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In practical project management (PM) decision problems, environmental coefficients and related param-
eters are frequently fuzzy in nature, and a decision maker (DM) must simultaneously consider various
conflicting objectives in a framework of imprecise aspiration levels. This work focuses on developing a
two-phase fuzzy mathematical programming (TPFGP) approach for solving the multi-objective PM deci-
sion problems in a fuzzy environment. The original fuzzy multi-objective programming model designed
here attempts to simultaneously minimize total project costs, total completion time and total crashing
costs with reference to direct costs, indirect costs, contractual penalty costs, duration of activities and
the constraint of available budget. An industrial case is used to demonstrate the feasibility of applying
the proposed approach to real-world PM decisions. Consequently, the proposed approach yields an effi-
cient solution and overall degree of decision maker (DM) satisfaction with the determined goal values.
Several significant management implications relating to the practical application of the proposed
approach are also presented. Overall, the main contribution of this work lies in presenting a two-phase
fuzzy programming methodology for solving real-world PM decision problems with multiple objectives.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Project management (PM) issues have long attracted interest
from both practitioners and academics. Since the program evalua-
tion and review technique (PERT) and the critical path method
(CPM) were both developed in the 1950s, numerous models
including mathematical programming techniques, algorithms and
heuristics have been employed to solve PM decision problems,
each with its own advantages and disadvantages (Davis & Patter-
son, 1975; Elsayed, 1982; Golenko-Ginzburz & Goink, 1998; Lin
& Gen, 2007; Yin & Wang, 2008; Russell, 1986). However, most
of the conventional PM models, such as Arikan and Gungor
(2001), Buckley (1989), DePorter and Ellis (1990), Mjelde (1986),
Wang and Fu (1998), consider only direct costs, neglecting relevant
indirect and penalty costs. In practical situations, a project’s total
costs are the sum of direct costs (labor, materials, and other costs
directly related to projected activities) and indirect costs (adminis-
tration, depreciation, interest, contractual penalty and other vari-
able overhead costs). The aim of evaluating time–cost trade-offs
is to develop a suitable PM plan that will minimize the sum of di-
rect and indirect costs.

When any of the conventional models are used to PM decisions,
the goals and parameters are generally assumed to be determinis-
ll rights reserved.

87.
tic/crisp (Deckor & Hebert, 1989; DePorter & Ellis, 1990; Kotiah &
Wallace, 1973; MacCrimmon & Ryavec, 1964; Wiley, Deckro, &
Jackson, 1998). In real-world PM decisions, the satisfying goal val-
ues should normally be imprecise/fuzzy owing to incomplete and
unobtainable information over the project planning horizon. The
decision maker (DM) must normally handle conflicting goals in
term of the use of organizational resources, and these conflicting
objectives are required to be optimized simultaneously by the pro-
ject managers, often in the framework of fuzzy aspiration levels
(Arikan & Gungor, 2001; Al-Fanzine & Haouari, 2005; Viana &
Sousa, 2000; Wang & Liang, 2004a, 2006). Solutions to fuzzy mul-
ti-objective optimization problems benefit from assessing the
imprecision of the DM’s judgments, such as ‘‘the objective function
of project duration should be substantially less than or equal to
120 days,” and ‘‘total project costs should be substantially less than
or equal to 5 million.” Therefore, conventional deterministic tech-
niques clearly cannot solve all fuzzy PM programming problems in
fuzzy environments.

