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Supply chain management allows modern enterprises to relax their own capacities and produce in a more
flexible manner for diversified consumer demands. However, for an enterprise with divergent supply
chain (DSC) and multiple product lines, to plan the production allocation for higher competitive advan-
tage in the risky global market is a challenging problem. The existing literature still has not address this
problem very well. This paper is aimed to treat this problem by using an integrated approach of activity
based costing (ABC) and management, five forces analysis, risk and value-at-risk analysis, decision mak-
ing trial and evaluation laboratory (DEMATEL), analytic network process (ANP), and fuzzy goal program-
ming (FGP). The proposed model can effectively incorporate the key factors of precise costing, managerial
constraints, competitive advantage analysis, and risk management into DSC forecasting and multi-objec-
tive production planning. A case study of a consumer-oriented cell phone DSC is also presented. The sen-
sitivity analysis shows that identifying and relaxing crucial constraints can play an important role in DSC
planning for higher competitive advantage and lower risk.

� 2010 Published by Elsevier Ltd.
1. Introduction

Supply chain (SC) operations enable producers to break through
their limits of production with much more flexibility and thus they
can focus on consumers’ demands. In order to satisfy the diversi-
fied demands of consumers, manufacturers might produce various
products in which some products may need common components
for cost reduction, and form so-called divergent supply chain
(DSC); for example, cell phone manufacturers might change the
appearances and styles of their cell phones, and maintain the same
basic inner-components (Fig. 1).

A SC may be viewed as a DSC if a SC node has one predecessor,
but more than one successors (Beamon & Chen, 2001). Mineral
industries and consumer-oriented industries often form such type
of SC. This type of SC is opposite to a convergent supply chain
(CSC). In a DSC, the critical issues of product mix planning, supply
chain constraints, forecasting and risk management, and competi-
tive advantage may have relationships with each other. For in-
stance, over production of high risk and low competitiveness
products, which may be caused by lack of suitable measurement
or not suitably relaxing constraints, could result in ineffectiveness
and low capacity efficiency. Especially in today’s highly risky global
market, how to address these issues and meanwhile achieve high
Elsevier Ltd.
cost-benefit performance has become an important research topic
(Syntetos & Boylan, 2006). Fig. 2 shows the external environment
and internal constraints for a supply chain (Robbins & Coulter,
2001). We can see that successful supply chain management relies
on employing internal resources, finance, and strategy to achieve
higher competitive advantage, avoid higher risk, and prepare for
potential opportunity.

In the literature of supply chain management, the planning of
supply chain is frequently discussed, whereas the integration of
precise costing, SC constraints, competitive advantage, and risk
management for a DSC still has not been deeply explored. How
these elements could be included in DSC planning remains a prob-
lem to be solved.

To fill this gap, this research integrates activity based costing
(ABC) and management, five forces analysis, risk and value-at-risk
analysis, decision making trial and evaluation laboratory (DEMA-
TEL), analytic network process (ANP), and fuzzy goal programming
(FGP) for the DSC planning problem. This paper uses cost drivers at
various levels (unit, batch, product, facility, supply chain) to mea-
sure activity amounts and costs, and identify the constraints of
each activity in the supply chain. In measuring respectively the
competitive advantage and risk of a product supply chain, DEMA-
TEL is first used to analyze and determine the interdependence
relationships between the criteria. Next, ANP evaluates the weights
of the alternatives. Value-at-risk (VaR) is also used to measure the
potential largest loss. Finally, FGP is used to obtain the optimal
product mix and the worst profit. We found that this research
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Fig. 1. A divergent supply chain (D, F) and a general supply chain (M).
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Fig. 2. The external environment and internal constraints for a supply chain.
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develops a new approach that can not only improve DSC produc-
tion planning, but also can efficiently strengthen DSC competitive
advantage and risk management.

In the sensitivity analysis of the case study, this paper shows
that identifying and relaxing crucial constraints can effectively im-
prove DSC planning for higher competitive advantage and lower
risk. In this case, supply chain management time is more crucial
than common component capacity constraint. When only the com-
mon component constraint is relaxed, the overall planning of prod-
uct mix is not affected. However, if the supply chain management
time is first relaxed, it will increase the production of the higher
competitive advantage and lower risk products, meanwhile relax-
ing common component constraint will also come into effect.
Hence, identifying and relaxing crucial constraint is a step with pri-
ority in DSC planning. This paper provides a fine application of ABC
and DEMATEL-ANP-FGP model in a DSC, and also assists SC manag-
ers in making appropriate decisions to decrease the revenue risks
of their product mix and raise the overall competitive advantage
at the same time.

The rest of this paper is organized as follows: Section 2 presents
the literature review. Section 3 discusses the proposed DEMATEL-
ANP-FGP model followed by a case study in Section 4. Section 5
concludes this study.
2. Literature review

Multi-product SC planning problems under uncertainty have
been discussed by several papers. Mitra, Gudi, Patwardhan, and
Sardar (2009) adopted a fuzzy mathematical programming ap-
proach to address the multi-site, multi-product, multi-period sup-
ply chain planning problem under uncertainty. The slot-based
planning model results are obtained for different uncertain scenar-
ios. This model does not require the knowledge of distributions
associated with the uncertain parameters. Peidro, Mula, Poler,
and Verdegay (2009) proposed a fuzzy mixed-integer linear pro-
gramming model which considers supply, demand and process
uncertainties in supply chain planning. They suggested that the
fuzzy formulation is more suitable than deterministic methods in
dealing with SC planning which is difficult to obtain precise or cer-
tain information, and needed to be modeled by triangular fuzzy
numbers. Liang and Cheng (2009) addressed an integrating manu-
facturing/distribution planning decision (MDPD) problem with
multi-product and multi-time period in supply chains by using a
fuzzy multi-objective linear programming model (FMOLP) with
the consideration of time value of money for each of the operating
cost categories in an uncertain environment. Their method aims at
minimizing total costs and total delivery time in association with
inventory levels, available machine capacity and labor levels at
each source, market demand and available warehouse space at
each destination, and total budget constraints. Cakır (2009) dis-
cussed the problem involving multi-commodity, multi-mode dis-
tribution planning by applying the Benders decomposition which
is suitable to addressing outsized distribution planning problems
characterized with a large commodity set and many transportation
mode options. To solve such problems that have an abundant num-
ber of discrete variables, the Benders method is efficient enough to
isolate a group of decision variables and investigating the problem
partially. Vila, Martel, and Beauregard (2006) proposed a mixed
integer programming model which maps the industry manufactur-
ing process onto potential production–distribution facility loca-
tions and capacity options production–distribution network of
divergent process industry companies in a multinational context.

