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TOPSIS is one of the well-known methods for multiple attribute decision making (MADM).
In this paper, we extend the TOPSIS method to solve multiple attribute group decision
making (MAGDM) problems in interval-valued intuitionistic fuzzy environment in which
all the preference information provided by the decision-makers is presented as interval-
valued intuitionistic fuzzy decision matrices where each of the elements is characterized
by interval-valued intuitionistic fuzzy number (IVIFNs), and the information about attri-
bute weights is partially known. First, we use the interval-valued intuitionistic fuzzy
hybrid geometric (IIFHG) operator to aggregate all individual interval-valued intuitionistic
fuzzy decision matrices provided by the decision-makers into the collective interval-valued
intuitionistic fuzzy decision matrix, and then we use the score function to calculate the
score of each attribute value and construct the score matrix of the collective interval-
valued intuitionistic fuzzy decision matrix. From the score matrix and the given attribute
weight information, we establish an optimization model to determine the weights of attri-
butes, and construct the weighted collective interval-valued intuitionistic fuzzy decision
matrix, and then determine the interval-valued intuitionistic positive-ideal solution and
interval-valued intuitionistic negative-ideal solution. Based on different distance defini-
tions, we calculate the relative closeness of each alternative to the interval-valued intui-
tionistic positive-ideal solution and rank the alternatives according to the relative
closeness to the interval-valued intuitionistic positive-ideal solution and select the most
desirable one(s). Finally, an example is used to illustrate the applicability of the proposed
approach.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

Decision making is the procedure to find the best alternative among a set of feasible alternatives. Multiple attribute deci-
sion making (MADM) problems (i.e., decision making problems considering several attributes) are widely spread in real life
decision situation. A MADM problem can be expressed in matrix format as follows:
2010 Published by Elsevier Inc. All rights reserved.
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w ¼ ðw1;w2; . . . ;wmÞT ;
where O1,O2, . . . ,On are possible alternatives among which decision-makers have to choose, u1,u2, . . . ,um are attributes with
which alternative performance is measured, rij is the rating of alternative Oj with respective to attribute ui, and wi is the
weight of attribute ui.

The technique for order preference by similarity to ideal solution (TOPSIS) proposed Hwang and Yoon [1] is one of well-
known methods for solving classical MADM problems. The underlying logic of TOPSIS method is to define the positive-ideal
solution (PIS) and the negative-ideal solution (NIS). The PIS is the solution that maximizes the benefit criteria and minimizes
the cost criteria, whereas the NIS is the solution that minimizes the benefit criteria and maximizes the cost criteria. The opti-
mal alternative is the one which the shortest distance from the positive solution and the farthest distance from the negative
solution. There exists a large amount of literature involving TOPSIS theory and applications. For example, Lai et al. [2] applied
the concept of TOPSIS on multiple objective decision making (MODM) problems. Abo-Sinha and Amer [3] extended TOPSIS
method for solving multi-objective large-scale nonlinear programming problems. Opricovic and Tzeng [4] conducted a com-
parative analysis of TOPSIS and VIKOR. The VIKOR (VlseKriterijuska Optimizacija I Komoromisno Resenje) method, devel-
oped by Opricovic [5], is a compromise ranking approach. It determines a compromise solution, providing a maximum
utility for the majority and a minimum regret for the opponent. There are necessary steps in utilizing TOPSIS involving
numerical measures of the relative importance of attributes and the performance of each alternatives with respect to these
attributes. However, exact numerical data are inadequate to model real-life situations since human judgements are often
vague under many conditions. Thus, many researchers [6–12] extended TOPSIS approach to fuzzy environment as a natural
generalization of TOPSIS models. For example, Jahanshaloo et al. [8] developed an algorithmic method to extend TOPSIS for
decision making problems with interval data. Yang and Hung [11] utilized TOPSIS for solving a plant layout design problem.
In particular, Wang and Lee [10] proposed two operator Up and Lo to find positive-ideal and negative-ideal solutions and
used these operators to solve fuzzy multiple-criteria group decision making problem. Chen and Tsao [7] extended the con-
cept of TOPSIS to develop a method for solving MADM problems with interval-valued fuzzy data and compared the results
using different distance measures, including Hamming distance, Euclidean distance and their normalized forms. Sun [12]
developed an evaluation model based on the fuzzy analytic hierarchy process (AHP) and fuzzy TOPSIS to help the industrial
practitioners for the performance evaluations in fuzzy environment. The AHP [13] is also powerful method to solve complex
decision problems. The AHP method is a multicriteria method of analysis based on an additive weighting process, in which
several relevant attributes are represented through their relative importance. AHP has been extensively applied by academ-
ics and professionals [12,14–20].

In many practical decision-making problems, such as the selection of a partner for an enterprise in the field of supply
chain management, military system efficiency evaluation and so on, decision-makers usually need to provide their prefer-
ences over alternatives. Consider that the socio-economic environment becomes more complex, the preference information
provided by decision-makers is usually imprecise, that is, there may be hesitation or uncertainty about preferences because a
decision should be made under time pressure and lack of knowledge or data, or the decision-makers have limited attention
and information processing capacities. In such cases, it is suitable and convenient to express the decision-makers’ prefer-
ences in interval-valued intuitionistic fuzzy sets (IVIFSs) [21,22]. The fundamental characteristic of the IVIFS is that the
values of its membership function and nonmembership function are intervals rather than exact numbers. Therefore, it is
necessary and interesting to pay attention to the group decision making problems with interval-valued intuitionistic
preference information. Xu [23] developed some geometric aggregation operators, such as the interval-valued intuitionistic
fuzzy geometric (IIFG) operator and interval-valued intuitionistic fuzzy weighted geometric (IIFWG) operator and applied
them to multiple attribute group decision making (MAGDM) with interval-valued intuitionistic fuzzy information. Xu and
Chen [24,25] and Wei and Wang [26], respectively, developed some geometric aggregation operators, such as the
interval-valued intuitionistic fuzzy ordered weighted geometric (IIFOWG) operator and interval-valued intuitionistic fuzzy
hybrid geometric (IIFHG) operator and applied them to MAGDM with interval-valued intuitionistic fuzzy information.
However, they used the IIFWG, IIFWOG and IIFHG operators in the situation where the information about attribute weights
is completely known. Based on the correlation coefficient [27,28] of IVIFSs, Park et al. [29] investigated the group decision
making problems in which the information about attribute weights is partially known.

In this paper, we extend the concept of TOPSIS to develop a method for solving MAGDM problems in which the preference
information provided by the decision-makers is presented as interval-valued intuitionistic fuzzy decision matrices where
each of the elements is characterized by interval-valued intuitionistic fuzzy number (IVIFN), and the information about
attribute weights is partially known. In Section 2, we briefly review the basic concepts and operations related to IVIFNs.
In Section 3, we present the considered problem and use the IIFHG operator to aggregate all individual interval-valued
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intuitionistic fuzzy decision matrices provided by the decision-makers into the collective interval-valued intuitionistic fuzzy
decision matrix, and then use the score function to calculate the score of each attribute value and construct the score matrix
of the collective interval-valued intuitionistic fuzzy decision matrix. From the score matrix and the given attribute weight
information, we establish an optimization model to determine the weights of attributes, and construct the weighted collec-
tive interval-valued intuitionistic fuzzy decision matrix, and then determine the interval-valued intuitionistic PIS and inter-
val-valued intuitionistic NIS. Based on different distance definitions, we calculate the relative closeness of each alternative to
the interval-valued intuitionistic PIS and rank the alternatives according to the relative closeness to the interval-valued
intuitionistic PIS and select the most desirable one(s). An example to illustrate the applicability of the proposed approach
is provided in Section 4 and, finally, the conclusions are discussed in Section 5.

