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a b s t r a c t

Narasimhan incorporated fuzzy set theory within goal formulation in 1980. Since then,
much research has been performed in this field, and various models for solving fuzzy goal
programming have been proposed. One of the well-known models was proposed by Tiwari
et al. in 1987 [19], where an additive model was proposed. This paper is an extension to the
Tiwari et al. model that deals with the sum of weighted negative deviations between the
desirable achievement degree and the common target. Here, properties of the model are
proposed. A numerical example is also given to illustrate the approach.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Goal programming (GP) [15,17,18] is useful for decision makers to consider simultaneously several objectives in finding a
set of acceptable solutions. However, determining precisely the goal value of each objective is difficult for decision makers as
it is possible that only partial information can be obtained [23]. To incorporate uncertainty and imprecision into the formu-
lation, some approaches have been used to reformulate the GP models, such as using a probability distribution, a penalty
function and various types of thresholds [1,6,10,14].

To specify imprecise aspiration levels of the goals in a fuzzy environment, fuzzy set theory [22] has been introduced in the
field.

Narasimhan [13] had initially proposed fuzzy goal programming (FGP) by using membership functions. His work is in-
spired by the fuzzy programming approach introduced by Zimmermann [24]. Some researchers have provided further inves-
tigation of FGP with respect to problem formulation, the relative importance, and the fuzzy priority of fuzzy goals. Most
previous researchers, except for Tiwari et al. [19], have used the min operator to find the fuzzy decision that simultaneously
satisfies fuzzy goals and fuzzy constraints. Although this approach is computationally efficient, its application may produce
‘‘uniform’’ membership degrees for fuzzy goals when the achievement of some goals is stringently required. Tiwari et al. [19]
have used an additive model to manage FGP, which includes two cases: (1) the simple additive model, which takes the sum
of each goal’s achievement degree, and (2) the weighted additive model, which uses different weights for the various goals to
reflect the relative importance of the goals and then takes the sum of each goal’s achievement degree with the weights as the
coefficients. Chen and Tsai [2] proposed an extension of the additive model to consider goals of different importance where
the relative importance of the goals is reflected by the corresponding desirable achievement degrees. There are some other
fuzzy goal programming models [8,21]. Although those models constitute a flexible tool for solving fuzzy goal programming,
. All rights reserved.
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it is hard for decision makers to make a choice with this tool in a practical problem. Thus, it is important to propose a unified
fuzzy goal programming model comprising all of the previous instances as specific cases.

In this paper, a unified fuzzy goal programming model is proposed based on a parametric approach. The new model is an
extension of the additive model, which incorporates the different importance of goals and common targets for the desirable
achievement degrees of fuzzy goals. With the common target taken as a parameter, our new model is a parameter problem.
The FGP models mentioned above in the last paragraph are all special cases where our new model can be employed. Some
properties of our new model are also proposed.

2. Related models

In conventional GP models, decision makers are required to specify a precise aspiration level for each of the objectives. In
general, especially in large scale problems, this can be quite a difficult task for decision makers. Applying fuzzy set theory to
GP has the advantage that decision makers are allowed to specify imprecise aspiration levels. Here, an objective with an
imprecise aspiration level can be treated as a fuzzy goal. In this paper, we will consider the following FGP problem, which
contains m fuzzy goals Gi(x):
GiðxÞJ gi ðor GiðxÞK giÞ i ¼ 1;2; . . . ;m

subject to Ax 6 b; x P 0
ð1Þ
where Gi(x) J ([)gi indicates the fuzzy goal approximately greater than or equal to (approximately less than or equal to)
the aspiration level gi.

Furthermore, we take the following assumption:

(A) Gi(x), i = 1, 2, . . ., m, are continuous functions;
(B) Let S = {xjAx 6 b,x P 0} be a non-empty compact set.

