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a b s t r a c t

Interval-valued fuzzy sets involve more uncertainties than ordinary fuzzy sets and can be used to capture
imprecise or uncertain decision information in fields that require multiple-criteria decision analysis
(MCDA). This paper takes the simple additive weighting (SAW) method and the technique for order pref-
erence by similarity to an ideal solution (TOPSIS) as the main structure to deal with interval-valued fuzzy
evaluation information. Using an interval-valued fuzzy framework, this paper presents SAW-based and
TOPSIS-based MCDA methods and conducts a comparative study through computational experiments.
Comprehensive discussions have been made on the influence of score functions and weight constraints,
where the score function represents an aggregated effect of positive and negative evaluations in perfor-
mance ratings and the weight constraint consists of the unbiased condition, positivity bias, and negativity
bias. The correlations and contradiction rates obtained in the experiments suggest that evident similar-
ities exist between the interval-valued fuzzy SAW and TOPSIS rankings.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of interval-valued fuzzy sets (IVFSs) is defined by
an interval-valued membership function (Sambuc, 1975; Zadeh,
1975), and an element’s degree of membership in a set is charac-
terized as a closed subinterval of [0, 1]. Because it may be difficult
for decision-makers to exactly quantify their opinions of subjective
judgments as a number within the interval [0, 1], it is better to rep-
resent the degree of membership by an interval rather than a single
number. For this reason, IVFSs can be used to capture imprecise or
uncertain decision information and many useful methods have
been developed to enrich IVFS theory. Wang and Li (1998) defined
interval-valued fuzzy numbers and interval-distributed numbers
and provided a starting point for real-world applications. Deschrij-
ver (2007) introduced some arithmetic operators for IVFSs. Vlachos
and Sergiadis (2007) established a unified framework that includes
the concepts of subsets, entropy, and cardinality for IVFSs. Wu and
Mendel (2007) provided definitions of the centroid, cardinality,
fuzziness, variance, and skewness of interval type-2 fuzzy sets.
Zeng and Guo (2008) proposed a new axiomatic definition of the
IVFS inclusion measure and examined relationships among the
normalized distance, similarity measure, inclusion measure, and
entropy of IVFSs. Sun, Gong, and Chen (2008) defined an interval-
valued relation and built an interval-valued fuzzy information
ll rights reserved.
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system. Bustince, Barrenechea, Pagola, and Fernandez (2009)
presented a method for constructing IVFSs (or interval type-2 fuzzy
sets) from a matrix (or image) and analyzed the application of
IVFSs to edge detection in grayscale images. Bigand and Colot
(2010) proposed a new fuzzy image filter, controlled by IVFSs, to
remove noise from images. Yakhchali and Ghodsypour (2010) ad-
dressed the determination of possible values of the earliest and lat-
est starting times of an activity in an interval-valued network with
minimal time lag. Lu, Huang, and He (2010) developed an interval-
valued fuzzy linear-programming method based on infinite a-cuts,
and they applied this method to water resource management.

IVFSs involve more uncertainties than ordinary fuzzy sets. They
allow for additional degrees of freedom to represent the uncer-
tainty and fuzziness of the real world (Chen & Lee, 2010). Because
IVFS theory is valuable in modeling imprecision and due to its abil-
ity to easily reflect the ambiguous nature of subjective judgments,
IVFSs are suitable for capturing imprecise or uncertain information
in fields that require multiple-criteria decision analysis (MCDA).
Wei, Wang, and Lin (2011) introduced a correlation and correlation
coefficients for interval-valued intuitionistic fuzzy sets. They then
established an optimization model based on the negative ideal
solution and max-min operator to solve multiple-attribute
decision-making problems. Ye (2009) proposed a novel accuracy
function for interval-valued intuitionistic fuzzy sets and applied
weighted arithmetic average operator in MCDA. Yang, Lin, Yang,
Li, and Yu (2009) combined IVFSs and soft sets to obtain an inter-
val-valued fuzzy soft set. They defined the complement and the
‘‘and’’ and ‘‘or’’ operations, proved DeMorgan’s associative and
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distribution laws, and applied these to a decision-making problem.
Ashtiani, Haghighirad, Makui, and Montazer (2009) presented an
interval-valued fuzzy technique for order preference by similarity
to an ideal solution (TOPSIS) for solving MCDA problems. Wei
and Chen (2009) applied their proposed similarity measure be-
tween interval-valued fuzzy numbers to develop a new fuzzy risk
analysis algorithm. Chen and Chen (2009) presented a fuzzy risk
analysis method based on a similarity measure between interval-
valued fuzzy numbers and interval-valued fuzzy number arithme-
tic operators. Chen and Lee (2010) presented an interval type-2
fuzzy TOPSIS method to handle fuzzy multiple-attribute group
decision-making problems based on interval type-2 fuzzy sets. To
aggregate interval-valued intuitionistic fuzzy information, Xu
(2010) proposed correlated averaging and geometric operators
for interval-valued intuitionistic fuzzy processes. In the context
of interval-valued intuitionistic fuzzy sets, Li (2010a) constructed
a pair of nonlinear fractional programming models to calculate
the relative closeness coefficient intervals of alternatives to the
ideal solutions. In a similar manner, Li (2010b) developed
TOPSIS-based nonlinear-programming methodology.

As a whole, the above-mentioned studies have focused on the
extended simple additive weighting (SAW) or TOPSIS methods
underlying interval-valued fuzzy information. The SAW method
(Harsanyi, 1955) is a commonly known and very widely used
method for providing a comparative evaluation procedure in
MCDA. SAW uses all criterion values of an alternative and employs
the regular arithmetical operations of multiplication and addition.
Further, it is also necessary to determine a reasonable basis on
which to form the weights reflecting the importance of each crite-
rion. Einhorn and McCoach (1977) investigated the properties of
SAW, including conditionally monotonic with utility and risk neu-
trality of the decision behavior. On the other hand, TOPSIS, devel-
oped by Hwang and Yoon (1981), is a well-known MCDA
method. The basic concept of the TOPSIS method is that the chosen
alternative should have the shortest distance from the positive
ideal solution and the farthest distance from the negative ideal
solution. TOPSIS assumes that each criterion takes either monoton-
ically increasing or monotonically decreasing utility. Both SAW and
TOPSIS require the same input data and they can lead to a unique
choice by comparing overall evaluations in SAW or closeness coef-
ficients in TOPSIS.