There are also some other papers investigating SC problems un-
der uncertainty. Al-Othman, Lababidi, Alatiqi, and Al-Shayji (2008)
adopted a multi-period optimization model to study the effect of
uncertainties in market prices and demands on the supply chain
of a petroleum organization in an oil producing country. They
showed that in the situation with an appropriate balance between
crude exports and processing capacities, impacts of economic
uncertainties may be tolerated. It is essential that petroleum orga-
nization develop resilient production plans for the allocation of the
produced crude between direct exports and local processing in an
uncertain economic environment. Knemeyer, Zinn, and Eroglu
(2009) develops a model that can proactively plan for catastrophic
risk events, which specifically builds on existing risk analysis that
is often implemented by the insurance industry to quantify the risk
of multiple types of catastrophic events on key supply chain loca-
tions. The method also provides information to help managers with
the generation and selection of appropriate countermeasures and
thus mitigate the potential effect of catastrophic events on supply
chains. The results reveal that this method is a systematic ap-
proach to estimate both the probability of occurrence and the
financial impact of potential catastrophic events of those targeted
locations with higher risk. Leung, Wu, and Lai (2006) presented a
stochastic programming approach to evaluate optimal medium-
term production loading plans under an uncertain environment
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and solve the production planning problem with production plant
preference selection constraints. The results show that the model is
practical in uncertain economic scenarios. Sodhi and Tang (2009)
also developed a stochastic programming formulation for a simple
supply chain planning model by extending the linear programming
(LP) model of deterministic supply chain planning to take demand
uncertainty and cash flows into consideration for the medium
term. The model includes the purchase of inputs from a supplier,
their conversion to finished goods at a single plant, and the even-
tual stocking and selling of these goods from a single warehouse
facing uncertain demand. The study also examines various model-
ing and solution choices developed in the asset-liability manage-
ment (ALM) literature and their applicability to supply chain
planning, and results show that simple stochastic programming
models will remain as much of an art as it is a science, as they work
well when combined with deterministic models in extended ERP/
APS systems to provide risk-adjusted plans.

Though the existing papers have rich discussions concerning
multi-product planning under uncertainty, they still have not dealt
in depth with the DSC control problems about the integration of
precise costing, constraints, competitive advantage, and risk man-
agement. A better answer could be obtained after the utilization of
ABC cost analysis and DEMATEL-ANP-FGP model. This research
sets out from this perspective into deeper inquiry.
3. The DEMATEL-ANP fuzzy goal programming model

3.1. Problem formulation

For parsimony, this model simply treats the supply chains of
three kinds of products. Two of the products have constraints in
common components, and all the three product supply chains
are limited by supply chain management time. The product prices
have downward risk. Under the various objectives and limits, the
decision maker hopes to find the optimal production quantities
and its related variables for these products. The major goals are
budget, revenue, response time, asset turnover time, risk analysis,
and five forces analysis. The main constraints are common compo-
nent, SC management time, VaR rate, defect rate, late delivery rate,
and flexibility rate.
3.2. Activity-based costing, five forces analysis, and other risk
management tools

3.2.1. Activity-based costing
Activity-based costing (ABC), which argues that any activity

benefiting the production and delivery of goods should be assigned
to final cost objects (Johnson & Kaplan, 1987; Kaplan & Cooper,
1998), was proposed in 1980s due to increased overhead (or indi-
rect) cost from automation and technology usage (Lea & Freden-
dall, 2002). ABC information can be employed to improve
operations and eliminate non-value-added costs (Hilton, 2005;
Tsai & Hung, 2009a; Tsai & Hung, 2009b). An ABC system has
two dimensions, in which the vertical dimension is the cost assign-
ment view, and the horizontal dimension is the performance mea-
surement view. For cost assignment, overhead costs are first
assigned to activity cost pools classified by various activity levels
such as unit, batch, product, and facility. For instance, unit level
activity represents the activity that must be done for each unit of
cost object, and batch level activity is for each batch of cost object.
After that, activity cost pools are linked to cost objects by cost driv-
ers which mean a characteristic of an activity that causes the incur-
rence of costs by that activity (Hilton, 2005), and by pool rates
which refer to the cost of a cost driver. For example, if machine
hour is the cost driver for the cost pool ‘machinery’, the machinery
cost of product A is multiplying the machine hours by the machin-
ery pool rate of product A.

The horizontal dimension is performance measurement. The
activity analysis identifies the root causes, activity triggers, and
the relationships between the production activities, then the activ-
ity performances can be compared with the standard values by
benchmarking. In practice, the differences can be represented as
‘variance rates’ which are the change rates between the standard
and actual values.

In the literature of supply chain management, the application of
ABC is still discussed very little. In fact, the ABC system can provide
a more precise approach for SC costing, constraint and perfor-
mance measures, which is particularly suitable for DSC planning.
Therefore, this paper presents a concise model that incorporates
ABC into DSC.
3.2.2. Five forces analysis
Porter (1985) proposed five forces to find the best competitive

advantage for companies. The competitive advantage is caused
by the five forces variables: new entrants, competitive rivalry, sup-
pliers, consumers, and substitutes (Porter, 1985). The five forces
are explained as follows:

(a) The threat of new entrants. The likeliness of new entrants
into a production relies on two main factors: the existence
of barriers to entry and the expected retaliation. High barri-
ers to entry or strong expected retaliation would decrease
the threat of new entrants.