2. Basic concept

Let X be a non-empty and finite set with Card (X) = n. Let D[0,1] be the set of all closed subintervals of the unit interval
[0,1]. An interval-valued intuitionistic fuzzy set (IVIFS) [21] A in X is an object having the form:
A ¼ hx;lAðxÞ; mAðxÞi : x 2 X
� �

; ð1Þ
where lA: X ? D[0,1], mA: X ? D[0,1] with the condition sup lA(x) + supmA(x) 6 1 for any x 2 X.
The intervals lA(x) and mA(x) denote, respectively, the degree of belongingness and the degree of non-belongingness of the

element x to A. Then for each x 2 X, lA(x) and mA(x) are closed intervals and their lower and upper end points are denoted by
lAL(x), lAU(x), mAL(x) and mAU(x), respectively, and thus we can replace Eq. (1) with
A ¼ hx; ½lALðxÞ;lAUðxÞ�; ½mALðxÞ; mAUðxÞ�i : x 2 X
� �

; ð2Þ
where 0 6 lAU(x) + mAU(x) 6 1 for any x 2 X.
For each IVIFS A in X, Park et al. [30] called
pAðxÞ ¼ 1� lAðxÞ � mAðxÞ ¼ ½1� lAUðxÞ � mAUðxÞ;1� lALðxÞ � mALðxÞ�; ð3Þ
an intuitionistic fuzzy interval of X in A.
For convenience, Xu [23] called ~a ¼ h½a; b�; ½c; d�i an interval-valued intuitionistic fuzzy number (IVIFN), where

[a,b] � [0,1], [c,d] � [0,1] and b + d 6 1.
Atanassov [22] and Atanassov and Gargov [21] introduced some basic operations on IVIFSs, which not only can ensure

that the operational results are IVIFSs but also are useful in the calculus of variables under interval-valued intuitionistic
fuzzy environment. Motivated by the operations in [21,22], Xu [23] and Xu and Chen [24] defined three operational laws
of IVIFNs, which are useful in the remainder of this paper, as follows:

Let ~a1 ¼ h½a1; b1�; ½c1; d1�i; ~a2 ¼ h½a2; b2�; ½c2; d2�i and ~a ¼ h½a; b�; ½c; d�i be three IVIFNs; then.

1) ~a1 � ~a2 ¼ h½a1a2; b1b2�; ½c1 þ c2 � c1c2; d1 þ d2 � d1d2�i;
2) ~ak ¼ h½ak; bk�; ½1� ð1� cÞk;1� ð1� dÞk�i; k > 0;
3) k~a ¼ h½1� ð1� aÞk;1� ð1� bÞk�; ½ck; dk�i; k > 0;

which can ensure the operational results are also IVIFNs. Moreover, Xu [23] defined a score function s to measure a IVIFN
~a as follows:
sð~aÞ ¼ 1
2
ða� c þ b� dÞ; ð4Þ
where sð~aÞ 2 ½�1;1�. The larger the value of sð~aÞ, the higher the IVIFN ~a. Especially, if sð~aÞ ¼ 1, then ~a ¼ h½1;1�; ½0;0�i, which is
the largest IVIFN; if sð~aÞ ¼ �1, then ~a ¼ h½0;0�; ½1;1�i, which is the smallest IVIFN.

Wei and Wang [26] defined an accuracy function h to evaluate the accuracy degree of a IVIFN ~a as follows:
hð~aÞ ¼ 1
2
ðaþ bþ c þ dÞ; ð5Þ
where hð~aÞ 2 ½0;1�. The larger the value of hð~aÞ, the higher the accuracy degree of the IVIFN ~a.
From Eq. (3), we define the hesitancy degree of the IVIFN ~a ¼ h½a; b�; ½c; d�i as the midpoint of intuitionistic fuzzy interval of

~a, i.e.,
pð~aÞ ¼ 1
2
ðð1� a� cÞ þ ð1� b� dÞÞ: ð6Þ
Then we get the relation between the hesitancy degree and the accuracy degree of the IVIFN ~a
pð~aÞ ¼ 1
2
ðð1� a� cÞ þ ð1� b� dÞÞ ¼ 1� hð~aÞ;
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i.e.,
pð~aÞ þ hð~aÞ ¼ 1: ð7Þ

From Eq. (7), we know that the higher the accuracy degree hð~aÞ, the lower the hesitancy degree pð~aÞ.

Based on the score function and the accuracy function, Xu [23] defined a method to compare two IVIFNs as follows:

Definition 1. Let ~a1 ¼ h½a1; b1�; ½c1; d1�i and ~a2 ¼ h½a2; b2�; ½c2; d2�i be two IVIFNs, sð~a1Þ ¼ 1
2 ða1 � c1 þ b1 � d1Þ and

sð~a2Þ ¼ 1
2 ða2 � c2 þ b2 � d2Þ be the score of ~a1 and ~a2, respectively, and hð~a1Þ ¼ 1

2 ða1 þ b1 þ c1 þ d1Þ and
hð~a2Þ ¼ 1

2 ða2 þ b2 þ c2 þ d2Þ be the accuracy degree of ~a1 and ~a2, respectively; then:
� if sð~a1Þ < sð~a2Þ, then ~a1 is smaller than ~a2, denoted by ~a1 < ~a2;
� if sð~a1Þ ¼ sð~a2Þ, then

(1) if hð~a1Þ ¼ hð~a2Þ, then ~a1 and ~a2 represent the same information, i.e., a1 = a2, b1 = b2, c1 = c2 and d1 = d2, denoted by
~a1 ¼ ~a2;

(2) if hð~a1Þ < hð~a2Þ, then ~a1 is smaller than ~a2, denoted by ~a1 < ~a2.
Theorem 1. Let ~a1 ¼ h½a1; b1�; ½c1; d1�i and ~a2 ¼ h½a2; b2�; ½c2; d2�i be two IVIFs; then we have:
a1 6 a2; b1 6 b2; c1 P c2 and d1 P d2 ) ~a1 6 ~a2:
Proof. Since sð~a1Þ ¼ 1
2 ða1 � c1 þ b1 � d1Þ; sð~a2Þ ¼ 1

2 ða2 � c2 þ b2 � d2Þ; a1 6 a2; b1 6 b2; c1 P c2 and d1 P d2, we have:
sð~a1Þ � sð~a2Þ ¼
1
2
ða1 � c1 þ b1 � d1Þ � ða2 � c2 þ b2 � d2Þ ¼

1
2
ða1 � a2Þ þ ðb1 � b2Þ þ ðc2 � c1Þ þ ðd2 � d1Þ:
If a1 = a2, b1 = b2, c1 = c2 and d1 = d2, then ~a1 ¼ ~a2; otherwise, we have sð~a1Þ � sð~a2Þ < 0, i.e., sð~a1Þ < sð~a2Þ. Thus from Definition
1, it follows that ~a1 < ~a2, which completes the proof of Theorem 1. h

