EVs at households. In particular, we
proposed a local and a global control strategy to coordinate
the PHEV charging process, comparing them to a business-as-
usual (BAU) scenario where charging starts uncontrolled, as
soon as the vehicles are plugged in upon arrival at home. The
local control algorithm only considers the current household,
to decide upon when to charge the car arriving there. Thus,
we assess the possible advantage that could be offered by a
so-called home energy controller, that takes decisions based
on knowledge of the household energy consumption (e.g.
exploiting historical data gathered by the local meter, and
associated forecasts). The global control approach relied on
sharing knowledge between the various homes (thus requiring
communication and coordination between them), to try and
make globally optimal decisions.

When compared to BAU, the global method results in the
largest reduction of both the peak load (30% reduction in a
scenario with 30% PHEVs) and load profile variability (75%
reduction of the standard deviation between the values of the
load profile in the same scenario). The local algorithm only
performed slightly less good: 26% peak reduction and 58%
reduction in load profile variability for 30% PHEV penetration.
Even though the local algorithm is suboptimal (compared
to the global method), it achieves a significant improvement
compared to BAU. Note that such a local algorithm also
would not necessarily require communication, or at least no
exchange of data pertaining to other households. The latter is
an important privacy concern.

Based on these considerations, we have opted in the current
paper to further study the local control approach. We here
present an extension of our local algorithm to cater for
V2G: energy stored in the battery can later be fed back for
local energy consumption within the household, thus further
reducing the household peak load and load profile variability.
We thus will compare local strategies with/without V2G.

The general problem we consider is the following:
Given
• Grid topology comprising the houses and the distribution

grid interconnecting them;
• Household loads, specifying the electrical loads within

the home, i.e. appliances, HVAC, etc.; and
• PHEV status, including the arrival and departure times,

as well as state-of-charge;
Find
• when to charge the PHEV battery;
• if and when to decharge that battery for V2G operation;

Such that the peak net energy consumption, as well as its
variability over time, is minimized.

We will model residential energy consumption as con-
sisting of two parts: uncontrollable and controllable loads.
Uncontrollable loads cannot be shifted in time and their

energy consumption cannot be changed. Each household is
characterized by a load profile for the uncontrollable loads
that indicates the average uncontrollable load at each time of
day. Controllable loads on the other hand can be shifted in
time and their energy consumption can be changed. In this
work, we only consider EVs as controllable loads. Note that,
when considering V2G applications, the electric vehicles are
not only considered as loads, but also as producers. Hence, we
assume EVs to be controllable loads as well as controllable
producers: at any given moment, a car’s battery will either be
charged, discharged, or left untouched.

We will determine a combined charging and discharging
schedule. We consider the scheduling to operate for discrete
time intervals, i.e. for time slots of equal size. The algorithm
determines during which time slots an EV should charge or
discharge and the rate at which this happens. Since we are
focusing on a local approach, only knowledge of local power
consumption is used. Also, the impact of other households
and vehicles on the global load profile is not considered
when determining the (dis)charging schedules. Therefore, the
objective of the schedule will be to minimize local peak load
and load profile variability. Clearly, the intention – which [9]
proved to be achievable – is to affect the aggregate load profile
comprising all households connected to a single distribution
transformer. Even though the quadratic programming model
described below is solved for each vehicle separately upon
arrival at the charging point, we will assess its impact by
showing the total load on the whole distribution feeders.

Note that we assumed a simplified, lossless model of the
car’s battery, which we assume to be characterized by (i) max-
imum storage capacity, and (ii) maximum charge/decharge
power. For simplicity, in this work we disregard any battery
inefficiencies such as self-discharge, loss of capacity (e.g. due
to memory effects), etc.

III. SIMULATION TOOL

The smart grid simulator we have developed to facilitate
smart grid research, combines models of the power grid itself
as well as the information and communication technologies
(ICT) that will be deployed in the smart grid. The main goals
of our smart grid simulation environment are:
• Support the development of control algorithms for energy

management and their corresponding software architec-
tures.

• Enable analysis of communication requirements and im-
pact of specific communication technologies on the per-
formance of control algorithms.

• Enable evaluation of the impact of the control strategies
on the power grid.