(b) The intensity of competitive rivalry. The intensity of compet-
itive rivalry is affected by many interacting factors: large
numbers of competitors or equal competitors, slow rate of
industry growth, high fixed cost allocation per value added,
lack of brand equity, intermittent industry overcapacity,
high diversity of competitors, high exit barriers, and so on.

(c) The bargaining power of suppliers. The raising of prices or
lowering of quality of suppliers has a prominent effect on
the competitiveness of industries. If an industry cannot
adjust its cost structure to lower the rising purchasing costs,
their profits may be limited by the actions of their suppliers.
Suppliers have a stronger bargaining power when there
exists a higher supplier concentration to firm concentration
ratio, no satisfactory presence of substitute inputs, low
importance of volume to supplier, when the supplier’s prod-
uct is crucial to the consumer’s success in the market, cost of
inputs are highly relative to selling price of the product, and
the ability of forward integration by suppliers is strong.

(d) The bargaining power of consumers. In contrast to an indus-
try’s goal to make high cost-profit investment, consumers
hope to buy products at the lowest price possible. To lower
prices, consumers would bargain in order to buy products
with high quality, complete service, and low price. The
actions of consumers cause rivalry among enterprises within
each industry. The bargaining power of consumers lies in the
following factors: high buyer volume, availability of existing
substitute products, lack of brand equity within the industry,
and allowing buyers the possibility of forward integration.

(e) The threat of substitute products. Substitutes refer to prod-
ucts or services that have the same or similar function, and
can bring a similar level of satisfaction to consumers, but
have different characteristics. Substitutes put an upward
limit to a company’s pricing.

Based on the analyses of five forces, this research first used
DEMATEL analysis to determine the interdependence relationships
between the five forces criteria for the product supply chains, then
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next used ANP to obtain the comparative advantage weights of the
alternatives.

3.2.3. Other risk management tools
Since G30’s 1997 derivatives report suggested that corporations

with derivative departments should use Value-at-Risk (VaR) as a
specific method to evaluate market risk, VaR analysis has been
more widely recognized by global management authorities.

VaR is an estimated largest loss in portfolios due to price vola-
tility in a certain period of time and under a certain confidence le-
vel. For example, under 95% confidence level within ten days, an
estimated VaR of 1 million means that within ten days, there is
5% probability that the value of the portfolio will have a loss of over
one million dollars. If variable XT represents the loss in the future T
days and (1 � a) is the confidence level, then VaR must satisfy the
following condition: Prob(XT P VaR) = a. Because VaR puts empha-
sis on downward risk, Duarte (1998) proposed a hedging strategy,
the optimal VaR hedge, to minimize VaR and lower downward
risks.

In consideration of the fact that VaR only provides the informa-
tion of the largest loss, and cannot deal with individual risks, deci-
sion-making risks, and any other risks associated with individual
product supply chain, this paper additionally suggests the use of
DEMATEL analysis to determine the interdependence relationship
between the risk criteria, and then use ANP to evaluate the risk
weights of the alternatives. These risk criteria include:

(a) The ability to take risk: To what degree of risk can each indi-
vidual product supply chain and the whole system take?

(b) Uncertainty: Is there a possibility of reversal? Does the deci-
sion maker have enough reliable information about the
whole process and consequence of the decision?

(c) Complexity: Are there many incontrollable variables? Are
there strong interaction effects between the variables?

(d) Price volatility: Is the standard deviation of the price large in
the latest month?

(e) Price vulnerability: Is the current price too high and existing
a possibility of price avalanche?

3.3. DEMATEL-ANP and fuzzy goal programming methodology

3.3.1. The DEMATEL method
The DEMATEL method uses digraphs to categorize the influenc-

ing factors into two groups: cause group and effect group.
There are five steps to perform the DEMATEL process (Tsai, Chou,
& Hsu, 2008):

Step 1: Produce the direct-relation matrix. First, set the influ-
ence scales: 0 (no influence), 1 (low influence), 2 (medium influ-
ence), 3 (high influence), and 4 (very high influence). Next, the
pairwise comparisons are made according to influence and direc-
tion between criteria. Then, form the direct-relation matrix: a
n � n matrix A, where aij represents the degree to which the crite-
rion i affects the criterion j.

Step 2: Normalize the direct-relation matrix. Determine the nor-
malized direct-relation matrix X by using the direct-relation ma-
trix H:

X ¼ k:H;
k ¼Min
1

max16i6n

Pn

j¼1
aij
; 1

max16j6n

Pn

i¼1
aij

� �
; i; j ¼ 1;2; . . . ;n:

Step 3: Form the total-relation matrix. The total relation matrix
T can be determined by using the normalized direct-relation ma-
trix X, where I is the identity matrix

T ¼ XðI � XÞ�1:
Step 4: Generate a causal diagram. By using expressions below,
the sum of rows and the sum of columns are respectively repre-
sented as vector D and vector R.

T ¼ ½sij�n�n; i; j ¼ 1;2; . . . ;n;

D ¼
Xn

j¼1

sij;

R ¼
Xn

i¼1

sij:

The ‘‘Influence’’ horizontal axis vector (D + R) shows how much
importance the criterion has, and the ‘‘Relation’’ vertical axis
(D � R) categorizes criteria into a cause group and an effect group.
When (D � R) is positive, the criterion will be assigned to the cause
group, and when negative, the effect group. Thus, by mapping the
dataset of the (D + R, D � R), we can get the causal diagram.

