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In engineering design, the selection of material alternatives usually depends of different criteria based on
the specific problem. Due to the different units of this criteria, a normalization process is needed in the
selection model. A lot of normalization approach can be found in literature and at the same time many
algorithms have been developed to ensure the optimal material selection for a certain industrial applica-
tion. Two elements of reflection can be drawn from the analysis of these. The first is the absence of an
aided support to the selection of the correct engineering criteria by whom operate the selection process.
The second is the need to define a weighting method that at the same time can be user-friendly to use and
representative of the project’s needs. A new selection model based on the integration between House of
Quality and the Comprehensive Vikor Algorithm is presented in this paper. This approach, called Integral
Aided Material Selection (IAMS), can overcome the main lack of traditional material selection model and
provide a real support tool to the project team. That way the project team can optimally choose the selec-
tion criteria and assign to these the correct priority coherently with the project needs. A case study is pre-
sented to illustrate and justify the proposed method. The topic of the case study concerns the
identification of the best coating for the protection of an aluminum alloy substrate (Al-7075) from the
effects of abrasive wear against an alternating counterpart made by a high-strength cast iron.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Materials selection takes on a strategic importance to meet the
highest level standard of a product/process design. The evolution
of legislative, regulatory and functional needs makes this selection
extremely complex as it is the result of several compromises.
Otherwise chose the wrong material produce product failure, reli-
ability problem and high costs.

Over the years various attempts have been described which aim
to provide a structured support in the selection of optimum mate-
rials for the project [1]. The algorithms developed try to help in the
assessing of the material performance on several critical aspects
minimizing the need of high level competences.

These types of algorithms, that belong to Multi Attribute Deci-
sion Making algorithms (MADM), start considering a set of selec-
tion attributes of a multi-criteria problem. Then through many
calculation they arrive to the identification of the best alternative
able to better respond to the selection attributes.

It is important to observe that each of the selection attributes
have usually a specific and different impact on the product quality
ll rights reserved.
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and on the ideality of the solution so that an effective weighting
method has to be adopted to consider all the attribute during the
material selection process. Besides selection attributes usually
have different units and the use of a normalization method is
needed for a coherent comparison among all of them. There are
many examples of these algorithms in the state of the art about
material selection methods [2–6]. The analysis of the state of the
art shows two critical issue that appears usually present in the
material selection method, in particular:

� These algorithms do not explicitly consider a specific criteria for
attributes that require a target value. Some study tried to sup-
ply this lack through the addition of this criteria in the VIKOR
algorithm (Comprehensive Vikor algorithm, C-Vikor) [7] and
in TOPSIS (Technique For Order Preference by Similarity to Ideal
Situation). [8]. In the present paper we have chosen the algo-
rithm proposed by Jahan et al. [7] that defines three different
classes of selection attributes: attributes that need a maximum
value optimization (called Larger-The-Better or LTB); attributes
that need a minimum one (called Smaller-The-Better or STB);
attributes that require a target value (called Target).
� The correct definition of the different weights for selection

attributes among many alternatives is still an open topic. The
various weighting methods proposed in literature have been
categorized into three different groups considering their
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Fig. 1. HOQ scheme.
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different level of dependence from the expertise of the design-
ers (subjective, objective or integrated methods) [9]. Many of
these methods define a precise and complete structured meth-
odology to overcome the problems of weighting evaluation (e.g.
AHP method [10]) but at the same time they appear as extre-
mely rigid frameworks with complex procedures that usually
result not sustainable for the application in the industrial envi-
ronment. Also due to this rigidity and to the time consuming
characteristics of these methods the most used decision making
process still used in many industrial environment is a structure-
less approach completely based on the trust in the expertise of
technicians and engineers that are members of the project
team.