• Provide a flexible and modular environment.
To achieve these goals, we based our tool on OMNeT++, given
its excellent performance [10]. For the assessment of power
network characteristics, we integrated a Matlab module, based
on the fast harmonic simulation method presented in [11]. For
an overview of our simulator’s architecture, we refer to [8].
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IV. OPTIMIZATION MODEL

The simulated time (e.g. 24 hours) is divided into equal time
slots of duration ∆t (e.g. ∆t = 5 minutes). The algorithm
determines during which time slots the vehicle can charge or
discharge and also the rate at which this happens. We assume
there are K households at which at most one PHEV is present
and that the variable k ∈ {1, . . . ,K} indicates a specific
household. The arrival time of the vehicle of household k is
indicated by αk and the departure time by βk. The maximum
battery capacity (expressed in kWh) is specified by Ck,max
and the energy stored (kWh) in the battery upon arrival is
specified by Ck. The following optimization model is solved
for each household with an electric vehicle.

A target load profile is calculated before determining the
charging schedule. The goal is for the household load profile,
which includes the uncontrollable load and charger load, to
approach this target profile as closely as possible. First, we
determine which constant average power BLk (kW) would
be required to provision the uncontrollable loads when the
vehicle is at home. Bk(t) indicates the uncontrollable load
(kW) consumed during time slot t.

BLk =

∑βk

t′=αk
Bk(t′)

βk − αk
(1)

Next, we determine which constant load CLk would be
required to charge the battery, assuming the charging process
is started upon arrival and stopped on departure. A conversion
factor δ = 60

∆t is used to convert between energy (kWh) used
during a time slot and instantaneous electrical power (kW)
required therefore.

CLk =
(Ck,max − Ck) · δ

βk − αk
(2)

The optimal load profile, considering the goals of minimizing
the peak load and load profile variability, is formed by a
constant load which is defined as the sum of the constant
uncontrollable loads and the controllable loads. Tk(t) is the
constant power (kW) that should be supplied during [αk, βk]
to satisfy the total net power demand in that period, i.e. the
demand we could achieve if we are able to perfectly spread
the energy demand.

Tk(t) = BLk + CLk (3)

The decision variables Xk(t) of the optimization problem form
the charging schedule and indicate the charing or discharging
rate during each time slot. The vehicle is charging when
Xk(t) > 0 and is discharging when Xk(t) < 0. The charger
is disabled when Xk(t) = 0

Xk(t) ∈ [−Xk,max, Xk,max] , ∀t ∈ {αk, . . . , βk} (4)
Xk(t) = 0 , ∀t /∈ {αk, . . . , βk} (5)

Equation 6 assures that the load of the household does not
exceed the the maximum load Lk,max (expressed in kW) of
the household connection.

Bk(t) +Xk(t) ≤ Lk,max (6)

Ck,max indicates the maximum battery capacity (expressed in
kWh), and equation 7 assures that the battery is fully charged
after applying the charging schedule.

Ck +

βk∑
t=αk

(
Xk(t) · δ

)
= Ck,max (7)

These constraints (however with the interval in equation 4
limited to [0, Xk,max]) would suffice when only considering
charging. However, as we also consider discharging, we have
to add more constraints to the optimization model to make
sure that the battery is not overcharged or discharged too low.
Therefore, we define the current battery capacity at the end of
time slot t (αk ≤ t ≤ βk) as:

Ck(t) = Ck +

t∑
t′=αk

(
Xk(t′) · δ

)
(8)

To avoid overcharging the battery, we add the following
constraint, which states that at no moment in time, the stored
energy in the battery can not exceed the maximum battery
capacity.

∀i ∈ {αk, . . . , βk} : Ck(i) ≤ BCk (9)

To avoid discharging the battery too low we add the following
constraint, which states that at no moment in the time, the
energy stored in the battery can go below a certain threshold,
which is assumed to be zero.

∀i ∈ {αk, . . . , βk} : Ck(i) ≥ 0 (10)

The objective function is defined in equation 11. A charging
schedule is obtained by minimizing the Squared Euclidean
Distance between the target load profile and the household
load profile. The goal is to reduce the peak load and load
profile variability of the household load profile by controlling
the charging process. By shifting the charging process in time
and controlling the charging speed, we can reduce the impact
on the load profile. However, by also considering discharging,
we can perform peak shaving where the electricity for the peak
load of the household is provided by the battery of the vehicle,
therefore reducing the load on the power grid.

βk∑
t=αk

(
Tk(t)− (Bk(t) +Xk(t)

)2

(11)

V. CASE STUDY

A. Simulation parameters

We assume a residential area of 63 households. Each
household is randomly assigned a load profile from a set
of five load profiles obtained from measurements of Belgian
households during different winter days. To avoid artificial
synchronization, each household load profile is shifted in time
using a uniform distribution between 0 and 60 minutes. We
assume a standard connection to the grid of 230V and 40A
resulting in a line limit of 9.2 kW; household power demand
must remain below this limit (which is the case in Belgium for
standard residential connections). We consider a three phase

9

 
 

 



distribution grid consisting of three feeders of equal length. 21
households are connected to each feeder with equal distances
between them, and the household connections (single phase)
are uniformly distributed over the three phases.