Step 5: Set threshold value and draw the impact-digraph-map.
Decision makers and/or experts should set a threshold value for
the influence level to make sure an appropriate impact-digraph-
map is acquired. Only those elements with an influence level high-
er than the threshold value in matrix T are selected and included in
the impact-digraph-map.
3.3.2. The ANP method
After identifying the interdependence relationships between

the criteria by the DEMATEL process, the ANP process will be used
to evaluate the weights of the alternatives. The ANP method in-
cludes two major phases: the first phase performs pairwise com-
parisons for each of the dependency relationships to generate the
relative importance weights, and the second phase, the superma-
trix calculation, is split into three minor parts in the procedure:
the formation of the supermatrix, the normalization of the superm-
atrix, and the convergence to the solution. The converged superm-
atrix can reveal the information of the relative priorities for each of
the alternatives (Tsai & Chou., 2009; Saaty, 1996).

Step 1: Pairwise comparisons. The pairwise comparisons of the
elements within each cluster are conducted to form pairwise com-
parison matrices. The valuation scales, recommended by Saaty, are
ranked 1 as equal importance, 3 as moderate importance, 5 as
strong importance, 7 as very strong or demonstrated importance,
and 9 is extreme importance. Even numbered values are placed be-
tween the above importance levels. Reciprocal values (e.g. 1/5, 1/7)
refers to less importance, strongly less importance, . . . and so on.
After finishing pairwise comparisons, the relative importance
weight for each component is calculated by using MATLAB soft-
ware, and with A as the pairwise comparison matrix, the weights
are evaluated through expression Aw = kmaxw. kmax means the larg-
est eigenvalue of A here. w refers to the eigenvectors for the prin-
cipal eigenvalue kmax, which is also the priority vector of the
elements. For data consistency, a consistency index (CI) and consis-
tency ratio (CR) must be examined: CI =(kmax – n)/(n – 1), where n
refers to the number of components listed in the pairwise compar-
ison matrix; and the CR is the value dividing the CI by a random
inconsistency (RI) value. The RI value can be found in most AHP
and ANP reference books. The pairwise comparison matrix will
be consistent when CR < 0.10. The comparison weights can also
be obtained by an AHP/ANP software such as Expert Choice.

Step 2: The formation and normalization of the supermatrix. The
supermatrix is formed by using the priority vectors of each pair-
wise comparison matrices. Saaty recommends that the sums of
the columns should be normalized to equal a value of 1, i.e. column
stochastic. In this paper, all clusters are of equal importance.

Step 3: The convergence to a solution. The last part is to give a
priority ranking to each of the alternatives. Saaty suggests to raise



Table 1
The DEMATEL initial direct-relation matrix.

Customer Supplier New entrant Substitute Rivalry

Customer 0.000 3.000 3.333 3.333 3.667
Supplier 1.333 0.000 1.333 2.000 3.333
New entrant 3.333 2.000 0.000 3.000 2.333
Substitute 3.000 2.000 3.667 0.000 2.333
Rivalry 4.000 2.667 2.667 3.333 0.000

Table 2
The DEMATEL normalized direct-relation matrix.

Customer Supplier New entrant Substitute Rivalry

Customer 0.000 0.225 0.250 0.250 0.275
Supplier 0.100 0.000 0.100 0.150 0.250
New entrant 0.250 0.150 0.000 0.225 0.175
Substitute 0.225 0.150 0.275 0.000 0.175
Rivalry 0.300 0.200 0.200 0.250 0.000
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the supermatrix Ms to the largest power when the convergence oc-
curs and thus find a solution.

3.3.3. The fuzzy goal programming methodology
In the problem of DSC production planning, the goals of the

decision makers may be fuzzy for the consideration of flexibility
and vagueness in the preferences. We adopted a FGP approach to
describe such DSC decision framework (Biswas & Pal, 2005). The
advantage of FGP is that this tool can handle priority structure of
objectives with fuzzy goals.

If the goal has a lower limit (Vg � eg), then the membership
function lg(x) in different intervals is Eq. (1).

lgðxÞ ¼
1 if f gðxÞP Vg ;

½fgðxÞ � ðVg � egÞ�=eg if Vg � eg 6 fgðxÞ < Vg ;

0 if f gðxÞ < Vg � eg ;

8><
>: ð1Þ

where x is the vector of decision variables.
On the contrary, if the goal has an upper limit (Vg + eg), then the

membership function lg(x) in different intervals is Eq. (2)

lgðxÞ ¼
1 if f gðxÞ 6 Vg ;

½ðVg þ egÞ � fgðxÞ�=eg if Vg < fgðxÞ 6 Vg þ eg ;

0 if f gðxÞ > Vg þ eg ;

8><
>: ð2Þ

The FGP model of the specified problem can be stated as
follows.

3.4. The model

Minimize

P1ðd�1 þ d�2 Þ þ P2ðd�3 þ d�4 Þ þ P3ðd�5 þ d�6 Þ: ð3Þ

In this model, minimizations of under achievements (d�g ,
g = 1, 2, . . . , 6) of the targeted goals are the objectives that have
several priorities (P1, P2, P3). The higher priority objectives, such
as P1, must be first satisfied and then the lower priority objectives.
The priority and the weight of d�g are judged by the decision maker.

Subject to
[Activity-based costs (including logistics and quality costs)]

ðV1 þ e1Þ �
X3

i¼1

XM

m¼1

cmbimxi þ
X3

i¼1

X
j2UN;F

wjcijxi þ
X3

i¼1

X
j2BT;S

wjdijBij

 "

þ
X3

i¼1

X
j2PR

wjfij/i

!#,
e1 þ d�1 � dþ1 ¼ 1: ð4Þ

Eq. (4) controls the upper tolerance limit of budget. Each unit of
product i needs bim quantity of component m. cm is component
m’s unit cost. For the unit-level activities (UN), product i needs cij

quantity of cost driver (or activity) j. wj is the driver pool rate for
activity j. Similarly, product i respectively needs dij and fij quantity
of cost driver for batch-level activities (BT) and product-level activ-
ities (PR). Bij is the batch quantity for product i and batch-level
activity j. /i is a 0/1 variable that equals 1 if product i is produced
and 0 otherwise. Facility-level activities (F) can be treated as unit-
level activities, and supply chain-level activities (S) can be treated
as batch-level activities, because their cost drivers are in the form
of unit and batch respectively. V1 + e1 is the upper tolerance limit
of budget.