In the decision context of IVFSs, substantial research took the
SAW method or TOPSIS technique as the main structure to deal
with multi-criteria evaluation information and to construct a prior-
ity ranking for a best alternative. The advantage of SAW is simple
and easy to use and understand, while TOPSIS considers positive
and negative ideal solutions as anchor points to reflect the contrast
of the currently achievable criterion performances. Using an inter-
val-valued fuzzy framework, the purpose of this study is to sepa-
rately establish two MCDA methods using SAW and TOPSIS and
then conduct a comparative study through computational experi-
ments. Additional discussions have been made on the influence
of score functions and weight constraints. First, a series of score
functions for interval-valued evaluations is proposed from various
perspectives to identify the mixed results of the outcome expecta-
tions. Based on the score functions, the degree of suitability to
which each alternative satisfies the decision-maker’s require-
ments, or instead, the relative degree of closeness of each alterna-
tive with respect to the positive ideal solution is defined. Because
the information available on the relative importance of the multi-
ple criteria for decision-making is often incomplete, this study
proposes several optimization models with suitability functions
or closeness coefficients for ill-known membership grades. To cope
with different weight constraints of criterion importance, an inte-
grated programming model is developed, utilizing both deviation
variables and weighted suitability functions (or closeness coeffi-
cients). Furthermore, objective information in the decision matrix
and subjective information of the criterion importance are com-
bined to construct procedural steps using the SAW and TOPSIS
methods for acquiring optimal decisions. Finally, a large set of ran-
dom MCDA problems are generated, and computational studies are
undertaken to compare preference orders determined by interval-
valued fuzzy SAW and TOPSIS methods with several score func-
tions and different conditions for the criterion weights.

2. Decision environment and weight assessment

Definition 1. Let Int([0, 1]) stand for the set of all closed subin-
tervals of [0, 1]. Let X be an ordinary finite non-empty set. An IVFS
A in X is an expression given by:

A ¼ fhx;MAðxÞijx 2 Xg; ð1Þ

where the function MA: X ? Int([0, 1]) defines the degree of mem-
bership of an element x in A, such that x ? MAðxÞ ¼ ½M�

A ðxÞ;M
þ
A ðxÞ�:
Definition 2. For each IVFS A in X, the value of

WAðxÞ ¼ Mþ
A ðxÞ �M�

A ðxÞ ð2Þ

represents the width of the interval MA(x). WA(x) can be considered
as the degree of uncertainty (or indeterminacy) or the degree of
hesitancy associated with the membership of element x e X in IVFS
A. Let IVFS(X) denote the class of IVFSs in the universe X.
2.1. Decision matrix based on IVFSs

In the work presented here, evaluations of each alternative in an
MCDA problem with respect to each criterion of the fuzzy concept
‘‘excellence’’ are given using IVFSs. Suppose that there exists a non-
dominated set of alternatives A = {A1, A2, . . . , Am}. Each alternative
is assessed on n criteria, which are denoted by X = {x1, x2, . . ., xn}.Let
Mij: X ? Int([0, 1]) such that xj ? Mij ¼ ½M�

ij ;M
þ
ij �, where M�

ij and Mþ
ij

are the lower extreme and upper extreme, respectively, of the
membership degrees of the alternative Ai e A with respect to the
criterion xj e X for the fuzzy concept ‘‘excellence.’’ In addition, let
Xij ¼ fhxj; ½M�

ij ;M
þ
ij �ig. The degree of uncertainty in alternative Ai

in the set Xij is defined by Wij ¼ Mþ
ij �M�

ij . The interval-valued deci-
sion matrix D is defined in the following form:

D ¼

x1 x2 � � � xn

A1 ½M�
11;M

þ
11� ½M�

12;M
þ
12� � � � ½M

�
1n;M

þ
1n�

A2 ½M�
21;M

þ
21� ½M�

22;M
þ
22� � � � ½M

�
2n;M

þ
2n�

..

. ..
. ..

. . .
. ..

.

Am ½M�
m1;M

þ
m1� ½M

�
m2;M

þ
m2� � � � ½M

�
mn;M

þ
mn�

2
66666664

3
77777775
; ð3Þ

where the characteristics of the alternative Ai can be represented by
the IVFS as follows:

Ai ¼ fhx1; ½M�
i1;M

þ
i1�i; hx2; ½M�

i2;M
þ
i2�i; . . . ; hxn; ½M�

in;M
þ
in�ig

¼ fhxj; ½M�
ij ;M

þ
ij �ijxj 2 Xg: ð4Þ

In a similar manner, the decision-maker’s weight lies in the
closed interval ½wl

j; wu
j �, where 0 6 wl

j 6 wu
j 6 1 for each criterion

xj e X. Because there is no objection in the literature to considering
normalized weights, the criterion weights should be normalized to
sum to one in general. Therefore,

Pn
j¼1wl

j 6 1 and
Pn

j¼1wu
j P 1 are

required to determine the weights wj e [0, 1] (j = 1, 2, . . . , n) that
satisfy wl

j 6 wj 6 wu
j and

Pn
j¼1wj ¼ 1 .
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2.2. Goal programming model for assessing weights

Assume that a decision-maker provides his/her preferences on X
as a set of n interval values ½wl

1;w
u
1�; ½wl

2;w
u
2�; . . . ; ½wl

n;w
u
n�, where

0 6 wl
j 6 wu

j 6 1 for each criterion xj e X. The criterion weight, wj,
belongs to the interval ½wl

j; wu
j �, i.e., wl

j 6 wj 6 wu
j for j = 1, 2, . . . , n.