Deschrijver and Kerre [31] defined a complete lattice as a partially ordered set such that every nonempty subset of it have
a supremum and an infimum, and defined a relation 6L� on L� ¼ f~a ¼ h½a; b�; ½c; d�i 2 D½0;1� 	 D½0;1� : bþ d 6 1g as follows:
for any ~a1 ¼ h½a1; b1�; ½c1; d1�i; ~a2 ¼ h½a2; b2�; ½c2; d2�i 2 L�,
~a16L�~a2 () a1 6 a2; b1 6 b2; c1 P c2 and d1 P d2 ð8Þ
and showed that ðL�;6L� Þ is a complete lattice. However, in some situations, Eq. (8) cannot be used to compare IVIFNs. For
example, let ~a1 ¼ h½0:2;0:4�; ½0:5;0:6�i and ~a2 ¼ h½0:2;0:3�; ½0:4;0:7�i. Then it is impossible to know which one is bigger by
using Eq. (8). But in this case, we use Definition 1 to compare them. In fact, since
sð~a1Þ ¼
1
2
ð0:2� 0:5þ 0:4� 0:6Þ ¼ �0:25; sð~a2Þ ¼

1
2
ð0:2� 0:4þ 0:3� 0:7Þ ¼ �0:30;
then, by Definition 1, we know that ~a1 > ~a2.

3. Extended TOPSIS method for group decision making problem with interval-valued intuitionistic fuzzy data

In this section, we propose the TOPSIS method to solve MAGDM problems in which all preference information provided
by decision-makers is expressed as interval-valued intuitionistic fuzzy decision matrices where each of the elements is char-
acterized by IVIFN, and the information about attribute weights is partially known.

For MAGDM problem, let O = {O1,O2, . . . ,On} be the set of n alternatives, D = {d1,d2, . . . ,dl} be the set of l decision-makers,
and k = (k1,k2, . . . ,kl)T be the weight vector of decision-makers, where kk P 0, k = 1,2, . . . , l, and

Pl
k¼1kk ¼ 1. Let

U = {u1,u2, . . .,um} be the set of m attributes. In general, the decision-makers need to determine the importance degrees of
a set U of m attributes. Thus we suppose that the decision-makers provide the attribute weight information may be pre-
sented in the following forms [32,33], for i – j:

1. A weak ranking: {wi P wj};
2. A strict ranking: {wi � wj P di(>0)};
3. A ranking with multiples: {wi P diwj}, 0 6 di 6 1;
4. An interval form: {di 6 wi 6 di + �i}, 0 6 di 6 di + �i 6 1;
5. A ranking of differences: {wi � wj P wk � wl}, for j – k – l.

For convenience, we denote by H the set of the known information about attribute weights provided by the decision-

makers. Let RðkÞ ¼ ~rðkÞij

� �
m	n

be an interval-valued intuitionistic fuzzy decision matrix, provided by decision-maker dk

(k = 1,2, . . . , l), as the following form:



O1 O2 � � � On

u1 ~rðkÞ11
~rðkÞ12

� � � ~rðkÞ1n

u2 ~rðkÞ21
~rðkÞ22

� � � ~rðkÞ2n

..

. ..
. ..

. ..
. ..

.

um ~rðkÞm1
~rðkÞm2

� � � ~rðkÞmn
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where ~rðkÞij ¼ aðkÞij ; b
ðkÞ
ij

h i
; cðkÞij ; d

ðkÞ
ij

h iD E
is an IVIFN representing the performance rating of the alternative Oj with respect to the

attribute ui 2 U, provided by the decision-maker dk 2 D (i.e., aðkÞij ; b
ðkÞ
ij

h i
indicates the degree that the alternative Oj 2 O satisfy

the attribute ui, expressed by the decision-maker dk, while cðkÞij ; d
ðkÞ
ij

h i
indicates the degree that the alternative Oj 2 O does not

satisfy the attribute ui, expressed by the decision-maker dk) and
aðkÞij ; b
ðkÞ
ij

h i
� ½0;1�; cðkÞij ;d

ðkÞ
ij

h i
� ½0;1�; bðkÞij þ dðkÞij 6 1; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n: ð9Þ
To extend TOPSIS method in the process of group decision making, we first need to fuse all individual decision opinion into
group opinion. To do this, we use the IIFHG operator [24,26] to aggregate all individual interval-valued intuitionistic fuzzy
decision matrices RðkÞ ¼ ~rðkÞij

� �
m	n
ðk ¼ 1;2; . . . ; lÞ into the collective interval-valued intuitionistic fuzzy decision matrix

R ¼ ð~rijÞm	n,
O1 O2 � � � On

u1 ~r11 ~r12 � � � ~r1n

u2 ~r21 ~r22 � � � ~r2n

..

. ..
. ..

. ..
. ..

.

um ~rm1 ~rm2 � � � ~rmn
where
~rij ¼ IIFHGa;k ~rð1Þij ;~r
ð2Þ
ij ; . . . ;~rðlÞij

� �
¼ _~rðrð1ÞÞij

� �a1
� _~rðrð2ÞÞij

� �a2
� � � � _~rðrðlÞÞij

� �al

¼
Yn

k¼1

_aðrðkÞÞij

� �ak
;
Yn

k¼1

_bðrðkÞÞij

� �ak

" #
; 1�

Yn

k¼1

1� _cðrðkÞÞij

� �ak
;1�

Yn

k¼1

1� _dðrðkÞÞij

� �ak

" #* +
; ð10Þ
where a = (a1,a2, . . . ,al)T is weight vector of IIFHG operator with ak > 0 (k = 1,2, . . . , l) and
Pl

k¼1ak ¼ 1, and _~rðrðkÞÞij ¼

_arððkÞÞ
ij ; _brððkÞÞ

ij

h i
; _crððkÞÞ

ij ; _drððkÞÞ
ij

h iD E
is the kth largest of the weighted IVIFNs _~rðkÞij

_~rðkÞij ¼ ~rðkÞij

� �lkk
; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n

� �
.

Here, we denote by ~rij ¼ ½aij; bij�; ½cij; dij�
� 	

; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n.
In the situations where the information about attribute weights is completely known, that is, the weight vector

w = (w1,w2, . . . ,wm)T of the attributes ui (i = 1,2, . . . ,m) can be completely determined in advance, then we can construct

the weighted collective interval-valued intuitionistic fuzzy decision matrix R� ¼ ~r�ij
� �

m	n
,

O1 O2 � � � On

u1 ~r�11 ~r�12 � � � ~r�1n

u2 ~r�21 ~r�22 � � � ~r�2n

..

. ..
. ..

. ..
. ..