The aim of this paper is to introduce a preliminary tool able to
increase the MADM algorithms performance through the use of the
House of Quality (HOQ). It is not the first time that HOQ is used in
material selection. In fact Mayyas et al. [10] used the HOQ as a di-
rect instrument of selection but in our opinion they introduced sig-
nificant calculating complications and partially lost the rational
character of MADM algorithmic models. Another interesting appli-
cation of QFD for material selection is proposed by Jalham [11] but
he does not consider the target criteria and use a MADM algorithm
similar AHP.

Anyway our proposal partially continue on his path. In fact in
this paper we present an approach for material selection based
on the synergic use of HOQ and C-VIKOR algorithm. In particular
HOQ helps to identify and select the criteria in order to assign them
a proper weight and C-VIKOR algorithm helps to operate and sort
the final selection of alternatives.

The proposed model will be better shown through a case study
about the choice of the optimal filler-reinforced Al matrix (Cer-
Mets) produced by Cold Spray coating technique. Finally the re-
sults achieved using the proposed approach will be compared
with the results obtained using Entropy Weighting Method
(EWM) [12] coupled with C-Vikor algorithm. EWM is based on
the entropy assessment of the criteria and is used as a tool able
to provide a rating of importance to each selection attributes. We
have chosen EWM method for result comparison to emphasize
the typical problem of many numeric method for weight evalua-
tion of selection attributes, i.e. the absence of connection with
project real needs. This comparison will show the different effec-
tiveness of the two approach in the specific technical application
of the case study.
2. Proposed method

2.1. HOQ

The House of Quality is one of the tools of the Quality Function
Deployment (QFD).

The HOQ is a tool used to correlate in a systematic manner the
customer needs (VOCs) and the design characteristics (CTQs) [13].
This tool is useful during the product (or service) development pro-
cess to ensure the better match between what are the demands of
the market and the characteristics that must have the product in
developing. The steps necessary for its completion are as follow
(referred to the scheme shown in Fig. 1):

(1) Fill the room 1 by the needs of the project.
(2) Fill the room 2 with the systematic translation of needs into

CTQs – Engineering Characteristics (in the proposed
approach CTQs are the selection attributes described in the
introduction) and identification of the direction of
improvement.
(3) Allocation of a priority value for the needs of the project, in
our case using a range between 1 and 5, with 1 being least
important.

(4) Fill the room 3 (the relations matrix) using the discrete fac-
tors: weak relationship to 1, 3 for average relationship, 9 for
strong relationship.

(5) Fill the room 5 of the correlations indicating the presence of
positive correlations (+) or negative (�) correlations.

(6) Calculation of the relative importance of each attribute
selection by the sum of the products of the importance of
each customer need for the value of relationship between
the need and the attribute (room 4).

In the application presented in this paper, the compilation of
the room 6 (the matrix in which the information on the direct com-
petitors of the target market is collected) can be neglected. How-
ever, it is clear that where it is necessary to develop a market
competing product, the availability of data about the materials
used by competitors can be an interesting added value term for
the model and not a limitation.

2.2. C-VIKOR

The MADM VIKOR was developed as a tool for multi-objective
optimization in complex systems. This algorithm is based on the
comparison between the alternatives of selection on the basis of
critical attributes characterized by different units of measurement.
In the VIKOR model the ranking of optimality is obtained from the
analysis of what is the distance of each alternative from the ideal
solution, and the concept of compromise is related to the mutual
granting of the different critical attributes. Depending on the abil-
ity to consider all the three categories of attribute (LTB, STB and
Target) here we will adopt the form of VIKOR developed by Jahan
et al. [7], hereinafter referred to as C-VIKOR. In Fig. 2 is shown
the logical process of this C-VIKOR.

The mathematical model of C-VIKOR can be found in [7].

2.3. Integration between HOQ and C-VIKOR Algorithm in guided
materials selection

The C-VIKOR, shown in Fig. 2, result a good algorithm for
incremental design scenario rather than disruptive/innovative
application. This is due to the fact that if the project team starts



Fig. 2. Flow chart of C-VIKOR algorithm.
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with a list of materials before that the selection attributes have
been defined, most likely the material research will be based solely
on past experience of the team, without actually exploring innova-
tive solution in the materials domain.
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Based on this observation and integrating the HOQ in the algo-
rithm, the model called Integral Aided Material Selection (IAMS)
has been developed.