The necessary conditions for acquiring feasible weights arePn
j¼1wl

j 6 1 and
Pn

j¼1wu
j P 1 for j = 1, 2, . . . , n. Nevertheless, if a

decision-maker tends to give positive connotations to the impor-
tance of most criteria, this will lead to positivity bias and overesti-
mation of the criterion weights. On the other hand, negativity bias
will result in underestimated ratings of criterion importance.
Because the positivity or negativity bias leads to distributional
errors, an assessment method was developed to determine the
criterion weights.

It is possible that
Pn

j¼1wl
j > 1 (positivity bias) or

Pn
j¼1wu

j < 1
(negativity bias) in the decision-maker’s subjective judgments.
However, this condition is not permitted by the constraintPn

j¼1wj ¼ 1. If this is the case, it follows that there are no feasible
solutions for the criterion weights. To overcome this difficulty,
the condition of wl

j 6 wj 6 wu
j can be relaxed by introducing the

deviation variables d�j and dþj for j = 1, 2, . . . , n as follows:

wl
j � d�j 6 wj 6 wu

j þ dþj ; for j ¼ 1;2; . . . ; n; ð5Þ

where d�j and dþj are both non-negative real numbers. If both d�j and
dþj are equal to zero, then (5) reduces to wl

j 6 wj 6 wu
j .The smaller

the deviation variables d�j and dþj , the closer the criterion weights wj

to the interval value ½wl
j;w

u
j �. Furthermore, the fact that all of the

deviation variables turn out to be close to zero indicates that there
is no gross violation of the necessary conditions. Thus, the following
goal programming model was established:

min
Xn

j¼1

ðd�j þ dþj Þ
( )

s:t:

wj þ d�j P wl
j ðj ¼ 1;2; . . . ;nÞ;

wj � dþj 6 wu
j ðj ¼ 1;2; . . . ;nÞ;

d�j ; d
þ
j ;wj P 0 ðj ¼ 1;2; . . . ;nÞ;Pn

j¼1
wj ¼ 1

8>>>>>>><
>>>>>>>:

ð6Þ

The optimal deviation values d�j and dþj for each criterion can be
determined by solving the programming problem (6). If the sum
of all optimal deviation values is equal to zero, then the criterion
weights are consistent with the interval values; otherwise, the
weights are inconsistent with the interval values. The information
on the criterion weights is included in the range of wl

j 6 wj 6

wu
j ðj ¼ 1;2; . . . ; nÞ for the consistent case and in the range of

wl
j � d�j 6 wj 6 wu

j þ dþj ðj ¼ 1;2; . . . ;nÞ for the inconsistent case.

3. Score function of interval-valued evaluations

The main feature of IVFSs is that its membership function
assigns an interval to each element in a universal set. This interval
approximates the correct but not precisely known grades of mem-
bership by employing lower and upper approximations. The lower
approximations of the membership grades contained in the defini-
tion of the IVFSs are exact without any assumption on indetermi-
nacy; thus, they can represent positive outcome expectations of
performance ratings. On the other hand, the exact value of non-
membership grades equals one minus the upper approximation,
and this value represents negative outcome expectations of perfor-
mance ratings. Therefore, there are two evaluation dimensions in
the representation of an interval-valued decision environment:
one for a positive outcome expectation and another for a negative
outcome expectation. The bi-dimensional framework is appropri-
ate for separately evaluating the advantages and disadvantages,
or pros and cons, of the non-dominated alternatives. It can decom-
pose positive and negative comprehensive evaluations and further
aggregate these evaluations into a net result. However, the pres-
ence of both positive and negative evaluations might cause ambi-
guity and difficulty in decision-making. One solution is to map
the positive and negative evaluations onto a bi-dimensional scale
to acquire an overall result. This comprehensive final evaluation
can be viewed as the score function.

This study used the score function to represent an aggregated
effect of positive and negative evaluations in performance ratings
based on IVFS data. The evaluation value of alternative Ai with re-
spect to criterion xj was determined by the score function S(Xij),
which was earlier conceptualized in the cumulative prospect the-
ory (CPT) introduced by Tversky and Kahneman (1992) and was
named as net predisposition. CPT is an example of a decision-mak-
ing model that computes a net predisposition in a simple manner
(Grabisch, Greco, & Pirlot, 2008). More specifically, the net predis-
position is computed as a difference of positive and negative out-
comes. That is, the net predisposition is defined as the degree of
membership minus the degree of non-membership. In the bi-
dimensional framework of IVFSs, a CPT-type function was used
to identify the mixed result of positive and negative outcome
expectations for Xij e IVFS(X), which was denoted by SI(Xij).

Furthermore, other score functions for calculating the net pre-
disposition were considered by taking into account the degree of
uncertainty (i.e., the hesitancy degree) of IVFSs. By analogy to the
definitions proposed by De, Biswas, and Roy (2001) and Kharal
(2009), three score functions, denoted by SII(Xij), SIII(Xij), and SIV(Xij),
were also used to compute the net predisposition of Xij. The func-
tion SII(Xij) is defined as the degree of membership minus the prod-
uct of the non-membership and hesitancy degrees. SIII(Xij) is
similar, but subtracts the arithmetic mean of the non-membership
and hesitancy degrees. In contrast, SIV(Xij) is defined as the arith-
metic mean of the membership and non-membership degrees
minus the hesitancy degree.

The CPT model and Kharal’s (2009) approach are very simple
ways of computing the score function, but they do not exhibit stee-
per slopes for the negative outcome. There may be an asymmetry
in the effect of positive and negative information on overall evalu-
ations. As noted, Cacioppo, Gardner, and Berntson (1997) and
Grabisch et al. (2008) indicated that negative information has more
weight than positive information. Nevertheless, an individual’s
personal characteristics and own perception of self also influence
the resulting ratings of positive and negative information. For
example, persons who are promotion-focused are interested in
their growth and development, have more hopes and aspirations,
and favor the presence of positive outcomes (Chernev, 2004).
Following the discussion above, the relative weights or worth of
positive and negative parts were considered in computing the
score function. Let c 2 ½0;1� be a coefficient reflecting the
decision-maker’s valuation of the importance of positive outcomes
relative to that of negative outcomes. By analogy to the concepts of
the expected decision matrix (Xu, 2007) and the expected prefer-
ence relation (Xu, 2006), a parameterized score function of Xij

was defined to represent a mixed result of positive and negative
outcome expectations, denoted by SV(Xij).