.

um ~r�m1 ~r�m2 � � � ~r�mn
where ~r�ij ¼ wi~rij ¼ ½1� ð1� aijÞwi ;1� ð1� bijÞwi �; ½cwi
ij ; d

wi
ij �

D E
is the weighted IVIFN, i = 1,2, . . . ,m; j = 1,2, . . . ,n, and wi is

weight of the attribute ui such that wi > 0 and
Pm

i¼1wi ¼ 1. Now, we denote by ~r�ij ¼ ½a�ij; b
�
ij�; ½c�ij; d

�
ij�

D E
; i ¼ 1;2; . . . ;m;

j ¼ 1;2; . . . ;n.
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Let J1 be a collection of benefit attributes (i.e., the larger ui, the greater preference) and J2 be a collection of cost attributes
(i.e., the smaller ui, the greater preference). The interval-valued intuitionistic PIS, denoted by O*, and the interval-valued
intuitionistic NIS, denoted by O�, are defined as follows:
O� ¼ ui; ð max
j

~r�ijji 2 J1

� �
; min

j
~r�ijji 2 J2

� �
 ����� i ¼ 1;2; . . . ;m

 �T

¼ f~rþ1 ;~rþ2 ; . . . ;~rþmg
T
; ð11Þ

O� ¼ ui; min
j

~r�ijji 2 J1

� �
; max

j
~r�ijji 2 J2

� �
 ����� i ¼ 1;2; . . . ;m

 �T

¼ f~r�1 ;~r�2 ; . . . ;~r�mg
T
; ð12Þ
where ~rþi ¼ ½aþi ; b
þ
i �; ½cþi ; d

þ
i �

� 	
and ~r�i ¼ ½a�i ; b

�
i �; ½c�i ; d

�
i �

� 	
; i ¼ 1;2; . . . ;m.

Burillo and Bustince [34] researched entropy and distance for interval-valued fuzzy sets, Grzegorzewski [35] studied dis-
tance between interval-valued fuzzy sets based on the Hausdorff metric. Park et al. [30] proposed new distance measures
between interval-valued fuzzy sets and compare these measures with above-mentioned distance measures proposed by
Burillo and Bustince [34] and Grzegorzewski [35], respectively. Based on these, Park et al. [30] extend three methods for
measuring distances between interval-valued fuzzy sets to IVIFSs. The separation between alternatives can be measured
by Hamming distance or Euclidean distance. For measuring distances between IVIFNs, we adopt several definitions proposed
by Park et al. [30], including the generalizations of Hamming distance, Euclidean distance and their normalized counterparts.
The separation measures, Sj� and Sj� , of each alternative to the interval-valued intuitionistic PIS and interval-valued intuition-
istic NIS, respectively, are derived from:

� Separation measures based on the Hamming distance
(i) The extension of Burillo and Bustince’s method, d1:
Sd1
j� ¼

1
4

Xm

i¼1

ja�ij � aþi j þ jb
�
ij � bþi j þ jc�ij � cþi j þ jd

�
ij � dþi j

h i
; ð13Þ
Sd1
j� ¼

1
4

Xm

i¼1

ja�ij � a�i j þ jb
�
ij � b�i j þ jc�ij � c�i j þ jd

�
ij � d�i j

h i
: ð14Þ
(ii) The extension of modified Burillo and Bustince’s method, d2:
Sd2
j� ¼

1
4

Xm

i¼1

ja�ij � aþi j þ jb
�
ij � bþi j þ jc�ij � cþi j þ jd

�
ij � dþi j þ jja�ij � b�ijj � jaþi � bþi jj þ jjc�ij � d�ijj � jcþi � dþi jj

h i
; ð15Þ

Sd2
j� ¼

1
4

Xm

i¼1

ja�ij � a�i j þ jb
�
ij � b�i j þ jc�ij � c�i j þ jd

�
ij � d�i j þ jja�ij � b�ijj � ja�i � b�i jj þ jjc�ij � d�ijj � jc�i � d�i jj

h i
: ð16Þ
(iii) The extension of Grzegorzewski’s method, dH:
SdH
j� ¼

1
2

Xm

i¼1

maxðja�ij � aþi j; jb
�
ij � bþi jÞ þmaxðjc�ij � cþi j; jd

�
ij � dþi jÞ

h i
; ð17Þ

SdH
j� ¼

1
2

Xm

i¼1

maxðja�ij � a�i j; jb
�
ij � b�i jÞ þmaxðjc�ij � c�i j; jd

�
ij � d�i jÞ

h i
: ð18Þ
� Separation measures based on the normalized Hamming distance
(i) The extension of Burillo and Bustince’s method, l1:
Sl1
j� ¼

1
4n

Xm

i¼1

ja�ij � aþi j þ jb
�
ij � bþi j þ jc�ij � cþi j þ jd

�
ij � dþi j

h i
; ð19Þ

Sl1
j� ¼

1
4n

Xm

i¼1

ja�ij � a�i j þ jb
�
ij � b�i j þ jc�ij � c�i j þ jd

�
ij � d�i j

h i
: ð20Þ
(ii) The extension of modified Burillo and Bustince’s method, l2:
Sl2
j� ¼

1
4n

Xm

i¼1

ja�ij � aþi j þ jb
�
ij � bþi j þ jc�ij � cþi j þ jd

�
ij � dþi j þ jja�ij � b�ijj � jaþi � bþi jj þ jjc�ij � d�ijj � jcþi � dþi jj

h i
; ð21Þ

Sl2
j� ¼

1
4n

Xm

i¼1

ja�ij � a�i j þ jb
�
ij � b�i j þ jc�ij � c�i j þ jd

�
ij � d�i j þ jja�ij � b�ijj � ja�i � b�i jj þ jjc�ij � d�ijj � jc�i � d�i jj

h i
: ð22Þ
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(iii) The extension of Grzegorzewski’s method, lH:
SlH
j� ¼

1
2n

Xm

i¼1

maxðja�ij � aþi j; jb
�
ij � bþi jÞ þmaxðjc�ij � cþi j; jd

�
ij � dþi jÞ

h i
; ð23Þ
SlH
j� ¼

1
2n

Xm

i¼1

maxðja�ij � a�i j; jb
�
ij � b�i jÞ þmaxðjc�ij � c�i j; jd

�
ij � d�i jÞ

h i
: ð24Þ
� Separation measures based on the Euclidean distance
(i) The extension of Burillo and Bustince’s method, e1:
Se1
j� ¼

1
4

Xm

i¼1

ða�ij � aþi Þ
2 þ ðb�ij � bþi Þ

2 þ ðc�ij � cþi Þ
2 þ ðd�ij � dþi Þ

2
h i( )1

2

; ð25Þ
Se1
j� ¼

1
4

Xm

i¼1

ða�ij � a�i Þ
2 þ ðb�ij � b�i Þ

2 þ ðc�ij � c�i Þ
2 þ ðd�ij � d�i Þ

2
h i( )1

2

: ð26Þ
(ii) The extension of modified Burillo and Bustince’s method, e2:
Se2
j� ¼

1
4

Xm

i¼1

ða�ij � aþi Þ
2 þ ðb�ij � bþi Þ

2 þ ðc�ij � cþi Þ
2 þ ðd�ij � dþi Þ

2 þ ðja�ij � b�ijj � jaþi � bþi jÞ
2 þ ðjc�ij � d�ijj � jcþi � dþi jÞ

2
h i( )1

2

;

ð27Þ
Se2
j� ¼

1
4

Xm

i¼1

ða�ij � a�i Þ
2 þ ðb�ij � b�i Þ

2 þ ðc�ij � c�i Þ
2 þ ðd�ij � d�i Þ

2 þ ðja�ij � b�ijj � ja�i � b�i jÞ
2 þ ðjc�ij � d�ijj � jc�i � d�i jÞ

2
h i( )1

2

:

ð28Þ
(iii) The extension of Grzegorzewski’s method, eH:
SeH
j� ¼

1
2

Xm

i¼1

ðmaxðja�ij � aþi j; jb
�
ij � bþi jÞÞ

2 þ ðmaxðjc�ij � cþi j; jd
�
ij � dþi jÞÞ

2
h i( )1

2

; ð29Þ
SeH
j� ¼

1
2

Xm

i¼1

ðmaxðja�ij � a�i j; jb
�
ij � b�i jÞÞ

2 þ ðmaxðjc�ij � c�i j; jd
�
ij � d�i jÞÞ

2
h i( )1

2

: ð30Þ
� Separation measures based on the normalized Euclidean distance
(i) The extension of Burillo and Bustince’s method, q1:
Sq1
j� ¼

1
4n

Xm

i¼1

ða�ij � aþi Þ
2 þ ðb�ij � bþi Þ

2 þ ðc�ij � cþi Þ
2 þ ðd�ij � dþi Þ

2
h i( )1

2

; ð31Þ
Sq1
j� ¼

1
4n

Xm

i¼1

ða�ij � a�i Þ
2 þ ðb�ij � b�i Þ

2 þ ðc�ij � c�i Þ
2 þ ðd�ij � d�i Þ

2
h i( )1

2

: ð32Þ
(ii) The extension of modified Burillo and Bustince’s method, q2:
Sq2
j� ¼

1
4n

Xm

i¼1

ða�ij � aþi Þ
2 þ ðb�ij � bþi Þ

2 þ ðc�ij � cþi Þ
2 þ ðd�ij � dþi Þ

2 þ ðja�ij � b�ijj � jaþi � bþi jÞ
2 þ ðjc�ij � d�ijj � jcþi � dþi jÞ

2
h i( )1

2

;

ð33Þ
Sq2
j� ¼

1
4n

Xm

i¼1

ða�ij � a�i Þ
2 þ ðb�ij � b�i Þ

2 þ ðc�ij � c�i Þ
2 þ ðd�ij � d�i Þ

2 þ ðja�ij � b�ijj � ja�i � b�i jÞ
2 þ ðjc�ij � d�ijj � jc�i � d�i jÞ

2
h i( )1

2

:

ð34Þ
(iii) The extension of Grzegorzewski’s method, qH:
SqH
j� ¼

1
2n

Xm

i¼1

ðmaxðja�ij � aþi j; jb
�
ij � bþi jÞÞ

2 þ ðmaxðjc�ij � cþi j; jd
�
ij � dþi jÞÞ

2
h i( )1

2

; ð35Þ

SqH
j� ¼

1
2n

Xm

i¼1

ðmaxðja�ij � a�i j; jb
�
ij � b�i jÞÞ

2 þ ðmaxðjc�ij � c�i j; jd
�
ij � d�i jÞÞ

2
h i( )1

2

: ð36Þ
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The relative closeness of an alternative Oj with respective to interval-valued intuitionistic PIS O* is defined as the following:
Cj� ¼
Sj�

Sj� þ Sj�
; j ¼ 1;2; . . . ;n: ð37Þ
The bigger the closeness coefficient Cj� , the better the alternative Oj will be, as the alternative Oj is closer to the interval-val-
ued intuitionistic PIS O*. Therefore, the alternatives Oj (j = 1,2, . . . ,n) can be ranked according to the closeness coefficients so
that the best alternative can be selected.

3.1. A model for determining attribute weights

However, the information about attribute weights provided by the decision-makers is usually incomplete (see, [32,33]).
So an interesting and important issue is how to utilize the collective interval-valued intuitionistic fuzzy decision matrix and
the known weight information to find the most desirable alternative(s).

In the following, we present an approach to determining the weight of attributes.

Definition 6. Let R ¼ ð~rijÞm	n be the collective interval-valued intuitionistic fuzzy decision matrix. Then we call S = (sij)m	n

the score matrix of R ¼ ð~rijÞm	n, where
sij ¼ sð~rijÞ ¼
1
2
ðaij � cij þ bij � dijÞ; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n ð38Þ
and sð~rijÞ is called the score of ~rij.
Based on the score matrix, we present the overall score values of each alternatives Oj (j = 1,2, . . . ,n):
sjðwÞ ¼
Xm

i¼1

wisij; j ¼ 1;2; . . . ; n: ð39Þ
Obviously, the greater the value sj(w), the better the alternative Oj. When we only consider the alternative Oj, then a reason-
able vector of attribute weights w = (w1,w2, . . . ,wm)T should be determined. Thus, we establish the following optimization
model to maximize sj(w):
ðMÞ Maximize sjðwÞ ¼
Xm

i¼1

wisij

Subject to : w ¼ ðw1; . . . ;wmÞT 2 H;wi P 0; i ¼ 1; . . . ;m;
Xm

i¼1

wi ¼ 1:
By solving the model (M), we obtain the optimal solution wðjÞ ¼ wðjÞ1 ;w
ðjÞ
2 ; . . . ;wðjÞm

� �T
corresponding to the alternative Oj.

However, in the process of determining the weight vector w = (w1,w2, . . . ,wm)T, we need to consider all the alternatives Oj

(j = 1,2, . . . ,n) as a whole. Thus, we construct weight matrix W ¼ wðjÞi

� �
m	n

of the optimal solutions wðjÞ ¼ wðjÞ1 ;w
ðjÞ
2 ; . . . ;

�
wðjÞm ÞTðj ¼ 1;2; . . . ;nÞ as:
W ¼

wð1Þ1 wð2Þ1 � � � wðnÞ1

wð1Þ2 wð2Þ2 � � � wðnÞ2

..

. ..
. ..

. ..
.

wð1Þm wð2Þm � � � wðnÞm

0
BBBBB@

1
CCCCCA
and we calculate the normalized eigenvector x = (x1,x2, . . . ,xn)T of the matrix (STW)T(STW), and then we construct a com-
bined weight vector as follows:
w ¼Wx ¼

wð1Þ1 wð2Þ1 � � � wðnÞ1

wð1Þ2 wð2Þ2 � � � wðnÞ2

..

. ..
. ..

. ..
.

wð1Þm wð2Þm � � � wðnÞm

0
BBBBB@

1
CCCCCA

x1

x2

..

.

xn

0
BBBB@

1
CCCCA ¼ x1wð1Þ þx2wð2Þ þ � � � þxnwðnÞ ð40Þ
and thus we derive the weight vector w = (w1,w2, . . . ,wm)T of the attributes uk (k = 1,2, . . . ,m).

3.2. An approach to MAGDM with incomplete attribute weight information

Based on the analysis above, in the following we present an approach to multiple attribute interval-valued intuitionistic
fuzzy group decision making with incomplete attribute weight information:
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Step 1. Utilize the IIFHG operator to aggregate all individual interval-valued intuitionistic fuzzy decision matrices

RðkÞ ¼ ~rðkÞij

� �
m	n
ðk ¼ 1;2; . . . ; lÞ into a collective interval-valued intuitionistic fuzzy decision matrix R ¼ ð~rijÞm	n.

Step 2. Calculate the score matrix S = (sij)m	n of the collective interval-valued intuitionistic fuzzy decision matrix R.