The fuzzy goals can be identified as fuzzy sets defined over a feasible set with membership functions. The linear mem-
bership function li for the ith fuzzy goal Gi(x) J gi can be expressed as
liðxÞ ¼

1; GiðxÞ P gi;

1� gi�GiðxÞ
DiL

; gi � DiL 6 GiðxÞ 6 gi;

0; GiðxÞ 6 gi � DiL

8>><
>>: ð2:aÞ
where DiL is the lower maximum admissible violation from the aspiration level gi.
In case of the fuzzy goal Gi(x) [ gi, the membership function is defined as
liðxÞ ¼

1; GiðxÞ 6 gi;

1� GiðxÞ�gi
DiR

; gi 6 GiðxÞ 6 gi þ DiR;

0; GiðxÞ P gi þ DiR

8>><
>>: ð2:bÞ
where DiR are chosen constants of the upper maximum admissible violations from the aspiration level gi. The constants DiL

and DiR are either subjectively chosen by decision makers [13] or are tolerances in a technical process [9].
Thus, the problem (1) can be transformed into the multi-objective model:
max fliðxÞ;l2ðxÞ; . . . ;lmðxÞg
s:t: x 2 S ¼ fxjAx 6 b; x P 0g

0 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m
ð3Þ
The first attempt for solving FGP problems was undertaken by Narasimhan [13]. Hannan [4,5] introduced conventional
deviation variables into the model so that only a conventional linear programming formulation is required. Yang et al.
[20] proposed the efficiency computation method and extended the well-known Zimmermann’s approach [24] to transform
the problem into a single objective linear programming model, as follows:
max k

s:t: x 2 S ¼ fxjAx 6 b; x P 0g

k 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m

k P 0

ð4Þ
The model above uses the min-operator for aggregating goals to determine the decision set and then to find the element with
the highest membership degree. Thus, problem (4) can be represented in
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max
x

min
16k6m

lkðxÞ

s:t: x 2 S ¼ fxjAx 6 b; x P 0g
0 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m

ð5Þ

i.e.,
max
x2XS

min
16k6m

lkðxÞ ð6Þ
where XS = S
T

{xj0 6 li(x) 6 1, i = 1, 2, . . ., m}. By assumption (B), we can know that the set XS is a compact set.
Instead, Tiwari et al. [19] proposed a simple additive model to formulate a FGP problem. The simple additive model of the

FGP problem (1) is formulated by adding the membership functions together as
max
Pm
k¼1

lkðxÞ

s:t: x 2 S ¼ fxjAx 6 b; x P 0g
0 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m
i.e.,
max
x2XS

Xm

k¼1

lkðxÞ ð7Þ
The problem in (7) is to be optimized by maximizing the sum of each goal’s achievement degree lk(x). The achievement
degrees of some goals will not decrease because of a specific goal that is difficult to achieve, while the achievement of all
goals will be lower if the min-operator is used for the same conditions [2] as in problem (6).

To reflect the relative importance of the goals, Tiwari et al. [19] further proposed a weighted additive model. Decision
makers assign different weights as coefficients of the individual terms in the simple additive fuzzy achievement function
to reflect their relative importance, i.e., the objective function is formulated by multiplying each membership of the fuzzy
goal with a suitable weight and then adding them together. This procedure leads us to the following formulation:
max
x2XS

Xm

k¼1

wklkðxÞ ð8Þ
where wk denotes the weight of the kth fuzzy goal and
Pm

k¼1wk ¼ 1;wk P 0; k ¼ 1;2; . . . ;m.
There are many methods to assess these weights. We may mention in this regard the eigenvector method of Satty [16],

a geometric averaging procedure for constructing super-transitive approximations to binary comparison matrices by
Narasimhan [12], the entropy method of Jaynes [7] and the weighted least squares method of Chu et al. [3]. These meth-
ods can be used to suitably specify the weights. Weights in the weighted additive model reveal the relative importance of
the fuzzy goals. Remark (i): It is relatively simple to recognize problem (7) as a special case of problem (8) with the
weights wk ¼ 1

m. Remark (ii): We may take the convex combination of problems (6) and (8) to balance the two different
aggregate operators
maxx2XS ð1� tÞ
Xm

k¼1

wklkðxÞ þ t min
16k6m

lkðxÞ
" #

ð9Þ
where t 2 [0,1] reflects the preference of decision makers. It is easy to observe that problem (9) has, as specific cases, (6) and
(8), when t is equal to 0 and 1, respectively. However, it is not an easy task to find real meaning for the parameter t to be
chosen in (9). Remark (iii): Model (8) may produce undesirable solutions when the weights are changed [2] (see the numer-
ical example below in subsection 3.3).