The preceding score functions in the bi-dimensional framework
of interval-valued evaluations are presented in Definition 3.

Definition 3. Let Xij e IVFS(X) for each Ai 2 A and xj 2 X. The score
function of Xij is defined as follows:

ðiÞ SIðXijÞ ¼ M�
ij � ð1�Mþ

ij Þ ¼ M�
ij þMþ

ij � 1; ð7Þ
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ðiiÞ SIIðXijÞ ¼ M�
ij � ð1�Mþ

ij Þ �Wij ¼ M�
ij �Wij þMþ

ij �Wij; ð8Þ

ðiiiÞ SIIIðXijÞ ¼ M�
ij �

1�Mþ
ij þWij

2

 !
¼ 1

2
ð3 �M�

ij � 1Þ; ð9Þ

ðivÞ SIVðXijÞ ¼
M�

ij þ 1�Mþ
ij

2

 !
�Wij ¼

1
2
ð1� 3 �WijÞ; ð10Þ

ðvÞ SVðXijÞ ¼ c �M�
ij þ ð1� cÞ �Mþ

ij ; c 2 ½0;1�; ð11Þ
where SIðXijÞ; SIIðXijÞ; SVðXijÞ 2 ½�1;1�, SIIIðXijÞ 2 ½�0:5;1�, and
SIVðXijÞ 2 ½�1;0:5�.
4. MCDA methods based on IVFSs

In a bi-dimensional framework defined over IVFSs, the degree of
suitability to which a given alternative satisfies the decision-
maker’s requirements can be determined by aggregating the score
functions of interval-valued evaluations. Instead, we can apply
score functions to calculate the separation measures of each alter-
native from the positive and negative ideal solutions to determine
the closeness coefficient. By simultaneously considering the objec-
tives of maximal suitability (or maximal closeness coefficient) and
minimal deviation, the optimal weights for criteria were deter-
mined by solving an integrated programming model. Then the
optimal values of the suitability functions (or closeness coeffi-
cients) were utilized to rank all of the non-dominated alternatives.
Finally, we present the detailed steps for solving the multi-criteria
decision-making problem with SAW and TOPSIS methods.

4.1. Interval-valued fuzzy SAW method

Based on the SAW method, a weighted sum for each alternative
can be obtained simply by multiplying the score function for each
criterion by the importance weight assigned to the criterion and
then summing these products over all criteria. If one denotes the
weighted sum of the score functions as the suitability function, it
can be used to determine the degree to which an alternative satis-
fies the decision-maker’s requirements. Let Z(Ai) denote the suit-
ability function of alternative Ai and be defined as follows:

Definition 4. Let Xij e IVFS(X) for each Ai 2 A and xj 2 X. Let the
criterion weight wj 2 ½0;1� for each xj 2 X. The suitability function
of alternative Ai is defined as follows:
(i) ZIðAiÞ ¼
Pn

wj � SIðXijÞ ¼
Pn

wj � ðM�
ij þMþ

ij � 1Þ; ð12Þ

j¼1 j¼1Pn Pn � þ
(ii) ZIIðAiÞ ¼ wj � SIIðXijÞ ¼ wj � ðMij �Wij þMij �WijÞ; ð13Þ

j¼1 j¼1Pn 1 Pn �
(iii) ZIIIðAiÞ ¼ wj � SIIIðXijÞ ¼ 2 wj � ð3 �Mij � 1Þ; ð14Þ

j¼1 j¼1Pn 1 Pn
(iv) ZIVðAiÞ ¼ wj � SIVðXijÞ ¼ 2 wj � ð1� 3 �WijÞ; ð15Þ

j¼1 j¼1Xn
(v) ZVðAiÞ ¼ wj � SVðXijÞ

j¼1

¼
Xn

j¼1

ðc �wj �M�
ij þ ð1� cÞ �wj �Mþ

ij Þ; c 2 ½0;1�: ð16Þ
After comparing the suitability functions of all alternatives, the
alternative with the highest value is prescribed to the decision-
maker. However, the information on the multiple criteria
corresponding to decision importance may be incomplete or un-
known in real applications. Accordingly, an integrated program-
ming model was developed for multi-criteria decision-making in
the environment of IVFSs, with the criteria explicitly taken into
account.

The optimal value of the suitability function for determining the
degree to which the alternative Ai satisfies the decision-maker’s
requirements can be measured by an optimization model with
weighted score functions. Because there are m alternatives in the
set A, a total of m linear programming models must be solved to
provide m degrees of optimal suitability. Although the optimal
weight vector for each alternative can be computed, these optimal
weights may be different in general, and thus, the corresponding
optimal values of the suitability functions for all m alternatives
cannot be compared. In view of the fact that the decision-maker
cannot easily or evidently judge the preference relations among
all of the non-dominated alternatives, it is reasonable to assume
that all non-dominated alternatives are of equal importance.
Hence, by assigning these alternatives equal weights of 1/m, the
m linear programming models can be aggregated into one pro-
gramming model. In the following, a linear programming model
was constructed for each l e {I, II, III, IV, V}:

max
1
m

Xm

i¼1

ZlðAiÞ ¼
1
m

Xm

i¼1

Xn

j¼1

wj � SlðXijÞ
( )

s:t:
wl

j 6 wj 6 wu
j ðj ¼ 1;2; . . . ;nÞ;Pn

j¼1wj ¼ 1:

(
ð17Þ

In general, the optimal solutions of (6) and (17) are different.
Thus, a unique criterion weight vector cannot be derived to com-
pute the optimal suitability function of each alternative. To deter-
mine a consistent weight vector based on the models in (6) and
(17), the following integrated multi-objective programming model
was constructed for each l 2 fI; II; III; IV; Vg:

max
1
m

Xm

i¼1

ZlðAiÞ ¼
1
m

Xm

i¼1

Xn

j¼1

wj � SlðXijÞ
( )

min
Xn

j¼1

ðd�j þ dþj Þ
( )

s:t:

wj þ d�j P wl
j ðj ¼ 1;2; . . . ;nÞ;

wj � dþj 6 wu
j ðj ¼ 1;2; . . . ;nÞ;

d�j ;d
þ
j ;wj P 0 ðj ¼ 1;2; . . . ;nÞ;Pn

j¼1wj ¼ 1:

8>>>>><
>>>>>:

ð18Þ

Let the weighted suitability function be ZlðAiÞ=m ¼ dl
i for

i = 1, 2, . . . , m, where l e {I, II, III, IV, V}. In addition, minf
Pn

j¼1ðd
�
j þ

dþj Þg ¼maxf�
Pn

j¼1ðd
�
j þ dþj Þg. Following the linear equal-weighted

summation method, the model in (18) can be transformed into
the following single objective optimization model for each
l e {I, II, III, IV, V}:

max
Xm

i¼1

dl
i �
Xn

j¼1

ðd�j þ dþj Þ
( )

s:t:

1
m ZlðAiÞ ¼ dl

i ði ¼ 1;2; . . . ;mÞ;
wj þ d�j P wl

j ðj ¼ 1;2; . . . ;nÞ;
wj � dþj 6 wu

j ðj ¼ 1;2; . . . ;nÞ;
d�j ;d

þ
j ;wj P 0 ðj ¼ 1;2; . . . ;nÞ;Pn

j¼1wj ¼ 1:

8>>>>>>>><
>>>>>>>>:

ð19Þ

The solution of (19) yields the optimal values of the suitability
functions ZlðAiÞð¼ m � dl

iÞ (i = 1, 2, . . . , m), the optimal weight vector
w ¼ ðw1;w2; . . . ;wnÞ, and the optimal deviation values d�j and dþj



Fig. 1. The steps of the interval-valued fuzzy SAW and TOPSIS methods.
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(j = 1, 2, . . . , n). The ranking order of all alternatives is preceded by
the degrees of suitability for individual alternatives in order to
draw the conclusion of the best alternative. A higher value of
ZlðAiÞ indicates a better alternative Ai. Thus, the best alternative
Al 2 A can be generated such that:

Al ¼ fAi 2 Ajmax
i

ZlðAiÞg: ð20Þ

Moreover, the m alternatives can be ranked in decreasing order of
their ZlðAiÞ values for all Ai 2 A .

4.2. Interval-valued fuzzy TOPSIS method

TOPSIS, a compromising model developed by Hwang and Yoon
(1981), is a widely used MCDA method. In addition to the SAW
method, this study applied TOPSIS to develop another MCDA meth-
od based on IVFSs. Based on score functions, we convert the inter-
val-valued decision matrix D into the following form for each
l 2 fI; II; III; IV; Vg:

ð21Þ

Then, the weighted decision matrix with score functions is calcu-
lated as follows:

ð22Þ

Regarding the anchor points, the specification of ideal solutions
in this paper is predetermined. The positive ideal solution, denoted
as A�l , and the negative ideal solution, denoted as A�l , are defined as
follows:

A�l ¼
fhxj;1ijxj 2 Xg for l 2 fI; II; III;Vg;
fhxj;0:5ijxj 2 Xg for l ¼ IV;

�
ð23Þ

A�l ¼
fhxj;�1ijxj 2 Xg for l 2 fI; II; IV;Vg;
fhxj;�0:5ijxj 2 Xg for l ¼ III:

�
ð24Þ

The separation measures, E�l ðAiÞ and E�l ðAiÞ, of each alternative from
the positive ideal and negative ideal solutions, respectively, are de-
rived from:

E�l ðAiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1ð1�wj � SlðXijÞÞ2

q
for l 2 fI; II; III;Vg;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ð0:5�wj � SlðXijÞÞ2
q

for l ¼ IV

8><
>: ð25Þ

E�l ðAiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1ð�1�wj � SlðXijÞÞ2

q
for l 2 fI; II; IV;Vg;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ð�0:5�wj � SlðXijÞÞ2
q

for l ¼ III;

8><
>: ð26Þ

where i ¼ 1;2; . . . ;m.
The relative closeness of an alternative Ai with respect to the po-

sitive ideal solution A�l is defined as the following general formula
for each l e {I, II, III, IV, V}:

ClðAiÞ ¼
E�l ðAiÞ

E�l ðAiÞ þ E�l ðAiÞ
; for i ¼ 1;2; . . . ;m; ð27Þ
where ClðAiÞ is the closeness coefficient of Ai and 0 6 ClðAiÞ 6 1. If
the criterion weights could be exactly assessed, the preference or-
der of alternatives would be ranked according to the descending or-
der of ClðAiÞ. Moreover, the alternative with the highest ClðAiÞ value
will be the best choice.

The optimal value of the closeness coefficient for the alternative
Ai with respect to the positive and negative ideal solutions can be
measured by a fractional programming model with weighted score
functions. Because there are m alternatives in the set A, a total of m
fractional programming models have to be solved to provide m
optimal closeness coefficients. In a similar manner of the model with
SAW, we assume that all non-dominated alternatives are of equal
importance and then aggregate the m fractional programming
models into one programming model. For each l 2 fI; II; III; IV;Vg,
we establish the following fractional programming model:
max
1
m

Xm

i¼1

ClðAiÞ ¼
1
m

Xm

i¼1

E�l ðAiÞ
E�l ðAiÞ þ E�l ðAiÞ

( )

s:t:
wl

j 6 wj 6 wu
j ðj ¼ 1;2; . . . ;nÞ;Pn

j¼1wj ¼ 1:

( ð28Þ

In order to determine a consistent weight vector based on the
models in (6) and (28), the following integrated multi-objective
programming model is established for each l e {I, II, III, IV, V}:
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Fig. 2. Experimental results in the condition (i): average Spearman correlation coefficients for different net predispositions.