[Revenue]

X3

i¼1

pixi � ðV2 � e2Þ
" #,

e2 þ d�2 � dþ2 ¼ 1: ð5Þ

Eq. (5) controls the lower tolerance limit of revenue (V2 � e2). pi de-
notes the price for product i.

[Variance rate of response time]
X3

i¼1

X
e2UN

fiexi þ
X3

i¼1

X
e2BT

zieBie � ðV3 � e3Þ
" #,

e3 þ d�3 � dþ3 ¼ 1: ð6Þ

Eq. (6) controls the lower tolerance limit of response time perfor-
mance (V3 � e3). fie is the variance rate of response time of e unit-le-
vel activities for product i. Similarly, zie is the variance rate of
response time of e batch-level activities for product i. The definition
of variance rate has been stated in Section 3.2.1.

[Variance rate of asset turnover time]

X3

i¼1

tixi � ðV4 � e4Þ
" #,

e4 þ d�4 � dþ4 ¼ 1: ð7Þ

Eq. (7) controls the lower tolerance limit of asset turnover time per-
formance (V4 � e4). ti is the variance rate of asset turnover time for
product i. The definition of variance rate has been stated in
Section 3.2.

[Risk analysis]

X3

i¼1

rixi þ d�5 � dþ5 ¼ MINR: ð8Þ

Eq. (8) set the minimum risk goal (MINR). ri is the risk weight for
product i after expert assessment.

[Five forces analysis]

X3

i¼1

qixi þ d�6 � dþ6 ¼ MAXF: ð9Þ

Eq. (9) set the maximum comparative advantage goal (MAXF). qi is
the five forces weight for product i after DEMATEL-ANP process.

[Common component quantity constraint]:

X2

i¼1

biaxi 6 MAXQ : ð10Þ

Eq. (10) is the common component quantity constraint (MAXQ). bia

is the usage of ‘a’ common component for one unit of product i.
[Supply chain management time]

X3

i¼1

X
b2S

dibBib 6 MAXS: ð11Þ

Eq. (11) is the supply chain management time constraint (MAXS). dib

is the usage of supply chain management time for one batch of
product i.

[VaR rate constraint]



Table 3
The DEMATEL total-relation matrix.

Customer Supplier New entrant Substitute Rivalry D

Customer 1.120 1.127 1.267a 1.313a 1.316a 6.144
Supplier 0.827 0.617 0.788 0.856 0.919 4.007
New entrant 1.142 0.925 0.901 1.121 1.074 5.163
Substitute 1.145 0.940 1.136 0.956 1.091 5.268
Rivalry 1.316a 1.081 1.202a 1.278a 1.066 5.944
R 5.551 4.690 5.294 5.524 5.467
D + R 11.695 8.697 10.457 10.793 11.411
D � R 0.593 �0.683 �0.132 �0.256 0.477

a The value is higher than the threshold value 1.200, which means that the column factor strongly affects the row factor.

Criteria (Five forces) 

Goal
Higher competitive advantage 
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X3

i¼1

mipixi 6 m
X3

i¼1

pixi: ð12Þ

Eq. (12) limits the maximum VaR value. mi is the VaR rate for one
dollar of product i revenue. m is the maximum VaR rate.

[Defect rate]

X3

i¼1

hixi 6 h
X3

i¼1

xi: ð13Þ

Eq. (13) limits the maximum defect rate. hi is the defect rate for
product i. h is the maximum defect rate.

[Late delivery rate]

X3

i¼1

kixi 6 k
X3

i¼1

xi: ð14Þ

Eq. (14) limits the maximum late delivery rate. ki is the late delivery
rate for product i. k is the maximum late delivery rate.

[Flexibility rate]

X3

i¼1

gixi P g
X3

i¼1

xi: ð15Þ
D R 
(Relation) 
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Fig. 3. The impact-digraph-map of DEMATEL total relation.
Eq. (15) limits the minimum flexibility rate. gi is the flexibility rate
for product i. g is the minimum flexibility rate

xi 6 hijBij 6 xi þ ðhij � 1Þ; qi/i 6 xi 6 Qi/i;

0 6 /i 6 1; 8i; i ¼ 1;2;3: ð16Þ

In Eq. (16), hij is the batch size of one batch for j activity on product
i. q and Q are respectively minimum and maximum capacities for
product i

d�g ; d
þ
g P 0 8g; g ¼ 1;2; . . . ;6;

fxi;Bij;/i;hg 2 positive integer:
Alternatives 

Substitute 

New entrant 

Rivalry 

Customer 
Supplier 

Diageo Flate Mosac 

Fig. 4. The ANP relationships for the three product supply chains.

Table 4
The pairwise comparison matrix with respect to customer force.

Customer New entrant Substitute Rivalry Weight

New entrant 1.000 0.500 0.333 0.163
Substitute 2.000 1.000 0.500 0.297
Rivalry 3.000 2.000 1.000 0.540
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4. Case study and discussion

Headquartered in east China, Company Z is a leading provider of
designing and manufacturing high-end mobile communication de-
vices for distributors in over 42 countries. The company also has
branch corporations in USA, UK, EU, Japan, and the emerging mar-
kets including Russia, India, and Brazil. In order to lower cost, Com-
pany Z builds manufacturing supply chains in mid-west China,
capable of producing over 2,000,000 cell phones every quarter. Be-
cause the production of key components substantially relies on
Taiwan’s suppliers, Company Z is often confronted by SC produc-
tion planning problems. The decision maker desires to know what
are the critical production constraints, the effects of relaxing the
constraints, and how to decide the production allocation for its
diversified product supply chains with possible revenue risks.