A new model is proposed by Chen and Tsai [2], which allows decision makers to determine explicitly a desirable achieve-
ment degree for each fuzzy goal as the importance of the fuzzy goal, i.e.,
max
Pm
k¼1

lkðxÞ

s:t: x 2 S ¼ fxjAx 6 b; x P 0g
0 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m
liðxÞ P zi; i ¼ 1;2; . . . ;m

ð10Þ
where zi denotes the desirable achievement degree specified by decision makers.
However, the determination of a desirable achievement degree for each fuzzy goal may be a difficult task for decision

makers.
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3. A new FGP model – a parametric approach

3.1. The new FGP model

In this subsection, a unified FGP model is proposed based on a parametric approach. Suppose we could give, for all of the
membership functions li(x), a common target li(x) P z, for all i = 1, 2, . . ., m. This construct is possible because all member-
ship functions are in the unit interval [0,1]. We then get the following goal programming formulation:
max
Pm
k¼1

wkminðlkðxÞ � z;0Þ

s:t: x 2 S ¼ fxjAx 6 b; x P 0g
0 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m

ð11Þ
In fact, if we take the sum of the weighted negative deviation between lk(x) and target z as the objective function, then (11)
can be rewritten as
max
x2XS

Xm

k¼1

wkfminðlkðxÞ; zÞ � zg ð12Þ
Thus, for each z, the problem
max
x2XS

Xm

k¼1

wkminðlkðxÞ; zÞ ð13Þ
has the same optimal solution as problem (11).
Remark (i): The target z 2 [0,1] may be specified by decision makers. Some earlier models [11,24] took the value of z = 1.

In real decision making, however, every decision maker may have a different choice. If we take z as a parameter, then (13)
becomes a parametric problem, which is our new FGP model.

Remark (ii): The weights wk, k = 1, 2, . . ., m, represent the relative importance of each fuzzy goal. Their values can be spec-
ified by decision makers or can be determined by other well-known methods [3,7,12,16]. In this paper, we assume that the
values are equivalent to the weights of (8).

Denoted by zmaxmax and zmaxmin, respectively the optimal value of the following problem
zmaxmax ¼ max
x2XS

max
16k6m

lkðxÞ

zmaxmin ¼ max
x2XS

min
16k6m

lkðxÞ
which, because of the compactness of XS and the continuity of the membership function lk(x), are finite and can be attained.

3.2. The properties of the new model

In this subsection, the relationships between our new model (13), in conjunction with the models in Section 2, are given.

Proposition 1. For any z P zmaxmax, (13) is equivalent to (8).
Proof. Because for z P zmaxmax, one has lk(x) 6 z, k = 1, 2, . . ., m. Therefore
Xm

k¼1

wkminðlkðxÞ; zÞ ¼
Xm

k¼1

wklkðxÞ
for each x 2 XS. h
Proposition 2. For z = zmaxmin, (13) is equivalent to (6).
Proof. Let xmaxmin be an optimal solution to (6) so that
lkðxmaxminÞ P zmaxmin ð14Þ
for each k = 1, 2, . . ., m.
Thus, for any x 2 XS, using (14) we have
Xm

k¼1

wkminðlkðxÞ; zmaxminÞ 6
Xm

k¼1

wkzmaxmin ¼
Xm

k¼1

wkminðlkðxmaxminÞ; zmaxminÞ
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Thus, xmaxmin is an optimal solution to (13) with parameter z = zmaxmin.
Conversely, let x⁄ be an optimal solution to (13) with z = zmaxmin. By the optimality of x⁄ and (14), we can get
Xm

k¼1

wkzmaxmin P
Xm

k¼1

wkminðlkðx�Þ; zmaxminÞ P
Xm

k¼1

wkminðlkðxmaxminÞ; zmaxminÞ ¼
Xm

k¼1

wkzmaxmin
Thus,
minðlkðx�Þ; zmaxminÞ P zmaxmin for each k ¼ 1;2; . . . ;m

min
1 6 k 6 m

lkðx�Þ P zmaxmin
Thus, x⁄ is also an optimal solution to problem (6).
By Propositions 1 and 2, we can determine that (8) and (6) are specific cases of (13). h
Proposition 3. Let x⁄ be an arbitrary optimal solution to (13) with the parameter z = z⁄, Then, any optimal solution for
max
Pm
k¼1

lkðxÞ

s:t: x 2 S ¼ fxjAx 6 b; x P 0g
0 6 liðxÞ 6 1; i ¼ 1;2; . . . ;m

liðxÞ P liðx�Þ; i ¼ 1;2; . . . ;m

ð15Þ
is optimal for (13) with z = z⁄.
Proof. Because the set XS is compact and lk(x) is a continuous function, there exists an optimal solution x⁄ for (13) with
arbitrary z = z⁄.