Step 3. Utilize the model (M) to obtain the optimal weight vectors wðjÞ ¼ wðjÞ1 ;w
ðjÞ
2 ; . . . ;wðjÞm

� �T
ðj ¼ 1;2; . . . ;nÞ corresponding

to the alternatives Oj (j = 1,2, . . . ,n), and then construct the weight matrix W.
Step 4. Calculate the normalized eigenvector x = (x1,x2, . . . ,xn)T of the matrix (STW)T(STW).
Step 5. Utilize Eq. (40) to derive the weight vector w = (w1,w2, . . . ,wm)T.
Step 6. Calculate the weighted collective interval-valued intuitionistic fuzzy decision matrix R� ¼ ð~r�ijÞm	n.
Step 7. Utilize Eqs. (11) and (12) to determine the interval-valued intuitionistic PIS O* and interval-valued intuitionistic

NIS O�.
Step 8. Utilize Eqs. (13)–(36) to calculate the separation measures Sj� and Sj� of each alternative Oj (j = 1,2, . . . ,n) from

interval-valued intuitionistic PIS O* and interval-valued intuitionistic NIS O�, respectively.
Step 9. Utilize Eq. (37) to calculate the relative closeness Cj� of each alternative Oj (j = 1,2, . . . ,n) to the interval-valued

intuitionistic PIS O*.
Step 10. Rank the alternatives Oj (j = 1,2, . . . ,n), according to the relative closeness to the interval-valued intuitionistic PIS

and then select the most desirable one(s).

4. Illustrative example

In this section, we use a multiple attribute group decision making problem of determining what kind of air-conditioning
systems should be installed in a library (adapted from [36]) to illustrate the proposed approach.

A city is planning to build a municipal library. One of the problems facing the city development commissioner is to deter-
mine what kind of air-conditioning systems should be installed in the library. The contractor offers four feasible alternatives
Oj (j = 1,2,3,4), which might be adapted to the physical structure of the library. The offered air-conditioning system must
take a decision according to the following five attributes: (1) performance (u1), (2) maintainability (u2), (3) flexibility (u3),
(4) cost (u4), (5) safety (u5). Let J = {u1,u2,u3,u4,u5} be the set of five attributes, and assume that u1,u2,u3 and u5 are benefit
attributes and u4 is cost attribute. That is, J1 = {u1,u2,u3,u5} and J2 = {u4}. There are a committee of four experts, d1, d2, d3 and
d4, whose weight vector is k = (0.3,0.2,0.3,0.2)T. The experts dk (k = 1,2,3,4) represent, respectively, the characteristics of the
alternatives Oj (j = 1,2,3,4) by the IVIFNs rðkÞij ði ¼ 1;2;3;4;5; j ¼ 1;2;3;4Þ with respect to the attributes ui (i = 1,2,3,4,5),
listed in Tables 1–4 (i.e., interval-valued intuitionistic fuzzy decision matrices RðkÞ ¼ ðrðkÞij Þ5	4ðk ¼ 1;2;3;4Þ).

Assume that the information about attribute weights, given by decision-makers, is shown as follows, respectively:
d1 : w1 6 0:3; 0:2 6 w3 6 0:5;

d2 : 0:1 6 w2 6 0:2; w5 6 0:4;

d3 : w3 �w2 P w5 �w4; w4 P w1;

d4 : w3 �w1 6 0:1; 0:1 6 w4 6 0:3:
Then the set H of the known information about attribute weights provided by the decision-makers is
H ¼ fw1 6 0:3;0:2 6 w3 6 0:5;0:1 6 w2 6 0:2;w5 6 0:4;w3 �w2 P w5 �w4;w4 P w1;w3 �w1 6 0:1;0:1 6 w4 6 0:3g:
Step 1. Utilize the IIFHG operator (let a = (0.155,0.345,0.345,0.155)T be its weight vector derived by the normal distribu-
tion based method [37]) to aggregate the individual interval-valued intuitionistic fuzzy decision matrices
RðkÞ ¼ ðrðkÞij Þ5	4ðk ¼ 1;2;3;4Þ into the collective interval-valued intuitionistic fuzzy decision matrix R = (rij)5	4

(Table 5).
Step 2. Calculate the score matrix S = (sij)5	4 of the collective interval-valued intuitionistic fuzzy decision matrix R

(Table 6):
Step 3. Use the method (M) to obtain the optimal weight vectors wðjÞ ¼ wðjÞ1 ;w

ðjÞ
2 ;w

ðjÞ
3 ;w

ðjÞ
4 ;w

ðjÞ
5

� �T
ðj ¼ 1;2;3;4Þ correspond-

ing to the alternatives Oj (j = 1,2,3,4):
wð1Þ ¼ ð0:2667;0:1;0:3667;0:2667; 0ÞT ;

wð2Þ ¼ ð0:16;0:1; 0:26;0:16;0:32ÞT ;

wð3Þ ¼ ð0:1;0:2;0:2;0:25; 0:25ÞT ;

wð4Þ ¼ ð0:3;0:1;0:2;0:3;0:1ÞT



Table 2
Interval-valued intuitionistic fuzzy decision matrix R(2).

O1 O2 O3 O4

u1 h[0.4,0.5], [0.2,0.4]i h[0.3, 0.5], [0.4,0.5]i h[0.4,0.6], [0.3,0.4]i h[0.3,0.4], [0.4,0.6]i
u2 h[0.3,0.4], [0.4,0.6]i h[0.1, 0.3], [0.3,0.7]i h[0.6,0.8], [0.1,0.2]i h[0.1,0.2], [0.6,0.8]i
u3 h[0.6,0.7], [0.1,0.2]i h[0.3, 0.4], [0.4,0.5]i h[0.7,0.8], [0.1,0.2]i h[0.1,0.2], [0.7,0.8]i
u4 h[0.5,0.6], [0.1,0.3]i h[0.2, 0.3], [0.6,0.7]i h[0.4,0.6], [0.3,0.4]i h[0.3,0.4], [0.4,0.6]i
u5 h[0.1,0.3], [0.3,0.5]i h[0.6, 0.8], [0.1,0.2]i h[0.5,0.6], [0.2,0.4]i h[0.2,0.4], [0.5,0.6]i

Table 3
Interval-valued intuitionistic fuzzy decision matrix R(3).

O1 O2 O3 O4

u1 h[0.4,0.7], [0.1,0.2]i h[0.4, 0.5], [0.2,0.4]i h[0.2,0.4], [0.3,0.4]i h[0.3,0.4], [0.2,0.4]i
u2 h[0.3,0.5], [0.3,0.4]i h[0.2, 0.4], [0.4,0.5]i h[0.6,0.8], [0.1,0.2]i h[0.1,0.2], [0.6,0.8]i
u3 h[0.6,0.7], [0.1,0.2]i h[0.4, 0.5], [0.3,0.4]i h[0.5,0.7], [0.1,0.3]i h[0.1,0.3], [0.5,0.7]i
u4 h[0.5,0.6], [0.1,0.3]i h[0.1, 0.2], [0.7,0.8]i h[0.5,0.7], [0.2,0.3]i h[0.2,0.3], [0.5,0.7]i
u5 h[0.3,0.5], [0.4,0.5]i h[0.6, 0.7], [0.2,0.3]i h[0.6,0.8], [0.1,0.2]i h[0.1,0.2], [0.6,0.8]i

Table 4
Interval-valued intuitionistic fuzzy decision matrix R(4).