Based on the situation and decision model stated in Chapter 3,
Company Z is considering three cell phone products: Diageo, Flate,
and Mosac. Diageo and Flate have a common component. The first
step is to determine the DEMATEL-ANP weights of five forces and
risks for the three products. The second step is to substitute the rel-
evant data to the FGP model. At last, the final step is to perform the
sensitivity analysis.
Table 5
The ANP initial supermatrix (M) for competitive advantage (CPAG) alternatives.

Goal Five forces

CPAG Customer Supplier New entrant

CPAG 0.000 0.000 0.000 0.000
Customer 0.432 0.000 0.000 0.000
Supplier 0.241 0.000 0.000 0.000
New entrant 0.117 0.163 0.000 0.000
Substitute 0.121 0.297 0.000 0.000
Rivalry 0.089 0.540 0.000 0.000
Diageo 0.000 0.243 0.343 0.218
Flate 0.000 0.525 0.326 0.460
Mosac 0.000 0.232 0.331 0.322

Table 6
The ANP normalized supermatrix (Ms) for competitive advantage (CPAG) alternatives.

Goal Five forces

CPAG Customer Supplier New entrant

CPAG 0.000 0.000 0.000 0.000
Customer 0.432 0.000 0.000 0.000
Supplier 0.241 0.000 0.000 0.000
New entrant 0.117 0.082 0.000 0.000
Substitute 0.121 0.148 0.000 0.000
Rivalry 0.089 0.270 0.000 0.000
Diageo 0.000 0.122 0.343 0.218
Flate 0.000 0.263 0.326 0.460
Mosac 0.000 0.116 0.331 0.322

Table 7
The ANP limited supermatrix ðM9

s Þ for competitive advantage (CPAG) alternatives.

Goal Five forces

CPAG Customer Supplier New entrant

CPAG 0.000 0.000 0.000 0.000
Customer 0.000 0.000 0.000 0.000
Supplier 0.000 0.000 0.000 0.000
New entrant 0.000 0.000 0.000 0.000
Substitute 0.000 0.000 0.000 0.000
Rivalry 0.000 0.000 0.000 0.000
Diageo 0.291 0.266 0.343 0.218
Flate 0.445 0.500 0.326 0.460
Mosac 0.265 0.236 0.331 0.322
4.1. The determination of the DEMATEL-ANP weights

As for the five forces analysis, the DEMATEL initial direct-rela-
tion matrix which describes the influences of the column elements
on the row elements is shown in Table 1. Table 2 shows the DEM-
ATEL normalized direct-relation matrix. Table 3 is the DEMATEL to-
tal-relation matrix. If the value is higher than the threshold value
1.200, then the column factor is deemed strongly affecting the
row factor. Based on Table 3, Fig. 3 shows the impact-digraph-
map of DEMATEL total relation. We can see that ‘Supplier’ is an
independent criterion, while ‘New entrant’ and ‘Substitute’ are
pure influenced criteria, and ‘Rivalry’ and ‘Customer’ have influ-
ences on each other and ‘New entrant’ and ‘Substitute’.

Based on the DEMATEL analysis, Fig. 4 shows the ANP relation-
ships for the three product supply chains. The goal is to achieve
higher competitive advantage by using the five forces criteria. Ta-
ble 4 shows the pairwise comparison matrix with respect to cus-
tomer force. For instance, the decision-makers or experts will be
asked to determine the relative importance of ‘New entrant’ to
‘Substitute’ with respect to customer force. The weights of ‘New
entrant’, ‘Substitute’, and ‘Rivalry’ are (0.163, 0.297, 0.540), respec-
tively (see the bold value in Table 5).
Alternatives

Substitute Rivalry Diageo Flate Mosac

0.000 0.000 0.000 0.000 0.000
0.000 0.581 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.154 0.000 0.000 0.000
0.000 0.265 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.367 0.243 1.000 0.000 0.000
0.431 0.525 0.000 1.000 0.000
0.202 0.232 0.000 0.000 1.000

Alternatives

Substitute Rivalry Diageo Flate Mosac

0.000 0.000 0.000 0.000 0.000
0.000 0.291 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.077 0.000 0.000 0.000
0.000 0.133 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.367 0.122 1.000 0.000 0.000
0.431 0.263 0.000 1.000 0.000
0.202 0.116 0.000 0.000 1.000

Alternatives

Substitute Rivalry Diageo Flate Mosac

0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.367 0.265 1.000 0.000 0.000
0.431 0.501 0.000 1.000 0.000
0.202 0.236 0.000 0.000 1.000



Table 8
Basic data of the FGP model.

Product supply chain Diageo Flate Mosac Limits, ranges

Cost 181000000;
2000000

Direct material cost ($) (per unit) cb 42 49.5 42.3
Unit-level cost ($) (per unit) wc 37.3 43.2 44.5
Batch-level cost ($) (average per batch) wd

Pool rate ($) (per hour) w 145 137.4 142.6
Hours per batch d 5 6 5
Average batch size h 20 20 20

Product-level cost ($) (per product type) wf 38900 43500 50000
Facility-levela cost ($)(per unit) wc 11.5 12 10.3
Supply chain-levelb cost ($): wd

Management hours per batch dib 30 26 44 4300
Pool rate ($) (per hour) w 80 75 82
Batch size (thousand units) h 10 10 10

Revenue 290000000;
2000000

Existing price ($) p 210 225 235
Common component usage (per unit) bia 1 1 0 920000
Response time 90000; 2000

Variance rate of unit response (h) f 0.15 �0.12 0.21
Variance rate of batch response (h) z �0.06 0.15 0.13

Variance rate of asset turnover time (h) t 0.14 0.23 0.31 293000; 2000
Risk analysis weight r 0.351 0.327 0.322 500000
Five forces analysis weight q 0.291 0.445 0.265 500000
VaR rate m 0.15 0.21 0.30 0.25
Defect rate h 0.07 0.06 0.05 0.07
Late delivery rate k 0.05 0.05 0.06 0.06
Flexibility rate g 0.14 0.15 0.2 0.14
Maximum production (thousand units) Q 500 500 500
Minimum production (thousand units) q 10 10 10

a Cost driver is direct labor hour and similar to unit level.
b Cost driver is order batch.