Fuzzy set theory, was presented by Zadeh (1965), has been
found extensive applications in various fields (e.g. Abd El-Wahed
& Lee, 2006; Carlsson & Korhonen, 1986; Klir & Yuan, 1995; Kumar,
Vrat, & Shan, 2004; Lai & Hwang, 1992; Liang, 2008; Rommelfan-
ger, 1996; Slowinski, 1986; Wang & Liang, 2004b; Weners, 1987;
Zimmermann, 1996). Since Zimmermann (1976) first introduced
fuzzy set theory into conventional LP problems, fuzzy mathemati-
cal programming techniques were developed to tackle problems
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encountered in real-world applications. This work introduced fuz-
zy set theory to develop a two-phase fuzzy goal programming ap-
proach for solving the PM decision problems with multiple goals to
obtain an efficient solution in a fuzzy environment. The original
multi-objective linear programming (MOLP) designed in this work
attempts to minimize total project costs, total completion time and
total crashing costs with reference to direct costs, indirect costs,
contractual penalty costs, duration of activities and the constraint
of available budget.

The remainder of this work is organized as follows. Section 2
dedicates to a review of the literature. Section 3 describes the prob-
lem, details the assumptions and formulates the fuzzy MOLP mod-
el for PM decision problems. Subsequently, Section 4 develops the
two-phase fuzzy programming approach to solve fuzzy multi-
objective PM decision problems. Next, an industrial case is used
to implement the feasibility of the proposed approach in Section
5. Finally, conclusions are drawn in Section 6.
2. Review of the literature

In practical PM decisions, environmental coefficients and
parameters are frequently imprecise/fuzzy owing to some related
information is incomplete or unavailable. Conventional determin-
istic PM techniques are unsuitable for yielding an effective solution
in uncertain environments. To deal with imprecision, Golenko-
Ginzburz and Goink (1997) introduced the techniques of probabil-
ity theory to PM decisions for a PERT type project to minimize the
expected project duration, and its contribution is the product of the
average duration of the activity and its probability of being on the
critical path in the course of the project’s realization. Furthermore,
Golenko-Ginzburz and Goink (1998) designed a heuristic for solv-
ing the resource-constrained network PM problems which each
activity is of random duration depending on the resource amounts
assigned to that activity. Rabbani, Ghomi, Jolai, and Lahiji (2007)
developed a resource-constrained PM technique for stochastic net-
works resource allocation decisions having imprecise duration of
each activity with a known distribution function in which the val-
ues of activities finish times were determined at decision points
when at least one activity was ready to be operated and there were
available resources. Related studies on stochastic PM decisions in-
cluded Lukaszewicz (1965), Parks and Ramsing (1969) and Diaz
and Hadipriono (1993).

In real-world situations, however, because of the vagueness of
information regarding the environmental coefficients and parame-
ters over the project planning horizon, stochastic programming
techniques cannot yield an effective solution. Stochastic program-
ming are primarily based on the concepts of randomness theory
and can only take the limited form of a given probability distribu-
tion function such as normal, exponential and Beta, so it can do lit-
tle to help practical PM decisions (Lai & Hwang, 1992; Lootsma,
1989; Rabbani et al., 2007). Buckley (1990) and Yazenin (1987)
have made some comments regarding the comparison of fuzzy
programming and stochastic programming. They noted that the
critical problems of applying stochastic programming approaches
to solve PM decision problems are lack of computational efficiency
and inflexible probabilistic doctrines which might not be able to
model the real imprecise meaning of DM because they can only
take the limited form of a given probability distribution function.
Obviously, complex non-linear PM decision problems are not easy
to solve. Alternatively, fuzzy set theory has provided an appropri-
ate methodology to deal quantitatively with decision problems
that are formulated as mathematical programming models with
imprecise parameters. Zimmermann (1976) first introduced fuzzy
set theory into ordinary linear programming (LP) problems. That
study considered LP problems with fuzzy goal and constraints.
Following the fuzzy decision-making concept of Bellman and Za-
deh (1970), that same study confirmed that an equivalent crisp
LP problem exists. Subsequently, fuzzy set theory and Zimmer-
mann’s fuzzy programming techniques have developed into sev-
eral fuzzy optimization approaches for solving the PM decision
problems and avoiding unrealistic modeling.