We evaluate three penetration degrees of PHEV, in which
15%, 45% and 75% of the households own a PHEV, and
assume that at any time there is at most one PHEV at each
household. Two types of battery are considered, a 15 kWh
battery simulating a PHEV, and a 25 kWh battery simulating
an EV. Also, two types of charger are considered, a slow
charger of 3.6 kW and a fast charger of 7.4 kW. Combining
these options, we obtain four types of vehicles that are
simulated in the experiments. The amount of each type of
vehicle in each scenario is shown in Table I. A random state
of charge between 20% and 60% is assigned to each vehicle
using a uniform distribution. The plug-in and plug-out times
are randomly selected around 17:30 and 06:30 using a normal
distribution with a standard deviation of 45 minutes.

B. Results and discussion

We have performed hundred simulations for each scenario
using different seeds for the random number generators. We
compared the results of the smart charging algorithms with
the results of a reference BAU scenario in which vehicles
are charged immediately when plugged in using a constant
charging rate of 3.6 kW or 7.4 kW. Figure 1 illustrates the
power demand of a single household and the impact that the
local algorithm with vehicle-to-grid has on it. A peak load is
observed at 18:00 originating from uncontrollable loads (e.g.
cooking equipment). As the vehicle arrives, there is still energy
stored in the battery, which is supplied to the household. The
uncontrollable loads use this energy instead of drawing it from
the grid. As a result, the power demand towards the power grid
is reduced, as can be seen by the total load profile. However, if
no vehicle-to-grid power would be supplied to the household,
it would not be possible to reduce the peak demand towards
the grid, as there is no control over the uncontrollable loads.
The other peak loads around the interval 08:00–10:00 are not
reduced because we have assumed that the vehicle should be
available for use during that time period.

Figure 2 illustrates the demand at the level of the distribution
transformer, thus the net power supplied to all households
together, obtained from performing the different strategies. The
graphs shown are averages obtained from hundred independent
simulation runs. It is clear that by using vehicle-to-grid power

Table I
AMOUNT OF PHEV AND EV AND THEIR TYPE OF BATTERY CHARGER IN

THE THREE DIFFERENT SCENARIOS.

Scenario PHEV PHEV EV EV

(% penetration) 3.6 kW 7.4 kW 3.6 kW 7.4 kW

Light (15%) 4 3 2 1

Medium (45%) 10 10 5 4

Heavy (75%) 17 16 7 7

Fig. 1. Example of the impact of the Local+V2G control strategy on a single
household.

Table II
IMPACT OF THE CONTROL STRATEGIES ON THE PEAK LOAD OF THE

DISTRIBUTION TRANSFORMER LOAD PROFILE. RESULTS ARE AVERAGES
OVER 100 SIMULATIONS PERFORMED FOR EACH SCENARIO. THE

STANDARD DEVIATION IS GIVEN IN PARENTHESIS.

PHEV penetration level

Light (15%) Medium (45%) Heavy (75%)

BAU 121 kW (7.6) 199 kW (12.9) 274 kW (17.1)

Local 86 kW (5.0) 94 kW (4.5) 100 kW (4.4)

Local+V2G 82 kW (4.8) 84 kW (4.6) 83 kW (4.4)

for local residential energy consumption, we can further reduce
the evening peak load. Instead of demanding power from the
grid, power is provided by the batteries of the plug-in-(hybrid)-
electric vehicles to the appliances over which no control can be
executed, thereby lowering the demand for grid power. Table II
gives more detailed information regarding the reduction of
the peak load for each scenario and algorithm. Uncontrolled
charging leads to an average peak load of 121 kW, 199 kW and
274 kW respectively for the 15%, 45%, and 75% scenarios.
The local algorithm without V2G power results in an average
peak load of 86 kW, 94 kW, and 100 kW, or a reduction of
respectively 29%, 53%, and 64%. When V2G power is used,
we obtain lower average peak loads, respectively 82 kW, 84
kW, and 83 kW, or a reduction of respectively 32%, 58%, and
70% compared to the reference BAU case. When we compare
the local algorithm that uses V2G power to the algorithm
without V2G, we obtain a reduction of 4%, 10%, and 17%
for the different scenarios. Thus the impact of V2G is non-
negligible, even in this otherwise fairly deterministic scenario.