The feasible region F(x⁄) of problem (15) is a non-empty compact set. For any point x 2 F(x⁄), we have lk(x) P lk(x⁄).
wkminðlkðxÞ; z�Þ P wkminðlkðx�Þ; z�Þ
Thus,
Xm

k¼1

wkminðlkðxÞ; z�Þ P
Xm

k¼1

wkminðlkðx�Þ; z�Þ
Because x⁄ is an optimal solution of (13), x is also an optimal solution of (13) with z = z⁄. Thus, every feasible solution of
(15) is the optimal solution of (13). h
Proposition 4. Let x⁄ be an optimal solution to (8). Then x⁄ is an optimal solution to (13), with parameter z 6 min
16k6m

lkðx�Þ.

Proof. Because z 6 min
16k6m

lkðx�Þ, lk(x⁄) P z, for each k = 1, 2, . . ., m. We get
Xm

k¼1

wkminðlkðx�Þ; zÞ ¼
Xm

k¼1

wkz:
For (13),
max
x2XS

Xm

k¼1

wkminðlkðxÞ; zÞ 6 max
x2XS

Xm

k¼1

wklkðxÞ ¼
Xm

k¼1

wklkðx�Þ ¼ max
x2XS

Xm

k¼1

wkminðlkðx�Þ; zÞ
which implies that x⁄ is also an optimal solution to (13) with parameter z 6 min
16k6m

lkðx�Þ. h

Proposition 5. Let x⁄ be an optimal solution to (8) . Then x⁄ is an optimal solution to problem (13) with parameter
z P max

16k6m
lkðx�Þ.

Proof. Assume that x⁄ is not the optimal solution to problem (13) for any z P max
16k6m

lkðx�Þ; then, there exists x – x⁄ such
that
Xm

k¼1

wklkðxÞ P
Xm

k¼1

wkminðlkðxÞ; zÞ >
Xm

k¼1

wkminðlkðx�Þ; zÞ ¼
Xm

k¼1

wklkðx�Þ
which is a contradiction because x⁄ is the optimal solution to (8).
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Remark 1. By Propositions 1, 2 and 5, we can determine that the solution aset of (13) when z varies on the unit interval [0,1]
is the same as the solution set of (13) when z varies ½zmaxmin; max

16k6m
lkðx�Þ�. Furthermore, the relationship between (8) and

(13) has been shown in Propositions 1, 4 and 5
The following Propositions (6 and 7) provide properties of our model that concern changing the parameter z and

the weight vector. It is shown that our model still produces proper solutions when the weight vector is changed. h
Proposition 6. Let x⁄ be an optimal solution of (13) with parameter z = z1, and let x⁄ be an optimal solution of (13), with
parameter z = z2. If z1 < z2, then there at least exists j0 2 J = {jjlj(x⁄) < z2} such that lj0

ðx�Þ P lj0
ðx�Þ.
Proof. Assume that for all j 2 J = {jjlj(x⁄) < z2}, we have lj(x⁄) < lj(x⁄). Because x⁄ is feasible for (13) with parameter z = z2, we
get
Xm

k¼1

wkminðlkðx�Þ; z2Þ P
Xm

k¼1

wkminðlkðx�Þ; z2Þ

X
j2J

wjljðx�Þ þ
X
j2Jc

wjminðljðx�Þ; z2Þ >
Xm

k¼1

wkminðlkðx�Þ; z2Þ P
Xm

k¼1

wkminðlkðx�Þ; z2Þ ¼
X
j2J

wjljðx�Þ þ
X
j2Jc

wjz2
where Jc = {1, 2, . . ., m}nJ.
Then
X
j2Jc

wjminðljðx�Þ; z2Þ >
X
j2Jc

wjz2
which is a contradiction. h
Remark 2. By Proposition 6, we can know that the achievement degree of an ‘‘inferior’’ fuzzy goal will not decrease through
increasing the parameter value of z.
Proposition 7. Let W� ¼ ðw1;w2; . . . ;wmÞ; W� ¼ w01;w
0
2; . . . ;w0m