Chanas and Kamburowsi (1981) originated the fuzzy PERT
method that can derive the possibility distribution of the project
completion time in the situation when particular activity duration
times in the project network model were given in the form of fuz-
zy sets on the time space (as fuzzy variables). Mjelde (1986) for-
mulated the special structure of fuzzy resource allocation
problems and to define a dedicated algorithm for their solution
which is based upon a LP formulation in terms of the resource allo-
cation variables and a single additional variable describing the
aspiration level of resource consumptions and activity returns.
Chang, Tsujimuta, Gen, and Tozawa (1995) considered the activity
times as fuzzy numbers (fuzzy intervals or time intervals) in the
project network analysis and the fuzzy Delphi method was used
to estimate a reliable time interval of each activity, and an efficient
methodology for calculating the fuzzy project completion time and
the degree of criticality for each path in a project was proposed
based on these time estimates. Yao and Lin (2000) introduced a
signed distance ranking method for fuzzy numbers in a CPM of
activity-on-edge (AOE) networks, and used them to obtain fuzzy
critical path. Liang (2006) designed an interactive FLP approach
to solve PM decision problems with and fuzzy constraints in a fuz-
zy environment. That developed FLP approach attempts to mini-
mize total project costs with reference to direct, indirect and
penalty costs, durations of activities, specified project completion
time and total allocated budget. More recently, Long and Ohsato
(2008) presented a fuzzy critical approach for project scheduling
problems under resource constraints and uncertainty, in which
consisted of developing a desirable deterministic schedule under
resource constraints, and adding a project buffer to the end of
the schedule to deal with uncertainty. Additional works in which
fuzzy mathematical programming was applied to PM decisions in-
clude Buckley (1989), Chanas and Zieliński (2001), Hussein and
Abo-Sinna (1995), Hapke and Slowinski (1996), Wang and Fu
(1998).

In practical situations, however, the PM plan generally have
conflicting objectives regarding the use of organization’s resources,
and these conflicting objectives are required to be solved simulta-
neously by the decision maker in the framework of imprecise aspi-
ration levels. Zimmermann (1978) first extended his FLP approach
(1976) to an ordinary MOLP problem. For each of the objective
functions of this problem, the DM is assumed to have a fuzzy goal
such as, ‘‘the objective functions should be substantially less than
or equal to some value.” Then, the corresponding linear member-
ship function is defined and the minimum operator is applied to
aggregate fuzzy objective functions. Introducing an auxiliary vari-
able can transform this problem into an equivalent conventional LP
problem. Subsequent investigations on fuzzy goal programming
(FGP) included those of Dubois and Fortemps (1999), Hannan
(1981), Kuwano (1996), Leberling (1981), Luhandjula (1982). The
main differences among these methods result from the types of
aggregation operators and membership functions that they
apply.

DePorter and Ellis (1990) presented a fuzzy programming tech-
nique for solving a multiple imprecise or unclear goal optimization
problem in a way that compromised among the goals, and was
solvable using ordinary LP computer software. Arikan and Gungor
(2001) designed a practical application of FGP approach in a real-
life project network problem with two fuzzy objectives as mini-
mize completion time and crashing costs wanted to be optimized
simultaneously, and comparisons between solutions of FGP, FLP
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and lexicographic maximization method were also presented.
Wang and Liang (2004a) developed a multiple fuzzy goal program-
ming (MFGP) model to PM decisions. That MFGP model can yield
the DM’s overall degree of satisfaction and the significant charac-
teristics that differentiate the developed MFGP model from the tra-
ditional deterministic and stochastic programming models were
presented. Chen and Huang (2006) proposed a fuzzy model by
combining fuzzy set theory with PERT to calculate the total cycle
time of a supply chain system. That designed fuzzy model adopted
triangular fuzzy numbers to describe these uncertain variables and
the promise delivery possibility index is defined to indicate the or-
der fulfillment degree of a supply chain system based on the fuzzy
completion time and fuzzy due date. Wang and Liang (2006) devel-
oped an interactive FGP model that offered a systematic frame-
work that facilitates the fuzzy decision-making process to solve
multi-objective PM problems. However, these simplified models
described above neglect indirect costs, contractual penalty costs
and the constraint of total budget; they are thus unrealistic in prac-
tical applications. In particular, although it had been justified that
the minimum operator used extensively by above fuzzy program-
ming methods to PM decisions possesses some good properties,
the optimal solution yielded by the minimum operator may not
be an efficient solution (Dubois & Fortemps, 1999; Guu & Wu,
1999; Lee & Li, 1993; Li, Zhang, & Li, 2006).
3. Problem formulation