We are not only concerned about the peak load of the
distribution transformer, but also in the variability of the
load profile over time: ideally, we’d like to see a fairly flat
load profile. We evaluate the variability of the load profile
using the standard deviation between the values of the load
profile. Table III gives an overview of the results. Uncontrolled
charging results in a distribution transformer load profile with a
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Fig. 2. Average load profiles as would be measured by the distribution
transformer, obtained from executing each scenario hundred times using
different random seeds.

Table III
IMPACT OF THE CONTROL STRATEGIES ON THE VARIABILITY OVER TIME

(I.E. STANDARD DEVIATION) OF THE DISTRIBUTION TRANSFORMER LOAD
PROFILE. THE STANDARD DEVIATIONS FOR THESE VALUES ARE ALSO

GIVEN IN PARENTHESIS.

PHEV penetration level

Light (15%) Medium (45%) Heavy (75%)

BAU 24.9kW (0.8) 43.9kW (1.7) 62.3kW (2.0)

Local 16.2kW (0.2) 19.8kW (0.4) 24.9kW (0.5)

Local+V2G 15.7kW (0.3) 19.0kW (0.4) 24.3kW (0.6)

standard deviation between the values of 24.90 kW, 43.95 kW,
and 62.30 kW for the 15%, 45% and 75% scenarios. These
results indicate that uncontrolled charging and an increasing
number of vehicles leads to more variability. By performing
local energy control (without V2G power) we can achieve
standard deviations of 16.16 kW, 19.76 kW, and 24.92 kW,
or a reduction of respectively 35%, 55%, and 60% compared
to the uncontrolled scenarios. When V2G power is used, the
standard deviations are lowered to 15.70 kW, 18.99 kW, and
24.29 kW, or a reduction of 37%, 57%, and 61% compared
to the uncontrolled BAU scenarios. Not only does using V2G
power reduce the peak load, it also reduces the variability of
the load profile.

We are also concerned with the impact these different
strategies have on the voltages within the distribution grid.
According to the EN50160 standard, the voltage should be
230V ±10%. Therefore, we have performed a detailed power
flow simulation for a scenario with high peak loads. We have
chosen the scenario with a PHEV penetration level of 45%.
Figure 3 gives an overview of the results obtained. The graphs
give for each time slot the number of households where a
voltage deviation larger then 10% is observed. It is clear
that uncontrolled charging leads to a large number of voltage
deviations. These deviations occur when the highest loads
are observed. However, by performing local energy control
(without V2G power), this number is drastically lowered.
When we perform local energy control with V2G power, we
no longer observe any voltage deviations larger then 10%.

VI. CONCLUSION

In this work we evaluated the impact of using vehicle-to-
grid (V2G) power in a local control algorithm for manag-
ing the charging of electric vehicles. Simulation results for
three control strategies were compared: uncontrolled charging
(BAU), local control without V2G, and local control with
V2G. We evaluated the performance of these strategies in
terms of distribution transformer peak load and load profile
variability for a residential area comprising 63 households and
different penetration levels of PHEVs (15%, 45% and 75%
of the households). Simulation results showed that the local
algorithm reduces the peak load that stems from uncontrolled
charging by respectively 29%, 53%, and 64% for the three
penetration levels. However, when V2G power is used, we
obtain an additional peal load reduction of 4%, 10%, and
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(a) Load profiles for the different strategies. A single
scenario with a PHEV penetration degree of 45% and high
peak loads was chosen for the analysis.

(b) Number of households where voltage deviations larger
then 10% are observed for the uncontrolled (BAU) charging
case.

(c) Number of households where voltage deviations larger
then 10% are observed for the smart charging case without
V2G power.

Fig. 3.

17% when compared to local control without V2G power.
Local control using V2G power also reduces the variability
of the load profile with respectively 37%, 57% and 61%
compared to BAU. Uncontrolled charging also results in a
large number of voltage deviations of more than 10% from the
nominal voltage. However, local energy control significantly
reduces this number, and when V2G power is used no voltage
deviations are observed. These results show that using V2G
power can improve the results of a local energy control
strategy.

Ongoing and future work includes, as a first step, to explore
the global optimum that can be reached in case of V2G, thus
basing the optimization on overall knowledge of all household
loads and their cars. Next steps comprise the development
of online/distributed implementations of the control strategy
(e.g. price-based), and assess how well they approach the
boundaries found by our all-knowing optimization. In addi-
tion, we will further identify the impact on the distribution
work in terms of e.g. voltage violations, power quality etc.
especially when considering also renewable energy sources
(such as photo-voltaic panels installed in the homes [12]) and
the opportunities of exploiting V2G to counter those power
issues. Complementary work involves judging, and possibly
minimizing, the impact the increased number of charging and
discharging cycles has on the lifetime of the batteries.
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