� �
be two different weight vectors, respectively, where

w0j1 ¼ wj1 � D; w0j2 ¼ wj2 þ D; 0 6 D; j1; j2 2 fjjj ¼ 1;2; . . . ;mg, and w0j ¼ wj for all j 2 {jjj = 1, 2, . . ., m}n{j1, j2}. Let x⁄, x⁄ be
the optimal solution to (13) with parameter z and weight vectors W⁄, W⁄, respectively.

(i) If lj1
ðx�Þ < lj2

ðx�Þ, then we have lj1
ðx�Þ 6 lj2

ðx�Þ.
(ii) If lj1

ðx�Þ P z > lj2
ðx�Þ, then we have lj1

ðx�Þ < lj1
ðx�Þ or lj2

ðx�Þ > lj2
ðx�Þ.

Proof. (i) There are three different cases:

(a) z 6 lj1
ðx�Þ < lj2

ðx�Þ
(b) lj1

ðx�Þ < lj2
ðx�Þ 6 z

(c) lj1
ðx�Þ < z < lj2

ðx�Þ

For case (a) z 6 lj1
ðx�Þ < lj2

ðx�Þ

Xm

j¼1

wjminðljðx�Þ; zÞ ¼
Xm

j¼1

w0jminðljðx�Þ; zÞ

Xm

j¼1

wjminðljðx�Þ; zÞ ¼
Xm

j¼1

w0jminðljðx�Þ; zÞ þ Dðminðlj1
ðx�Þ; zÞ �minðlj2

ðx�Þ; zÞÞ
Because x⁄,x⁄ is the optimal solution to (13) with weight vectors W⁄,W⁄ respectively, we have
Dðminðlj1
ðx�Þ; zÞ �minðlj2

ðx�Þ; zÞÞ < 0
Thus, lj1
ðx�Þ 6 lj2

ðx�Þ.
For cases (b) and (c), we can obtain the same result.
(ii) If lj1

ðx�Þ P z > lj2
ðx�Þ then



Table 1
The results of different models.

Membership function Model (6) Model (7) Model (8) Model (10) Model (13)

l1 0.8 0.981 1 0.991 0.9
l2 1 1 0.977 0.988 0.883
l3 0.741 0.605 0.636 0.621 0.9
l4 0.741 0.775 0.761 0.768 0.671
l5 0.974 0.965 0.939 0.952 0.834

Table 2
The res

Mem

l1

l2

l3

l4

l5

Table 3
The res

Mem

l1

l2

l3

l4

l5
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Xm

j¼1

wjminðljðx�Þ; zÞ ¼
Xm

j¼1

w0jminðljðx�Þ; zÞ þ Dðz� lj2
ðx�ÞÞ

Xm

j¼1

wjminðljðx�Þ; zÞ ¼
Xm

j¼1

w0jminðljðx�Þ; zÞ þ Dðminðlj1
ðx�Þ; zÞ �minðlj2

ðx�Þ; zÞÞ
Because x⁄,x⁄ is the optimal solution to (13) with weight vectors W⁄, W⁄, respectively, we have
z� lj2
ðx�Þ > minðlj1

ðx�Þ; zÞ �minðlj2
ðx�Þ; zÞ:
If lj1
ðx�Þ P z then we have
z� lj2
ðx�Þ > z�minðlj2

ðx�Þ; zÞ
Thus,
minðlj2
ðx�Þ; zÞ > lj2

ðx�Þ
lj2
ðx�Þ > lj2

ðx�Þ
If lj1
ðx�Þ < z then we have lj1

ðx�Þ < lj1
ðx�Þ. h

Remark 3. According to Proposition 7, the behavior of our model is not as good as model (10) when the weight vector is
changed. However, it is shown that a change in the achievement degree of the fuzzy goal occurs when the weight vector
is changed. This relationship will help decision makers make a proper choice for the weight vector. According to Propositions
6 and 7, if a decision maker wants to increase the achievement degree of a goal, then he can increase the value of z or the
corresponding weight of the fuzzy goal.
3.3. Numerical example