3.1. Problem description, assumptions and notation

The fuzzy multi-objective PM decision problem examined in this
work can be described as follows. Assume a project involves n inter-
related activities that must be executed in a certain order before the
entire task can be completed. In real-world PM decisions, the values
of the objective functions cannot be accurately measured because
some information regarding the environmental coefficients and re-
lated parameters is incomplete and/or unobtainable over the project
planning horizon. Hence, this work focuses on developing a fuzzy
mathematical programming technique to solve multi-objective PM
decision problems in a fuzzy environment. The fuzzy MOLP model
formulated here attempts to simultaneously minimize total project
costs, total completion time and total crashing costs associated with
direct costs, indirect and contractual penalty costs, duration of activ-
ities and the constraint of available budget. These objective func-
tions are required to be optimized simultaneously by the project
managers in the framework of fuzzy aspiration levels.

The fuzzy mathematical programming model is based on the
following assumptions.

(1) All of the objective functions are fuzzy with imprecise aspi-
ration levels.

(2) All of the objective functions and constraints are linear
equations.

(3) The normal time and shortest possible time for each activity
and the cost of completing the activity in the normal time
and crash time are certain.

(4) The available total budget is known over the duration of the
project.

(5) The piecewise linear membership functions are specified for
fuzzy goals, and the minimum operator and the average
operator are sequentially used to aggregate fuzzy sets in
two-phase solution procedure.

(6) The total indirect costs can be divided into two categories,
fixed costs and variable costs, and the variable costs per
unit time are the same regardless of project completion
time.
Assumption 1 relates to the fuzziness of the objective functions
in practical PM decision problems, and incorporates the variations
in the DM judgments regarding the solutions of fuzzy optimization
problems in a framework of imprecise aspiration levels. Assump-
tions 2–4 indicate that the linearity, proportionality and certainty
properties must be technically satisfied as a standard LP form
(Carlsson & Korhonen, 1986; Lai & Hwang, 1992). Assumption 5
is made to use the piecewise linear membership functions are
specified for representing all fuzzy goals involved. The minimum
operator is used to aggregate fuzzy sets, and then the original fuzzy
MOLP problem can be converted into an equivalent ordinary LP
model that can be solved efficiently using the simplex method
(Hannan, 1981; Wang & Liang, 2006; Zimmermann, 1978).
Assumption 6 represents that the indirect costs can be divided into
fixed costs and variable costs. Fixed costs represent the indirect
costs under normal conditions and remain constant regardless of
project duration. Meanwhile, variable costs, which are used to
measure savings or increases in variable indirect costs, vary di-
rectly with the difference between actual completion and normal
duration of the project (Liang, 2006; Liang, 2008; Wang & Liang,
2004a).
The following notation is used.