From direct comparison of C-VIKOR (Fig. 2) with IAMS (Fig. 3) it
should be noted that in IAMS the identification of the list of poten-
tial alternative materials is next to the identification of selection
criteria. This logical change has been introduced to make as much
as possible guided the selection of the materials best suited to the
needs of the project. The identification of a set of alternative mate-
rials before the technical selection criteria have been explicitly for-
malized, seems not very consistent with the aim of a wizard for the
design developed for technicians with limited experience. The inte-
grated model proposed in this paper attempts to overcome these
limitations by providing an instrument which enables the project
team to better combine their previous experiences with the intro-
duction of innovative elements in the finished product.

The research domain for the optimal set of candidate materials
should be as broad as possible and not based only on historical her-
Fig. 3. Main step of t
itage. Only the selection criteria, carefully formalized, could intro-
duce an initial screening of materials within the domain and then
allow the identification of the ‘‘best’’ candidates.

The usual C-VIKOR algorithm introduce two final conditions
(Fig. 2), whose verification is necessary to ensure an adequate con-
fidence level about the optimality of the option with best rating
level [7,12–14]. Instead in the IAMS model the aim is not to provide
the best solution to the project team. In fact in IAMS model a sys-
tematic approach that allows the team to focus his attention on a
limited set of material alternatives (less than three) has to be pro-
vided to not introduce limitation in team creativity. For this reason,
the use of the two conditions, C1 and C2 is no more needed for
results validation (Fig. 3).
3. Case study and validation of the proposed method

The IAMS model is shown through the following case study. The
case study concerns the development of a protective coating on a
he IAMS model.
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aluminum alloy substrate (Al-7075, 175 HV), with the goal of pro-
tecting the substrate from the effects of abrasive wear during the
sliding motion against an alternating counterpart made by a
high-strength cast iron (290 HV). In the specific case it is critical
to keep the surface integrity of the aluminum component, while
the other part admits a limited wear of cast iron. A schematic mod-
el of the tribocouple is shown in Fig. 4. Another critical issue is the
limitation in using coating technology characterized by high intru-
siveness in the substrate. This limitation is necessary in order to
preserve the mechanical properties of the substrate. Considering
this need, it was decided to use a Cold Spray process for the depo-
sition of a thick protective layer of ceramic particles to reinforce Al-
7075 matrix.

This case study is characterized by two aspects of interest:

� The importance of being able to explicitly consider the Target
criteria in the mathematical model.
� The complexity of the applications in which the choice of a

material is further constrained by compatibility with other
materials required.

The IAMS model is developed to drive the selection of a very
limited number of candidates (2 or 3 ones), that are good solutions
to strength the metal matrix.

The first step in IAMS model is the identification of the preli-
minary needs of the project (VOCs) (following the model shown
in Fig. 3). In order to have a complete set of selection attributes,
we also attributes related to the economic implications of the
material selection have been consider in the model. In the case
study these implications imply limitations due to the purchase
costs of raw materials and technology needs that are related to
production and processing subsequent to the deposition of the
coating.

The VOCs identified are the following:

� Improve the substrate resistance to abrasive wear.
� Limit detrimental actions harmful to the integrity of the coun-

terpart of the coupling (stationary part).
� Effective distribution of loads between matrix and reinforce-

ment in the CerMet.
� The contribution to Young Module of the CerMet (ECM) caused

by the reinforcement is such that ECM is not much different from
the substrate Young Module (ES). In a first approximation we
can consider that ECM / EmVm + EfVf, where Em is the Young
Module of the Al-7075 matrix (in this case study is the same
of the substrate, ES), Ef is the Young Module of the filler and
Vm and Vf are, respectively, the volume fraction of the matrix
and the filler.
Fig. 4. Schematic model of the tribocouple.
� Do not allow differential thermal expansion between matrix
and reinforcement.
� Do not allow differential thermal expansion between the Cer-

Met and Substrate.
� Minimize the weight of the component.
� Protect the substrate from the heat.
� Build effective cohesive links between the filler and the matrix.
� Ensure the possibility of recovery of the mechanical tolerances

of the workpiece.
� Reduce the cost considering both the purchase of materials and

the process (machining coating).