O1 O2 O3 O4

u1 h[0.6,0.7], [0.2,0.3]i h[0.4, 0.5], [0.4,0.5]i h[0.4,0.5], [0.3,0.4]i h[0.3,0.4], [0.4,0.5]i
u2 h[0.3,0.4], [0.3,0.4]i h[0.1, 0.2], [0.2,0.3]i h[0.6,0.7], [0.1,0.3]i h[0.1,0.3], [0.6,0.7]i
u3 h[0.7,0.8], [0.1,0.2]i h[0.3, 0.4], [0.5,0.6]i h[0.5,0.8], [0.1,0.2]i h[0.1,0.2], [0.5,0.8]i
u4 h[0.5,0.6], [0.1,0.3]i h[0.2, 0.3], [0.4,0.6]i h[0.4,0.5], [0.2,0.3]i h[0.2,0.3], [0.4,0.5]i
u5 h[0.1,0.2], [0.5,0.7]i h[0.6, 0.7], [0.1,0.2]i h[0.5,0.6], [0.3,0.4]i h[0.3,0.4], [0.5,0.6]i

Table 5
Collective interval-valued intuitionistic fuzzy decision matrix R.

O1 O2 O3 O4

u1 h[0.4385,0.6199], [0.1549,0.2848]i h[0.3502,0.4797], [0.3114,0.4681]i h[0.3516,0.4906], [0.2940,0.4214]i h[0.3000,0.4170], [0.3114,0.4887]i
u2 h[0.3000,0.4573], [0.3404,0.4710]i h[0.1138,0.3010], [0.2511,0.4773]i h[0.6395,0.7711], [0.0980,0.2263]i h[0.1000,0.2103], [0.6012,0.7678]i
u3 h[0.6116,0.7117], [0.1089,0.2083]i h[0.3379,0.4387], [0.3872,0.4887]i h[0.5213,0.7804], [0.0980,0.2083]i h[0.1000,0.2366], [0.5577,0.7569]i
u4 h[0.5000,0.6395], [0.0980,0.2567]i h[0.1758,0.3134], [0.5305,0.6496]i h[0.4387,0.6252], [0.2263,0.3262]i h[0.2103,0.3109], [0.4050,0.5613]i
u5 h[0.1323,0.3623], [0.3747,0.5482]i h[0.6395,0.7521], [0.1089,0.2083]i h[0.5452,0.6502], [0.1770,0.3005]i h[0.1849, 0.3121], [0.5031,0.6118]i

Table 6
Collective score matrix S.

O1 O2 O3 O4

u1 0.3093 0.0252 0.0634 �0.0415
u2 �0.0270 �0.1568 0.5431 �0.5294
u3 0.5030 �0.0496 0.4977 �0.4890
u4 0.3924 �0.3454 0.2557 �0.2225
u5 �0.2141 0.5372 0.3589 �0.3089

Table 1
Interval-valued intuitionistic fuzzy decision matrix R(1).

O1 O2 O3 O4

u1 h[0.5,0.6], [0.2,0.3]i h[0.3, 0.4], [0.4,0.6]i h[0.4,0.5], [0.3,0.5]i h[0.3,0.5], [0.4,0.5]i
u2 h[0.3,0.5], [0.4,0.5]i h[0.1, 0.3], [0.2,0.4]i h[0.7,0.8], [0.1,0.2]i h[0.1,0.2], [0.7,0.8]i
u3 h[0.6,0.7], [0.2,0.3]i h[0.3, 0.4], [0.4,0.5]i h[0.5,0.8], [0.1,0.2]i h[0.1,0.2], [0.5,0.8]i
u4 h[0.5,0.7], [0.1,0.2]i h[0.2, 0.4], [0.5,0.6]i h[0.4,0.6], [0.2,0.3]i h[0.2,0.3], [0.4,0.6]i
u5 h[0.1,0.4], [0.3,0.5]i h[0.7, 0.8], [0.1,0.2]i h[0.5,0.6], [0.2,0.3]i h[0.2,0.3], [0.5,0.6]i
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Table 7
Weighted collective interval-valued intuitionistic fuzzy decision matrix R*.

O1 O2 O3 O4

u1 h[0.1125,0.1814], [0.6798,0.7711]i h[0.0853,0.1264], [0.7855,0.8547]i h[0.0857,0.1303], [0.7762,0.8363]i h[0.0711,0.1056], [0.7855,0.8623]i
u2 h[0.0437,0.0737], [0.8738,0.9100]i h[0.0150,0.0438], [0.8411, 0.9116]i h[0.1199,0.1685], [0.7476,0.8303]i h[0.0131,0.0291], [0.9383,0.9675]i
u3 h[0.2183,0.2766], [0.5614,0.6646]i h[0.1018,0.1396], [0.7811,0.8299]i h[0.1746,0.3261], [0.5461,0.6646]i h[0.0271,0.0679], [0.8589,0.9300]i
u4 h[0.1560,0.2210], [0.5664,0.7169]i h[0.0462,0.0879], [0.8563,0.8998]i h[0.1318,0.2135], [0.6952,0.7602]i h[0.0561,0.0871], [0.8016,0.8682]i
u5 h[0.0228,0.0706], [0.8524,0.9068]i h[0.1530,0.2030], [0.6972, 0.7747]i h[0.1203,0.1571], [0.7545, 0.8223]i h[0.0327,0.0591], [0.8942,0.9232]i

Table 8
Separat

Sepa
O1

O2

O3

O4

Sepa
O1

O2

O3

O4

Sepa
O1

O2

O3

O4

Sepa
O1

O2

O3

O4
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and construct the weight matrix

W ¼

0:2667 0:16 0:1 0:3
0:1 0:1 0:2 0:1
0:3667 0:26 0:2 0:2
0:2667 0:16 0:25 0:3
0 0:32 0:25 0:1

0
BBBBBB@

1
CCCCCCA
;

then

ðST WÞTðST WÞ ¼

0:3455 0:2621 0:2835 0:2848
0:2621 0:2634 0:2683 0:2266
0:2835 0:2683 0:2808 0:2423
0:2848 0:2266 0:2423 0:2365

0
BBB@

1
CCCA:
Step 4. Calculate the normalized eigenvectors x of the matrix (STW)T(STW):
x ¼ ð0:2764;0:2390;0:2519;0:2326ÞT :
Step 5. Use Eq. (40) to derive the weight vector w:
w ¼Wx ¼

0:2667 0:16 0:1 0:3
0:1 0:1 0:2 0:1
0:3667 0:26 0:2 0:2
0:2667 0:16 0:25 0:3
0 0:32 0:25 0:1

0
BBBBBB@

1
CCCCCCA

0:2764
0:2390
0:2519
0:2326

0
BBB@

1
CCCA ¼ ð0:2069;0:1252;0:2604;0:2447;0:1627ÞT :
ion measures for the example.

Sd1
j� Sd1

j� Sd2
j� Sd2

j� SdH
j� SdH

j�

ration measures based on Hamming distance
0.4385 0.3877 0.5201 0.4300 0.4982 0.4251
0.3339 0.4655 0.4002 0.5395 0.4002 0.5395
0.2337 0.5657 0.2687 0.6713 0.2687 0.6713
0.6447 0.1551 0.7445 0.1846 0.7441 0.1846