Table 9
The FGP model of divergent supply chain planning.

Minimize
P1ðd�1 þ d�2 Þ þ P2ðd�3 þ d�4 Þ þ P3ðd�5 þ d�6 Þ Objective function

Subject to
ABCf181000000� ½ð42 � x1 þ 49:5 � x2 þ 42:3 � x3Þ þ ð37:3 � x1 þ 43:2 � x2 þ 44:5 � x3Þþ

ð145 � 5 � B1A þ 137:4 � 6 � B2A þ 142:6 � 5 � B3AÞ þ ð38900 � F1 þ 43500 � F2 þ 50000 � F3Þþ
ð11:5 � x1 þ 12 � x2 þ 10:3 � x3Þ þ ð30 � 80 � B1S þ 26 � 75 � B2S þ 44 � 82 � B3SÞ�=2000000þ d�1 � dþ1 ¼ 1

½ð210 � x1 þ 225 � x2 þ 235 � x3Þ � 290000000�=2000000þ d�2 � dþ2 ¼ 1 Revenue

½ð0:15 � x1 � 0:12 � x2 þ 0:21 � x3 � 0:06 � B1A þ 0:15 � B2A þ 0:13 � B3AÞ � 90000�=2000þ d�3 � dþ3 ¼ 1 Response time

½ð0:14 � x1 þ 0:23 � x2 þ 0:31 � x3Þ � 293000�=2000þ d�4 � dþ4 ¼ 1 Asset turnover time

ð0:351 � x1 þ 0:327 � x2 þ 0:322 � x3Þ þ d�5 � dþ5 ¼ 500000 Risk analysis

ð0:291 � x1 þ 0:445 � x2 þ 0:265 � x3Þ þ d�6 � dþ6 ¼ 500000 Five forces analysis

x1 þ x2 6 920000 Common component
30 � B1S þ 26 � B2S þ 44 � B3S 6 4300 SC management time
0:15 � 210 � x1 þ 0:21 � 225 � x2 þ 0:30 � 235 � x3 6 0:25 � ð210 � xþ 1þ 225 � x2 þ 235 � x3Þ VaR rate
0:07 � x1 þ 0:06 � x2 þ 0:05 � x3 6 0:07 � ðx1 þ x2 þ x3Þ Defect rate
0:05 � x1 þ 0:05 � x2 þ 0:06 � x3 6 0:06 � ðx1 þ x2 þ x3Þ Late delivery rate
0:14 � x1 þ 0:15 � x2 þ 0:2 � x3 P 0:14 � ðx1 þ x2 þ x3Þ Flexibility rate
x1 6 20 � B1A 6 x1 þ 19; x2 6 20 � B2A 6 x2 þ 19; x3 6 20 � B3A 6 x3 þ 19; x1 6 10000 � B1S 6 x1 þ 9999;

x2 6 10000 � B2S 6 x2 þ 9999; x3 6 10000 � B3Sx3 þ 9999
Batch size

10000 � F1 6 x1 6 500000 � F1; 10000 � F2 6 x2 6 500000 � F2; 10000 � F3 6 x3 6 500000 � F3 Capacity
fx1; x2; x3;B1A;B2A;B3A;B1S;B2S;B3S 2 Positive integer
fF1; F2; F3 2 f0;1g
d�g ;d

þ
g P 0 for g ¼ 1;2; . . . ;7
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The ANP initial supermatrix (M) and its general submatrices for
competitive advantage (CPAG) alternatives are shown in Table 5.
All the weights satisfy the consistency condition. Table 6 shows
the ANP normalized supermatrix (Ms). After raising the power to
9, the normalized supermatrix converges (Table 7). We can see that
Flate has the highest weight (0.445) in competitive advantage, and
then Diageo (0.291), and Mosac (0.265) (see the bold value in
Table 7).

The process of the risk DEMATEL-ANP analysis is similar. Due to
space limitation, the risk analysis by using the criteria of ‘the
ability to take risk’, ‘uncertainty’, ‘complexity’, ‘price volatility’,
and ‘price vulnerability’ is not shown. After the risk DEMATEL-
ANP analysis, the product with the least risk is Diageo (0.351),
and then Flate (0.327), and Mosac (0.322).

4.2. The results of the FGP model

The basic data of the FGP model are listed in Table 8. The cost
driver of facility-level cost is direct labor hour and similar to unit
level, and the cost driver of supply chain-level cost is order batch.



Table 10
Results of the FGP model of divergent supply chain planning.

Product supply chain Total Diageo Flate Mosac

Production quantity(xi) (units) 1,310,000 420,000 490,000 400,000
Average batches (BiA) 21,000 24,500 20,000
SC management batches (BiS) 42 49 40
Product index (Fi) 1 1 1
Cost ($) 178,434,870 5,350,0700 7,163,9850 5,329,4320
Revenue ($) 292,450,000 88,200,000 110,250,000 94,000,000
Profit ($) 114,015,130 34,699,300 38,610,150 40,705,680
Gross profit rate 0.390 0.393 0.350 0.433
VaR ($) 64,582,500 13,230,000 23,152,500 28,200,000
The worst revenue ($) 227,867,500 74,970,000 87,097,500 65,800,000
The worst profit ($) 49,432,630 21,469,300 15,457,650 12,505,680
The worst gross profit rate 0.217 0.286 0.177 0.190
Common component usage (units) 910,000 420,000 490,000 0
SC management time (h) 4294 1260 1274 1760

Table 11
Sensitivity analysis of the FGP model.