All these requirements are the input to the application of the
HOQ. Fig. 5 shows the template and then the completed HOQ. In
the room 2 of the HOQ are shown the critical selection attributes
obtained as technical translation of the VOCs:

– Filler hardness.
– Filler Young Module.
– Filler coefficient of thermal expansion (CTE).
– Filler density.
– Filler thermal conductivity.
– Filler wettability by the Al-7075 matrix.
– Filler workability.
– Filler cost.

For each of these the critical direction of improvement has been
identified (Target, STB or LTB). It is important to notice that in this
case study, nearly 40% of the attributes is of Target type, that is a
proof of the importance to mathematically include this class in
the selection algorithm.

A brainstorming among the members of the Project Team fol-
lowed by a sensitivity analysis on the Relative Weights allowed
to assign a weight to each VOC (Importance to the Project).

Depending on the relationships between the identified VOCs
and the selection attributes, and considering the weights attrib-
uted to the VOCs, it is possible to calculate the relative weights %
(wj) of the different selection attributes.

The next step of IAMS model is the identification of a set of
materials that could be used as fillers for the reinforcement of
the 7075 matrix Cold Sprayed, the list is shown below:

(1) Al2O3 (94% purity).
(2) TiN (99% purity).
(3) TiC (99% purity).
(4) TiO2 (99% purity).
(5) SiC (99% purity).
(6) SiN (99% purity).
(7) WC (99% purity).
(8) CrN (99% purity).
(9) AlN (99% purity).

This list contains two distinct categories of materials:

� The first category includes materials that are currently sub-
jected to intense academic and industrial research to optimize
their performance in cold-sprayed CerMet aluminum base
coatings.
� The second category includes material that are currently diffi-

cult to be uses in industrial applications. These materials are
included the list even if they are characterized by high cost of
powder and extremely difficult and expensive deposition pro-
cess. So this class of materials is introduced in the case study
to evaluate the ability of IAMS model to evaluate the materials
contained therein, and thus place them in the final ranking on
the lower positions.



Fig. 5. HOQ completed.
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Following the proposed model, we proceeded to collect data
about the performance of each of the candidate materials relatively
to each of the selection attributes. In this research we have used
numerous sources: on-line database (i.e. MatWeb), and handbooks
(i.e. Handbooks of Condensed Matter and Materials Data).

The selection matrix is shown in Table 1 and collects all the
technical data about the different materials. The criteria on the
wettability of the matrix and workability are qualitative and have
been translated into numerical terms by a simple fuzzy logic.

Then the Selection Matrix is normalized and using the weights
of different attributes of selection provided by the HOQ (wj) the va-
Table 1
Completed selection matrix.

Objective Filler hardness
(HV)

Filler Young
Module (GPa)

Filler CTE
(10–6/�C)

Filler dens
(gr/cc)

TARGET TARGET TARGET STB

Best value 1100 300 23 3.1
Materials
1 Al2O3 1175 300 8.1 3.69
2 TiN 2500 600 9.4 5.22
3 TiC 2900 439 8.3 4.94
4 TiO2 1100 230 9 4.25
5 SiC 2800 410 4 3.1
6 SiN 1580 310 3.3 3.3
7 WC 2300 720 3.8 15.72
8 CrN 1100 400 2.3 6
9 AlN 1100 330 4.5 3.26
lue of the parameter Si, Ri and Qi is calculated through C-Vikor algo-
rithm [7]. The results are shown in Table 2.