Fig. 3. Experimental results in the condition (ii): average Spearman correlation coefficients for different net predispositions.
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Fig. 4. Experimental results in the condition (iii): average Spearman correlation coefficients for different net predispositions.
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Table 1
Summarized results of average q-values from the computational experiments.

SI(Xij) SII(Xij) SIII (Xij) SIV (Xij) SV0(Xij) SV00(Xij) Total

(i)a Mean 0.9665 0.9631 0.9565 0.8886 0.9060 0.9378 0.9364
(STD)b (0.0105) (0.0116) (0.0094) (0.0500) (0.0085) (0.0092) (0.0165)

(ii) Mean 0.9459 0.9431 0.8750 0.8252 0.8464 0.9041 0.8899
(STD) (0.0150) (0.0155) (0.0330) (0.0599) (0.0142) (0.0124) (0.0250)

(iii) Mean 0.9437 0.9397 0.9485 0.8689 0.8533 0.9013 0.9092
(STD) (0.0167) (0.0177) (0.0093) (0.0582) (0.0117) (0.0146) (0.0214)

Total Mean 0.9521 0.9486 0.9267 0.8609 0.8686 0.9144 0.9119
(STD) (0.0141) (0.0149) (0.0173) (0.0560) (0.0114) (0.0120) (0.0210)

a (i)
P

wl
j < 1 and

P
wu

j > 1; (ii)
P

wl
j > 1 and

P
wu

j > 1; (iii)
P

wl
j < 1 and

P
wu

j < 1.
b Standard deviations are in parentheses.
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max
1
m

Xm

i¼1

ClðAiÞ ¼
1
m

Xm

i¼1

E�l ðAiÞ
E�l ðAiÞ þ E�l ðAiÞ

( )

min
Xn

j¼1

ðd�j þ dþj Þ
( )

s:t:

wj þ d�j P wl
j ðj ¼ 1;2; . . . ; nÞ;

wj � dþj 6 wu
j ðj ¼ 1;2; . . . ; nÞ;

d�j ;d
þ
j ;wj P 0 ðj ¼ 1;2; . . . ; nÞ;Pn

j¼1wj ¼ 1:

8>>>>><
>>>>>:

ð29Þ

Let the weighted closeness coefficient be ClðAiÞ=m ¼ d0li for
i = 1, 2, . . . , m, where l e {I, II, III, IV, V}. We construct the following
single objective optimization model:

max
Xm

i¼1

d0li �
Xn

j¼1

ðd�j þ dþj Þ
( )

s:t:

1
m ClðAiÞ ¼ d0li ði ¼ 1;2; . . . ;mÞ;
wj þ d�j P wl

j ðj ¼ 1;2; . . . ; nÞ;
wj � dþj 6 wu

j ðj ¼ 1;2; . . . ; nÞ;
d�j ;d

þ
j ;wj P 0 ðj ¼ 1;2; . . . ; nÞ;Pn

j¼1wj ¼ 1:

8>>>>>>>><
>>>>>>>>:

ð30Þ

By solving (30), we can obtain the optimal values of the close-
ness coefficients ClðAiÞð¼ m � d0li Þ (i = 1, 2, . . . , m), the optimal
weight vector, and the optimal deviation values. The ranking order
of all alternatives is preceded by the closeness coefficients for indi-
vidual alternatives. The best alternative A0l 2 A can be acquired
such that

A0l ¼ fAi 2 Ajmax
i

ClðAiÞg: ð31Þ
4.3. The procedural steps

As stated above, the proposed multiple-criteria decision-mak-
ing methods based on SAW and TOPSIS can be summarized as ser-
ies of successive steps, as shown in Fig. 1. The steps for the
proposed method will be developed in the following four major
stages: (1) rating stage, (2) computation stage, (3) optimization
stage, and (4) selection stage. Fig. 1 illustrates procedural steps
of the proposed interval-valued fuzzy SAW and TOPSIS methods.
The purpose of the rating stage is to construct an interval-valued
fuzzy decision environment comprising the decision matrix and
the possible extents of criterion weights. According to the decision
maker’s personal characteristics and own perception of self, select
an appropriate form of score functions in the computation stage
and derive score functions to aggregate positive and negative eval-
uations into a net result for the next stage. The optimization stage
is intended to acquire the optimal weight vector under the objec-
tive of maximal weighted suitability (or maximal closeness coeffi-
cient) and minimal deviation values. Finally, compute the optimal
value of suitability functions (or closeness coefficients) for each
alternative in the selection stage, and the alternatives are then
ranked by the decreasing order of optimal suitability values.
5. Comparative study using experimental analysis

5.1. Design of computational experiments

To compare the solution results yielded by the interval-valued
fuzzy SAW and TOPSIS methods for different score functions and
conditions of criterion importance, numerous random problems
of different sizes were generated and computed. Then a compre-
hensive study was conducted to compare the ranking orders of
the alternatives, including analysis of the average Spearman corre-
lation coefficients and the contradiction rate of the best alternative.

Random data were generated to form MCDA problems with all
possible combinations of 4, 6, 8, . . . , 22 alternatives and 4, 6, 8, . . . ,
22 criteria. Hence, 100 (=10 � 10) different instances were exam-
ined in this study. For each instance, 1000 different interval-valued
fuzzy decision matrices D were randomly produced under the
preliminary condition of IVFSs. Therefore, a total of 100,000
(=100 � 1000) sets of experimental cases were generated. In addi-
tion, simulation data for criterion importance were randomly gen-
erated for each experimental case according to three conditions: (i)Pn

j¼1wl
j 6 1 and

Pn
j¼1wu

j P 1 (unbiased condition), (ii)
Pn

j¼1wl
j > 1

and
Pn

j¼1wu
j > 1 (positivity bias), and (iii)

Pn
j¼1wl

j < 1 andPn
j¼1wu

j < 1 (negativity bias).
The computational experiments were conducted by following

the steps of the interval-valued fuzzy SAW and TOPSIS methods
in Fig. 1. For each instance, all possible conditions of criterion
importance, including (i), (ii), and (iii), and different types of score
functions were considered. Note that the parameter in SV(Xij) is
designated as c = 0.2 and c = 0.8 for the corresponding score func-
tions SV’(Xij) and SV’’(Xij), respectively, where S0VðXijÞ ¼ 0:2 �M�

ijþ
0:8 �Mþ

ij and S00VðXijÞ ¼ 0:8 �M�
ij þ 0:2 �Mþ

ij . Thus, six score functions,
consisting of SI(Xij), SII(Xij), SIII(Xij), SIV(Xij), SV0(Xij), and SV00(Xij), were
considered in the computational experiments. More specifically, a
comparative analysis of interval-valued fuzzy SAW and TOPSIS
rankings was performed 18,000 (=6 score functions � 3 impor-
tance conditions � 1000) times for each combination of m and n
values. In the following, we present the major computational
results and comparative analysis.