Sl1
j� Sl1

j� Sl2
j� Sl2

j� SlH
j� SlH

j�

ration measures based on normalized Hamming distance
0.0877 0.0775 0.1040 0.0860 0.0996 0.0850
0.0668 0.0931 0.0800 0.1079 0.0800 0.1079
0.0467 0.1131 0.0537 0.1343 0.0537 0.1343
0.1289 0.0310 0.1489 0.0369 0.1488 0.0369

Se1
j� Se1

j� Se2
j� Se2

j� SeH
j� SeH

j�

ration measures based on Euclidean distance
0.2578 0.2639 0.2691 0.2659 0.2924 0.2802
0.2159 0.2663 0.2270 0.2743 0.2535 0.3058
0.1534 0.3203 0.1566 0.3311 0.1718 0.3660
0.3427 0.1629 0.3511 0.1691 0.3872 0.1914

Sq1
j� Sq1

j� Sq2
j� Sq2

j� SqH
j� SqH

j�

ration measures based on normalized Euclidean distance
0.1153 0.1180 0.1203 0.1189 0.1308 0.1253
0.0966 0.1191 0.1015 0.1227 0.1134 0.1368
0.0686 0.1431 0.0700 0.1481 0.0768 0.1637
0.1533 0.0728 0.1570 0.0756 0.1732 0.0856



Table 9
The relative closeness of each alternative for the example.

Value Rank Value Rank Value Rank

Cd1
j Cd2

j CdH
j

O1 0.4692 3 0.4526 3 0.4604 3
O2 0.5823 2 0.5741 2 0.5741 2
O3 0.7076 1 0.7141 1 0.7141 1
O4 0.1939 4 0.1987 4 0.1987 4

Cl1
j Cl2

j ClH
j

O1 0.4692 3 0.4526 3 0.4604 3
O2 0.5823 2 0.5741 2 0.5741 2
O3 0.7076 1 0.7141 1 0.7141 1
O4 0.1939 4 0.1987 4 0.1987 4

Ce1
j Ce2

j CeH
j

O1 0.5059 3 0.4970 3 0.4894 3
O2 0.5522 2 0.5472 2 0.5468 2
O3 0.6762 1 0.6789 1 0.6806 1
O4 0.3222 4 0.3250 4 0.3308 4

Cq1
j Cq2

j CqH
j

O1 0.5059 3 0.4970 3 0.4894 3
O2 0.5522 2 0.5472 2 0.5468 2
O3 0.6762 1 0.6789 1 0.6806 1
O4 0.3222 4 0.3250 4 0.3308 4
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Step 6. Calculate the weighted collective interval-valued intuitionistic fuzzy decision matrix R� ¼ ð~r�ijÞm	n (Table 7):
Step 7. Utilize Eqs. (11) and (12) to determine the interval-valued intuitionistic PIS O* and interval-valued intuitionistic

NIS O�:
O� ¼ h½0:1125;0:1814�; ½0:6798;0:7711�i; h½0:1199;0:1685�; ½0:7476;0:8303�i; h½0:1746;0:3261�; ½0:5461;0:6646�i;f
½0:0462;0:0879�; ½0:8563; 0:8998�i; h½0:1530;0:2030�; ½0:6972;0:7747�ih gT

and

O� ¼ h½0:0711;0:1056�; ½0:7855;0:8623�i; h½0:0131;0:0291�; ½0:9383;0:9675�i; h½0:0271;0:0679�; ½0:8589;0:9300�i;f
½0:1560;0:2210�; ½0:5664; 0:7169�i; h½0:0327;0:0591�; ½0:8942;0:9232�ih gT

:

Step 8. Utilize Eqs. (13)–(36) to calculate the separation measures Sj� and Sj� of each alternative Oj (j = 1,2,3,4) from inter-
val-valued intuitionistic PIS O* and interval-valued intuitionistic NIS O�, respectively, based on the Hamming dis-
tance, the Euclidean distance and the normalized versions (Table 8).

Step 9. Utilize Eq. (37) to calculate the relative closeness Cj� of each alternative Oj (j = 1,2,3,4) to the interval-valued intui-

tionistic PIS O* with the different separation measures, including Cd1
j ;C

d2
j ;C

dH
j based on the Hamming distance,

Cl1
j ;C

l2
j ;C

lH
j based on the normalized Hamming distance, Ce1

j ;C
e2
j ;C

eH
j based on the Euclidean distance, and

Cq1
j ;C

q2
j ;C

qH
j based on the normalized Euclidean distance (Table 9).

Step 10. Rank the preference order of alternatives Oj (j = 1,2,3,4) (Table 9), according to the relative closeness to the inter-
val-valued intuitionistic PIS O* and then the most desirable alternative is O3.

Remark. The relative closeness and corresponding preference order based on Hamming distance are the same as the results
based on the normalized counterpart. The rule also holds in the cases of the Euclidean distance and its normalized version.
That is,
Clk
j� ¼

Slk
j�

Slk
j� þ Slk

j�
¼

1
n Sdk

j�

1
n ðS

dk
j� þ Sdk

j� Þ
¼ Cdk

j� for all k ¼ 1;2;H;

Cqk
j� ¼

Sqk
j�

Sqk
j� þ Sqk

j�
¼

1ffiffi
n
p Sek

j�

1ffiffi
n
p ðSek

j� þ Sek
j� Þ
¼ Cek

j� for all k ¼ 1;2;H:
We obtain six results from 12 distance measures: (i) Cd1
j ¼ Cl1

j ; (ii) Cd2
j ¼ Cl2

j ; (iii) CdH
j ¼ ClH

j ; (iv) Ce1
j ¼ Cq1

j ; (v) Ce2
j ¼ Cq2

j ; and
(vi) CeH

j ¼ CqH
j .
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5. Conclusions

We investigate the MAGDM problems under interval-valued intuitionistic fuzzy environment, and extend TOPSIS method
to handling the situations where the attribute values are characterized by IVIFNs, and the information about attribute
weights is partially known. The proposed approach first fuses all individual interval-valued intuitionistic fuzzy decision
matrices into the collective interval-valued intuitionistic fuzzy decision matrix by using the IIFHG operator. Next, in the sit-
uation where the information about attribute weights is incomplete, we construct the score matrix of the collective interval-
valued intuitionistic fuzzy decision matrix, and established an optimization model to determine the attribute weights. Then
we construct the weighted collective interval-valued intuitionistic fuzzy decision matrix and determine the interval-valued
intuitionistic PIS and interval-valued intuitionistic NIS. Based on different distance definitions, we calculate the relative
closeness of each alternative to the interval-valued intuitionistic PIS and rank the alternatives according to the relative close-
ness to the interval-valued intuitionistic PIS and select the most desirable one(s). The proposed approach in this paper not
only can comfort the influence of unjust arguments on the decision results, but also avoid losing or distorting the original
decision information in the process of aggregation. Thus, the proposed approach provides us a effective and practical way
to deal with MAGDM problems, where the attribute values are characterized by IVIFNs and the information about attribute
weights is partially known.
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