Under the direct comparison of the value assumed by the
parameter Qi for different alternatives of selection it is possible
to obtain the ranking of solution optimality. This ranking is shown
in Table 4.

Then we show in Table 3 the calculation of the weights of crit-
ical attributes obtained by the traditional EWM method [12] cou-
pled with C-Vikor MADM algorithm.

The weights obtained with the two model are compared graph-
ically in Fig. 6. The analysis of these results shows a significant dis-
ity Filler thermal
conductivity (W/m K)

Wettability
(null)

Workability
[null]

Cost
(€/kg)

LTB LTB LTB STB

160 5 5 8.5

18 5 3 8.5
19.25 4 1 38
20 2 1 40
11.7 4 3 22
120 2 1 13
30 4 2 33
84.82 2 1 17
19.2 4 3 100
160 4 3 100



Table 2
Selection matrix with the value of the parameters Si,Ri,Qi.

Filler
hardness
(HV)

Filler Young
Module (GPa)

Filler CTE
(10–6/�C)

Filler
density
(gr/cc)

Filler thermal
conductivity
(W/m K)

Wettability
(null)

Workability
(null)

Cost (euro/kg)

Best value 1100 300 23 3.1 160 5 5 8.5
Aj 1800 490 20.7 12.62 148.3 3 4 91.5
Objective TARGET TARGET TARGET STB LTB LTB LTB STB Si Ri Qi

Material
1 Al2O3 0.007 0.000 0.088 0.002 0.053 0.000 0.034 0.000 0.18439 0.05294 0.16011
2 TiN 0.099 0.079 0.083 0.007 0.053 0.018 0.054 0.053 0.44594 0.05266 0.62358
3 TiC 0.116 0.042 0.087 0.006 0.052 0.041 0.054 0.056 0.45564 0.05249 0.64000
4 TiO2 0.000 0.023 0.084 0.004 0.054 0.018 0.034 0.027 0.24398 0.05431 0.27276
5 SiC 0.112 0.035 0.103 0.000 0.020 0.041 0.054 0.009 0.37470 0.02031 0.33823
6 SiN 0.043 0.003 0.105 0.001 0.050 0.018 0.045 0.045 0.31183 0.05016 0.37297
7 WC 0.089 0.099 0.104 0.027 0.034 0.041 0.054 0.017 0.46572 0.03417 0.56799
8 CrN 0.000 0.032 0.109 0.009 0.053 0.018 0.034 0.122 0.37611 0.05267 0.49953
9 AlN 0.000 0.010 0.102 0.001 0.000 0.000 0.034 0.122 0.26829 0.12220 0.64911

Weight wj 0.184 0.172 0.172 0.043 0.086 0.064 0.086 0.193 DQ = 1/(9 � 1)= 0.125

Table 3
Selection matrix with adimensionalized data and weights provided by the entropy weighting method.

Filler hardness
(HV)

Filler Young
Module (GPa)

Filler CTE
(10–6/�C)

Filler density
(gr/cc)

Filler thermal
conductivity (W/m K)

Wettability
(null)

Workability
(null)

Cost
(euro/kg)

TARGET TARGET TARGET STB LTB LTB LTB STB

Materials
1 Al2O3 0.0710 0.0802 0.1537 0.0746 0.0373 0.1563 0.1667 0.0229
2 TiN 0.1510 0.1605 0.1784 0.1055 0.0399 0.1250 0.0556 0.1023
3 TiC 0.1752 0.1174 0.1575 0.0998 0.0414 0.0625 0.0556 0.1077
4 TiO2 0.0664 0.0615 0.1708 0.0859 0.0242 0.1250 0.1667 0.0592
5 SiC 0.1691 0.1097 0.0759 0.0627 0.2485 0.0625 0.0556 0.0350
6 SiN 0.0954 0.0829 0.0626 0.0667 0.0621 0.1250 0.1111 0.0888
7 WC 0.1389 0.1926 0.0721 0.3177 0.1756 0.0625 0.0556 0.0458
8 CrN 0.0664 0.1070 0.0436 0.1213 0.0398 0.1250 0.1667 0.2692
9 AlN 0.0664 0.0883 0.0854 0.0659 0.3313 0.1563 0.1667 0.2692
ej 0.9639 0.9733 0.9530 0.9217 0.8153 0.9738 0.9471 0.8679
1-ej 0.0361 0.0267 0.0470 0.0783 0.1847 0.0262 0.0529 0.1321