(i,j) activity between events i and j
z1 total project costs
z2 total completion time
z3 total crashing costs
Dij normal time for activity (i, j)
dij minimum crashed time for activity (i, j)
CDij

normal (direct) cost for activity (i, j)
Cdij

minimum crashed (direct) cost for activity (i, j)
kij incremental crashing costs for activity (i, j)
Yij crash time for activity (i, j)
tij crashed duration time for activity (i, j)
Ei earliest time for event i
Ej earliest time for event j
E1 project start time
En project completion time
Tnc project completion time under normal conditions
CI fixed indirect costs under normal conditions
m variable indirect costs per unit time
B total budget

3.2. Fuzzy multi-objective linear programming model

3.2.1. Objective functions
This work chose multiple objectives for solving the PM decision

problems by reviewing the literature and considering practical sit-
uations. In real-world situations, most practical decisions made to
solve PM problems must consider total project costs (direct costs,
indirect costs, and contractual penalty costs), total completion
time and/or total crashing costs (Al-Fanzine & Haouari, 2005; Ari-
kan & Gungor, 2001; DePorter & Ellis, 1990; Lin & Gen, 2007; Wang
& Liang, 2004a; Wang & Liang, 2006; Yin & Wang, 2008). Notably,
these objectives are normally fuzzy owing to incomplete and
unavailable information. Accordingly, three fuzzy objective func-
tions are simultaneously considered during the formulation of
the fuzzy MOLP model, as follows:

� Minimize total project costs
Min z1 ffi
X

i

X
j

CDij
þ
X

i

X
j

kijYij þ ½CI þmðEn � TncÞ� ð1Þ

where the terms
P

i

P
jCDij
þ
P

i

P
jkijYij are used to calculate total

direct costs. Total direct costs include total normal cost and total
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crashing cost, obtained using additional direct resources such as
overtime, personnel and equipment. Generally, the major direct
costs such as overtime, personnel and equipment, depend either
on activity times or on project completion time, although materi-
als costs are fixed during the planning horizon. Total direct
costs increase with decreasing project duration. The terms
½CI þmðEn � TncÞ� denote total indirect costs, including administra-
tion, contractual penalties, depreciation, financial and other vari-
able overhead costs that can be avoided by reducing total
completion time.

� Minimize total completion time
Min z2 ffi En � E1 ð2Þ

� Minimize total crashing costs
Min z3 ffi
X

i

X
j

kijYij ð3Þ

The symbol ‘ffi’ is the fuzzified version of ‘=’ and refers to the fuzz-
ification of the aspiration levels. For each objective function in the
original fuzzy MOLP model, this work assumes that the DM has
such fuzzy objective as, ‘‘the objective function should be essen-
tially equal to some value”. In real-world PM decisions, Eqs. (1)–
(3) are generally fuzzy and incorporate the variations in the DM’s
judgments relating to the solutions of the fuzzy optimization
problem.

3.2.2. Constraints

� Constraints on the time between events i and j
Ei þ tij � Ej 6 0 8i; 8j ð4Þ
tij ¼ Dij � Yij 8i; 8j ð5Þ

� Constraints on the crashing time for activity (i, j)
Yij 6 Dij � dij 8i; 8j ð6Þ

� Constraint on the total budget
z1 6 B 8i; 8j ð7Þ

� Non-negativity constraints on decision variables
tij;Yij; Ei; Ej P 0 8i; 8j ð8Þ
4. Solution methodology

4.1. Two-phase fuzzy goal programming approach (TPFGP)

4.1.1. Phase I
In phase I, the original fuzzy MOLP problem designed above can

be solved using the fuzzy decision-making concept of Bellman and
Zadeh (1970), together with the FGP technique of Hannan (1981).
The piecewise linear membership functions are specified for repre-
senting all the fuzzy goals involved, and the minimum operator is
adopted to aggregate fuzzy sets. By introducing the auxiliary vari-
able L(1), the original fuzzy MOLP problem can be converted into an
equivalent ordinary LP model that can be solved efficiently using
the simplex method. Appendix A detailed the derivation of the
equivalent ordinary LP model. Furthermore, fuzzy decision-making
concept of Bellman and Zadeh (1970), that uses the minimum
operator to aggregate all fuzzy sets, is presented in the Appendix
B. Consequently, the complete equivalent ordinary LP model is as
follows.
Max Lð1Þ