5.2. Experimental results

We first compare the average Spearman correlation coefficients
(average q-values). The average q-value is the mean of 1000



Fig. 5. Experimental results in the condition (i): contradiction rates (%) for different net predispositions.
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Fig. 6. Experimental results in the condition (ii): contradiction rates (%) for different net predispositions.
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Fig. 7. Experimental results in the condition (iii): contradiction rates (%) for different net predispositions.
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correlation coefficients for two rankings of alternatives derived
from the application of interval-valued fuzzy SAW and TOPSIS
methods in six score functions and three importance criterion con-
ditions. The results are presented in Figs. 2–4. Each combination of
alternatives and criteria was employed 1000 times with simulated
data; each of the subordinate figures in Figs. 2–4 was obtained
from 100,000 (10 alternatives � 10 criteria � 1000 times) different
sets of simulated data.

Figs. 2–4 present the comparative results for three conditions
of criterion importance (i), (ii), and (iii), respectively. The results
obtained using SI(Xij) and SII(Xij) show a similar trend and shape,
while other results have perturbation in some measure. In gen-
eral, the average value of q decreases as the number of criteria in-
creases but doesn’t obviously change with the number of
alternatives. However, the average q-value slight increases as
the number of alternatives increases in condition (i) and using
SIII(Xij) (Fig. 2(c)) and in condition (iii) and using SIII(Xij)
(Fig. 4(c)). Furthermore, the comparative results using SV’(Xij)
present significantly different patterns. In Figs. 2(e), 3(e), and
4(e), there is a slight increase as the number of alternatives or cri-
teria increases when m, n < 12; in contrast, there is a gradual drop
as the number of alternatives or criteria increases when m, n > 12.
Except for the application of SV’(Xij), the average value of q reaches
its maximum when the number of criteria is the largest on aver-
age. However, in Figs. 2(d), 3(d), and 4(d), it must be noted that
the highest point of average q-values when using SIV(Xij) occurs
at n = 6, not at n = 4. Among the six score function forms, SI(Xij)
yields the largest average q-values and the relatively lower stan-
dard deviation of Spearman correlation coefficients. In contrast,
the application of SIV(Xij) yields the lowest average q-values and
the highest standard deviation of correlations. In addition, the
condition (i) (i.e., unbiased condition) produces relatively larger
q-values than the other conditions, and the condition (ii) (i.e., pos-
itivity bias) produces the smallest values. Nevertheless, the aver-
age q-value almost exceeds 0.80 as a whole.

The summary comparison results of interval-valued fuzzy SAW
and TOPSIS rankings in the computational experiments are listed
in Table 1. As the figures in Table 1 indicated, the highest total
mean of the average value of q for all m � n combinations and
three importance conditions is 0.9521 for SI(Xij), followed by
0.9486 for SII(Xij), 0.9267 for SIII(Xij), 0.9144 for SV’’(Xij), 0.8686 for
SV’(Xij), and 0.8609 for SIV(Xij). In addition, the highest total mean
of average q-values for all m � n combinations and six score func-
tions is 0.9364 for the unbiased condition, then 0.9092 for the con-
dition of negativity bias and 0.8899 for the condition of positivity
bias. The total mean of average q-values for all experimental re-
sults is 0.9119 with the standard deviation of 0.0210. These results
indicate that the interval-valued fuzzy SAW and TOPSIS methods
produce very similar rankings of alternatives with consideration
of several score functions and various conditions of criterion
importance.
Table 2
Summarized results of contradiction rates (%) from the computational experiments.

SI(Xij) SII(Xij) SIII(Xij)

(i)a Mean 9.7270 10.9530 11.8190
(STD)b (3.2142) (3.9718) (3.3252)

(ii) Mean 16.9750 18.1280 25.5940
(STD) (5.5516) (5.9038) (8.8252)

(iii) Mean 14.4750 16.2140 11.2170
(STD) (4.6635) (5.6289) (2.9341)

Total Mean 13.7257 15.0983 16.2100
(STD) (4.4764) (5.1682) (5.0281)

a (i)
P

wl
j < 1 and

P
wu

j > 1; (ii)
P

wl
j > 1 and

P
wu

j > 1; (iii)
P

wl
j < 1 and

P
wu

j < 1
b Standard deviations are in parentheses.
One type of ranking inconsistency deserves special attention:
the contradiction rate of the best alternative. Because the
decision-maker is always concerned with the best alternative, this
study further observed the contradiction rate in the top rank of two
ranking results. If the first-place alternatives of two rankings are
different, then we count again. For example, if the ranking of a
set of six alternatives was A5 � A1 � A6 � A4 � A3 � A2, as yielded
from the interval-valued fuzzy SAW method, and A1 � A5 � A6 �
A4 � A3 � A2, as yielded from the interval-valued fuzzy TOPSIS
method, we denote this as a case of a ranking contradiction of
the best alternative. The contradiction rate is calculated as the ratio
of the accumulated count to the number of experimental cases,
1000, for each m� n combination. Figs. 5–7 show the contradiction
rates for the top-ranked alternative.