Weight wj 0.0618 0.0458 0.0805 0.1340 0.3163 0.0448 0.0906 0.2261

Table 4
Rankings obtained by the IAMS and EWM models ranking based on literature.

Place Ranking

IAMS EWM Literature

1st Al2O3 SiC Al2O3

2nd TiO2 AlN SiC
3th SiC Al2O3 TiO2

4th SiN WC TiC
5th CrN SiN TiN
6th WC TiO2 SiN
7th TiN TiN WC
8th TiC TiC AlN
9th AlN CrN CrN

Fig. 6. Comparison of attributes weights obtained by IAMS and EWM models.
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crepancy between the results of the two models for weighing. In
particular, we note that the method EWM, based only on the trend
of data about each selection attribute, loses the sensitivity needed
to understand the physical problem connected with the selection.
This consideration is shown in particular observing that the model
assigns to the attribute ‘‘Filler thermal conductivity’’ (attribute of
secondary importance for the Project Team), the highest weight va-
lue among the selection attributes. On the other hand the most
important mechanical properties (i.e. hardness and Young’s modu-
lus) have lower attributed weights. This important difference be-
tween the EWM and IAMS results shows clearly how the use of a
direct and exclusive connection between the weights of impor-
tance and the selection criteria creates a mistake in the evaluation
of real case and real project needs.

The results obtained by IAMS model and in EWM are then com-
pared with the ranking based on the effective use of these materi-
als obtained by a literature survey [15–20]. These three different
ranking are shown in Table 4. In this Table it is clear that the dis-
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tortion in the allocation of the importance weight to different
selection attributes using EWM model is directly reflected on the
ranking of alternatives. In particular EWM and IAMS models have
generated significantly different results.

Finally the statistical Spearman Rank Coefficient (SRC) has been
used to compare the two ranking of IAMS and EWM with the real
ranking to verify the correctness of the conclusions proposed.

The SRC values obtained are 0.6333, when the critical value is
0.6000 considering nine alternatives and a significance level of
5%. This detects a significant statistic correlation between the re-
sults obtained with the literature based Ranking and the IAMS
model results. Instead the SRC obtained considering the EWM is
0.333 that is below the threshold level of 0.6000 and confirms
the low consistency of this method.

4. Conclusion

From the results derived from the case study shown in this pa-
per, three significant conclusions can be drawn:

(1) The introduction of the HOQ has allowed to structure the
basic process of identifying of the critical selection attri-
butes. Thanks to the IAMS approach, this process appears
much more guided also for the young designer and in gen-
eral for the project team member who have limited experi-
ence on materials selection.

(2) The IAMS model has generated relative importance weights
to the selection attributes much more consistently with the
requirements of the Project. The use of an algorithmic
weighting model, such as EWM, has proved its inability to
really understand the project requirements.

(3) The proposed IAMS model is effective in determining the
ranking of alternative materials, providing excellent com-
patibility with the ‘‘real ranking’’ derived from an intensive
literature survey. This is an important feedback in the vali-
dation process of the IAMS model.

However an issues that has to be highlighted regards the effec-
tiveness of the MADM model in the case of scarcity of data. In fact
the availability of data concerned each Engineering Characteristic
are of vital importance for the MADM ability to work. It is also very
important to note that often the needed data are provided with dif-
ferent confidence level, as in the case of different sources for the
data.
Future work will therefore concern the introduction in the IAMS
model of tools capable of considering the different reliability level
of the data connected with each Engineering Characteristic.
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