s:t: Lð1Þ 6 � tg2 � tg1

2

� �
ðd�g1 � dþg1Þ �

tg3 � tg2

2

� �
ðd�g2 � dþg2Þ � � � �

�
tg;Pgþ1 � tgPg

2

� �
ðd�gPg

� dþgPg
Þ þ

tg;Pgþ1 þ tg1

2

� �
zg

þ
Sg;Pgþ1 þ Sg1

2
g ¼ 1;2; . . . ;K

zg þ d�ge � dþge ¼ Xge g ¼ 1;2; . . . ;K; e ¼ 1;2; . . . ; Pg

Eqs: ð4Þ—ð9Þ

0 6 Lð1Þ 6 1

tij;Yij; Ei; Ej; d
�
ge;d

þ
ge P 0 8i; 8j;8g; 8e

ð9Þ

where the auxiliary variable Lð1Þ represents overall DM satisfaction
with the given goal values. However, the optimal solution yielded
by the minimum operator in phase I may not be an efficient solu-
tion, and the computing efficiency of the solutions obtained by
the minimum operator is not been assured (Guu & Wu, 1999; Li
et al., 2006). Furthermore, a two-phase fuzzy programming tech-
nique is presented to overcome the main disadvantage of the min-
imum approach in phase I.

4.1.2. Phase II
In phase II of the proposed TPFGP approach, the initial solution

is forced to improve from that obtained by the minimum operator
by adding phase I satisfaction degrees, Lð1Þ to phase II as a con-
straint, and then the compensatory weighted average operator is
used for to obtain overall DM satisfaction degree L(2).

Consequently, Model (9) can be reformulated as follows.

Max Lð2Þ ¼
XK

g¼1

wgLg

s:t: Ll
g 6 Lg 6 �

tg2 � tg1

2

� �
ðd�g1 � dþg1Þ �

tg3 � tg2

2

� �
ðd�g2 � dþg2Þ

� � � � �
tg;Pgþ1 � tgPg

2

� �
ðd�gp � dþgpÞ þ

tg;Pgþ1 þ tg1

2

� �
zg

þ
Sg;Pgþ1 þ Sg1

2
g ¼ 1;2; . . . ;K

zg þ d�ge � dþge ¼ Xge g ¼ 1;2; . . . ;K; e ¼ 1;2; . . . ;Pg

XK

g¼1

wg ¼ 1

Eqs: ð4Þ—ð7Þ
0 6 Lð2Þ 6 1

0 6 Ll
g 6 1

tij;Yij;Ei;Ej;d
�
ge;d

þ
ge P 0 8i; 8j; 8g; 8e

ð10Þ

where Ll
g and wg are respectively the minimum satisfaction degree

and the corresponding weight of the gth objective function chosen
by DM, and L(2) represents the improved overall DM satisfaction.

4.2. Solution procedure

Step 1: Formulate the original fuzzy MOLP model for the multi-
objective PM decision problems according to Eqs. (1)–(8).
Step 2: Specify the degree of membership fg(zg) for several val-
ues of each objective function zg, g = 1, 2, . . ., K.
Step 3: Formulate the piecewise linear equations for each fg(zg)
using Appendix Eq. (A4), g = 1, 2, . . ., K.
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Step 4: Introduce the auxiliary variable L(1), thus enabling aggre-
gation of the original fuzzy MOLP problem into an equivalent
ordinary LP form using the minimum operator, as Model (9).
Step 5: Solve the Model (9) to obtain an initial compromise
solution.
Step 6: Specify the minimum satisfaction degree Ll

g and the cor-
responding weight wg of the gth objective function based on the
initial compromise solution, and then reformulates Model (9)
into an equivalent ordinary single-goal LP model using the
weighted average operator, as Model (10).
Step 7: Solve the Model (10) to delivery an improved solution. If
the DM is dissatisfied with the compromise solutions, the
model should be adjusted interactively until a preferred effi-
cient solution is obtained.
5. Implementation