The subordinate figures in Figs. 5–7 appear as roughly consis-
tent shapes. The effects of the number of alternatives and the num-
ber of criteria are observable: the contradiction rates increase with
an increase in the number of alternatives or criteria. In the condi-
tion (i), the contradiction rates of the interval-valued fuzzy SAW
and TOPSIS rankings are very low when using SI(Xij), SII(Xij), and
SIII(Xij) (Figs. 5(a)–(c)), especially smaller than 10% at m = 4 or 6.
It implies that the probability that the most preferred alternatives
obtained from the interval-valued fuzzy SAW and TOPSIS methods
are contradictory was estimated to be below 10%. On the whole,
Figs. 5(a)–(c), 6(a)–(c), 7(a)–(c) show that the most of the contra-
diction rates are below 20%, which suggests that the top ranks ob-
tained from the two methods using SI(Xij), SII(Xij), and SIII(Xij) are
very much alike. Conversely, the contradiction rate is moderately
high if SIV(Xij) and SV’(Xij) are applied. Fig. 6(d) show that the ex-
treme contradiction rates greater than 60% occur at very high val-
ues (20 and 22) of m and n. As illustrated in the plots in Figs. 5–7,
the contradiction rates for the condition (i) are obviously lower
than for the other conditions, followed by the condition (iii). Thus,
the interval-valued fuzzy SAW and TOPSIS methods often yield the
same best alternative in the unbiased condition and negativity bias
condition. Among the six score functions, the application of SI(Xij)
produces the lowest contradiction rates with the lowest standard
deviations; conversely, the application of SIV(Xij) yields the largest
contradiction rates with highest standard deviations.

The average contradiction rates of interval-valued fuzzy SAW
and TOPSIS rankings are summarized in Table 2. The lowest total
mean of the contradiction rates for all m � n combinations and
three importance conditions is 13.7257% for SI(Xij), followed by
15.0983% for SII(Xij), 16.2100% for SIII(Xij), 23.3973% for SV’’(Xij),
30.7347% for SV’(Xij), and 30.7817% for SIV(Xij). Furthermore, the
lowest total mean of the contradiction rates for all m � n combina-
tions and six score functions is 16.4050% for the unbiased condi-
tion of criterion importance, then 21.1210% for the condition of
negativity bias and 27.4478% for the condition of positivity bias.
The total mean of average contradiction rates for all experimental
results is 21.6579% with the standard deviation of 7.1015%. These
SIV(Xij) SV’(Xij) SV’’(Xij) Total

26.0250 22.8660 17.0400 16.4050
(12.7709) (5.6752) (5.0328) (5.6650)
37.4370 38.2220 28.3310 27.4478

(15.7283) (8.6236) (7.5058) (8.6897)
28.8830 31.1160 24.8210 21.1210

(15.2205) (6.4906) (6.7617) (6.9499)
30.7817 30.7347 23.3973 21.6579

(14.5732) (6.9298) (6.4334) (7.1015)

.
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results suggest that the interval-valued fuzzy SAW and TOPSIS
methods likely produce the same top-ranked alternative for the
application of SI(Xij), SII(Xij), and SIII(Xij) and for the unbiased
condition of criterion importance. In contrast, the top ranks ob-
tained from the application of SIV(Xij) and SV’(Xij) are more or less
different with the probability of 30%.
6. Conclusions

This study took SAW and TOPSIS as the main structure to deal
with MCDA problems in the decision context of IVFSs. Using an
interval-valued fuzzy framework, a series of score functions for
interval-valued evaluations was proposed to determine the mixed
results of the outcome expectations. Based on the score functions,
several optimization models with various suitability functions or
closeness coefficients were established for incompletely-known
membership grades. Then an integrated programming model de-
signed to determine the optimal criterion weights was developed
by utilizing both deviation variables and weighted suitability func-
tions (or closeness coefficients). The SAW-based and TOPSIS-based
methods were developed to acquire optimal multiple-criteria deci-
sions. Furthermore, to clarify the relative differences in the ranking
orders obtained from all m � n combinations, computational
experiments were implemented that examined the relationship
between the results yielded from the interval-valued fuzzy SAW
and TOPSIS methods.

For further drawing a comprehensive comparison, the interval-
valued fuzzy SAW and TOPSIS solution results obtained by employ-
ing different score functions and different conditions of criterion
importance were examined in the computational experiments for
all m � n combinations. Although the criterion weights do not
necessarily present the same values between the SAW and TOPSIS
results, the ranking results of alternatives yielded by the two meth-
ods are similar. Except for the application of SIV(Xij) and SV0(Xij), the
solution results shows that interval-valued fuzzy SAW and TOPSIS
methods produce the almost same preference structures because
of the very similar ranking orders of the alternatives. Since the
decision maker is always concerned with finding the best alterna-
tive, the top rank in priority orders of alternatives was further ob-
served in the computational experiments. Regarding both the
interval-valued fuzzy SAW and TOPSIS results, they often yield
the same best alternative in most of the experimental cases, espe-
cially in the unbiased condition and negativity bias condition of
criterion importance. In summary, the correlations and contradic-
tion rates obtained suggest that evident similarities exist between
the interval-valued fuzzy SAW and TOPSIS rankings, especially for
the application of SI(Xij), SII(Xij), and SIII(Xij) and for the unbiased
condition of criterion importance.

The SAW method is probably the best known and widely-used
method for MCDA. Although the interval-valued fuzzy TOPSIS
method can add insight on the evaluating alternatives topic being
studied, the SAW-based approach is easy to be understood why the
method identifies the alternative priority. In addition, calculating
the SAW-based method involves less complicated procedures and
requires less effort to build preference priority of feasible alterna-
tives using this technique. The experience of experimental analysis
in this study reveals that the interval-valued fuzzy SAW method
yields extremely close results to much more complicated nonlinear
forms, integrated programming model by TOPSIS, while remaining
far easier to be used and be understood. Because the interval-
valued fuzzy SAW method has a simpler and faster computation
process than TOPSIS, we suggest that it may be more suitable for
applying SAW to develop MCDA methods in the context of IVFSs
with respect to ease of understanding method, ease of employing
method, and ease of applying method.
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