As an illustration, Tiwari et al.’s example [19] containing five fuzzy goals with four variables and four system constraints
is used here. The five fuzzy goals in the problem are described as
ults of model (13) for different values of z.

bership function z = 0.6 z = 0.741 z = 0.95 z = 1

0.8 0.8 0.95 1
1 1 0.839 0.977
0.741 0.741 0.95 0.636
0.741 0.741 0.647 0.761
0.974 0.974 0.78 0.939

ults of models (13) and (8) with the weight vectors W1 = (0.49,0.131,0.153,0.114, 0.112), W2 = (0.49, 0.131,0.05, 0.217, 0112).

bership function (13) z = 0.9 (13) z = 0.9 (8) (8)
Weight W1 Weight W2 Weight W1 Weight W2

0.9 0.98 1 1
0.883 1 0.977 0.977
0.9 0.605 0.636 0.636
0.671 0.775 0.761 0.761
0.834 0.967 0.939 0.939
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4x1 þ 2x2 þ 8x3 þ x4 K 35
4x1 þ 7x2 þ 6x3 þ 2x4 J 100
x1 � 6x2 þ 5x3 þ 10x4 J 120
5x1 þ 3x2 þ 2x4 J 70
4x1 þ 4x2 þ 4x3 K 40
subject to
7x1 þ 5x2 þ 3x3 þ 2x4 6 98
7x1 þ x2 þ 6x3 þ 6x4 6 117
x1 þ x2 þ 2x3 þ 6x4 6 130
9x1 þ x2 þ 6x4 6 105
xi P 0; i ¼ 1;2;3;4
The tolerance and relative weights of the five fuzzy goals are (55,40,70,30,10) and (0.49,0.131,0.153,0.114,0.112),
respectively. After formulating the fuzzy goals as membership functions by (2.a) and (2.b), we have the following results,
which are given in Table 1 using different models.

For model (10), we suppose that the desirable achievement degrees for the five fuzzy goals are (0.8,0.7,0.5,0.6,0.8),
respectively.

For model (13), we take the parameter z = 0.9. Thus, zmaxmax = 1, zmaxmin = 0.741.
If decision makers require or desire a very high achievement degrees (0.9,0.9,0.8,0.9,0.9) for each fuzzy goal in model

(10), then such a model results in ‘‘no feasible solution’’.
However, for our new model (13), there always exists a feasible solution for all of the parameter values z. Furthermore, we

can notice that the models (7), (8) and (10) give better achievement degrees for all of the goals compared to the proposed
model (13), except for the third goal. However, the order of the achievement degree of the fuzzy goals in model (13) is more
consistent with the order of weights.

Table 2 shows the results of model (13) for different values of z.
From Tables 1 and 2, we can determine that model (13) has the same solution as model (6) if z 6 zmaxmin = 0.741. Model

(13) has the same solution as model (8) if z = zmaxmax = 1.
From Table 2, we also can know that the achievement degrees of the first and third goals increase if z varies from 0.741 to

0.95.
Table 3 shows the results of models (13) and (8) when the weights are changed.
From Table 3, we can know that the achievement degree of the fourth fuzzy goal increases (or the achievement degree of

the third fuzzy goal decreases) if more emphasis is placed on the fourth fuzzy goal in model (13). However, the achievement
degree of the fourth fuzzy goal does not change, even if more emphasis is placed on the fourth goal in model (8).
4. Conclusions

In this paper, a unified fuzzy goal programming model in a parametric form is proposed. The models [2,19,24] are special
cases of the new model. Furthermore, our new model has several merits:

(i) Compared to the model proposed by Chen and Tsai [2], it is easy for decision makers to construct this model because
they are required only to specify the common target. Some guidelines on the choice of the comment target are given in
the Remarks of Propositions 5–7.

(ii) The model can still produce a ‘‘satisfying solution’’ when the weights are changed, i.e., according to Proposition 7,
when the importance of some fuzzy goal increases, the achievement degree of the fuzzy goal will increase (or the
achievement degree of other goals will decrease).
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