Product supply chain Total Diageo Flate Mosac

Scenario Ia

Production quantity 1,310,000 420,000 490,000 400,000
Profit 114,015,130 34,699,300 38,610,150 40,705,680
Gross profit rate 0.390 0.393 0.350 0.433
VaR 64,582,500 13,230,000 23,152,500 28,200,000
The worst profit 49,432,630 21,469,300 15,457,650 12,505,680
The worst gross profit rate 0.217 0.286 0.177 0.190

Scenario IIb

Production quantity 1,310,000 420,000 490,000 400,000
Profit 114,015,130 34,699,300 38,610,150 40,705,680
Gross profit rate 0.390 0.393 0.350 0.433
VaR 64,582,500 13,230,000 23,152,500 28,200,000
The worst profit 49,432,630 21,469,300 15,457,650 12,505,680
The worst gross profit rate 0.217 0.286 0.177 0.190

Scenario IIIc

Production quantity 1,313,901 424,740 495,258 393,903
Profit 114,195,658.9 35,090,083 39,023,920.2 40,081,655.7
Gross profit rate 0.390 0.393 0.350 0.433
VaR 64,550,412 13,379,310 23,400,940.5 27,770,161.5
The worst profit 49,645,246.9 21,710,773 15,622,979.7 12,311,494.2
The worst gross profit rate 0.217 0.286 0.177 0.190

Scenario IVd

Production quantity 1,314,114 428,238 494,660 391,216
Profit 114,164,255.8 35,380,169.6 38,976,712.8 39,807,373.4
Gross profit rate 0.390 0.393 0.350 0.433
VaR 64,442,910 13,489,497 23,372,685 27,580,728
The worst profit 49,721,345.8 21,890,672.6 15,604,027.8 12,226,645.4
The worst gross profit rate 0.217 0.286 0.177 0.190

a Original case.
b Only relaxing the common component usage (MAXQ = 923,000).
c Only relaxing the supply chain management time (MAXS = 4350).
d Both relaxing the supply chain management time (MAXS = 923,000) and the common component usage (MAXQ = 4350).
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The calculation of activity costs is the same as Section 3.2.1. The
variance rate means the change rate of actual value relative to
standard value, so variance rate 0.15 means that the actual value
is 15% larger than the standard value. As for the weights of risk
analysis, larger value refers to less risk. The VaR rate refers to the
largest loss rate deviating from existing price.

The data in Table 8 are substituted in our FGP model, which is
shown in Table 9. The abbreviation BiA means average batch size,
BiS means SC order batch size, and Fi means /i in the equation
model.

Table 10 shows the results of the FGP model. Due to the produc-
tion constraints, all the three products can not produce to the larg-
est capacities. Flate is produced most, and then Diageo, and Mosac
is the least. We can see that Diageo has the most risk adjusted
profit (i.e. the worst profit), which is relative to Mosac that has
the most profit. This model can effectively avoid producing too
much Mosac that has the highest risk and lowest competitive
advantage.

4.3. The sensitivity analysis

Table 11 shows the sensitivity analysis of the FGP model, which
has four scenarios: the original case, only relaxing the common
component usage (MAXQ = 923,000), only relaxing the supply
chain management time (MAXS = 4350), and both relaxing the sup-
ply chain management time (MAXS = 923,000) and the common
component usage (MAXQ = 4350). The constraint of supply chain
management time is more important than the common component
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capacity constraint, because only when the supply chain manage-
ment time is first relaxed will the relaxing of common component
constraint generate effect, and raise the production levels of the
products of higher competitive advantage and lower risk (see the
bold value in Table 11). The sensitivity analysis implies that iden-
tifying and relaxing supply chain management time plays a critical
role in DSC planning.

5. Conclusion

In the increasingly risky global market, the integration of pre-
cise costing, constraint control, competitive advantage and risk
management is a critical problem for a divergent supply chain
(DSC). However, existing papers have not yet proposed a very suit-
able planning approach for this problem. This paper suggests that
this problem can be solved by applying an ABC system and a DEM-
ATEL-ANP-FGP model.

On the resource side, this research utilized the cost drivers at
each level (unit, batch, product, facility, supply chain) to measure
the activity amounts and costs, and built the constraints of total
budget goals, gross revenue goals, the performance of response
time and asset turnover time, SC management time, defect rate,
late delivery rate, flexibility rate, and capacity. For measuring the
competitive advantage and risk of the product supply chains, DEM-
ATEL is first used to determine the interdependence relationships
between each criterion, and then ANP determines the weights of
the alternatives, and value-at-risk determines the largest losses. Fi-
nally, the FGP model of multi-objective decision making finds the
optimal product mix, and the worst profit.

In the sensitivity analysis of our case study, the constraint of
supply chain management time is even more crucial than the com-
mon component capacity constraint, because only when the sup-
ply chain management time is first relaxed will the relaxing of
common component constraint come into effect, and increase the
production levels of the products of higher competitive advantage
and lower risk; thus in this case, identifying and relaxing supply
chain management time plays a critical role in DSC planning.

In practice, this paper suggests that in the highly risky global
market, the cost drivers and cost information of ABC can be used
in DSC planning to identify the costs and constraints of the supply
chain. Then by combining the evaluations of competitive advan-
tage and risk with a DEMATEL-ANP-FGP model, a company can
meet its budget and revenue goals, and achieve optimal planning
for higher competitive advantage and lower risk.

The contribution of this research is developing a sound model of
ABC and DEMATEL-ANP-FGP for DSC forecasting and planning. In
practice, the proposed model can help DSC managers in making
better decisions for lower revenue risk and higher competitive
advantage.
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