5.1. Data description

Daya Technologies Corporation was used as a case study to dem-
onstrate the practicality of the developed model in Section 4. The
Daya Technologies Corporation is the leading producer of precision
machinery and transmission components in Taiwan. Daya is the
world’s first ballscrew manufacturer certified to ISO 9001, ISO
14001, and OHSAS 18001, and the main manufacturer producing
the super precision ballscrew, linear stage, linear bearing, guide-
ways, and aerospace parts. The PM decision examined here involves
expanding a metal finishing plant owned by Daya. Currently, the
deterministic CPM approach used by Daya suffers from the limita-
tion owing to the fact that a DM does not have sufficient information
over the project planning horizon. The case study focuses on devel-
oping an interactive two-phase FGP approach to develop a suitable
PM plan for the metal finishing plant in uncertain environments.
The PM decision of Daya aims to simultaneously minimize total pro-
ject costs, total completion time and total crashing costs in terms of
direct costs, indirect costs, activity duration and the constraint of to-
tal budget. Table 1 lists the basic data of the case.

Other relevant data are as follows: fixed indirect costs $12,000,
saved daily variable indirect costs $150, total budget $38,500 and
project completion time under normal conditions 125 days. The pro-
ject start time is set to zero. The critical path is 1–5–6–7–9–10–11.
The fuzzy multi-objective PM decision presented here focuses on
developing a two-phase fuzzy programming approach for optimiz-
ing the PM plan of Daya. Solving the PM decision problem is expected
to provide an efficient satisfactory result for three fuzzy objectives.

5.2. Solution procedure for the case problem

The fuzzy multi-objective PM decision problem in the Daya case
can be solved according to the solution procedure set out above. In
le 1
marized data in the Daya case (in US dollar).

i; jÞ Dij (days) dij (days) CDij
($) Cdij

($) kij ($/day)

–2 14 10 1000 1600 150
–5 18 15 4000 4540 180
–3 19 19 1200 1200 –
–4 15 13 200 440 120
–7 8 8 600 600 –
–10 19 16 2100 2490 130
–6 22 20 4000 4600 300
–8 24 24 1200 1200 –
–7 27 24 5000 5450 150
–9 20 16 2000 2200 50
–9 22 18 1400 1900 125
–10 18 15 700 1150 150
0–11 20 18 1000 1200 100
phase I, the original fuzzy MOLP model for the PM decision is first
formulated according to Eqs. (1)–(8). Moreover, the ordinary sin-
gle-objective LP problem is solved to obtain the initial solutions
for each of the objective functions, the results are z1 = $35,900,
z2 = 108 days, and z3 = $0. In practical situations, the ordinary sin-
gle-goal LP optimal solutions were generally used as a starting
point of positive ideal solution, and the negative ideal solution
for each of the objective functions can be specified subjectively
based on historical data and/or knowledge and experience of DM.
Then, the degree of membership fg(zg), g = 1, 2, 3, for several values
for each of the objective functions in Model (9) can be identified, as
listed in Table 2.

By introducing the auxiliary variable L(1), the fuzzy multi-objec-
tive PM decision problem in the Daya case can be transformed into
an equivalent ordinary LP form, as Model (9). The complete equiv-
alent single-goal LP model can be formulated as follows.

Max Lð1Þ

s:t: L 6 �0:00001ðd�11 � dþ11Þ � 0:000005ðd�12 � dþ12Þ
� 0:000035z1 þ 2:5065

L 6 �0:00415ðd�21 � dþ21Þ � 0:02915z2 þ 4:25

L 6 �0:00005ðd�21 � dþ21Þ � 0:00035z3 þ 1:1

z1 þ d�11 � dþ11 ¼ 55;900

z1 þ d�12 � dþ12 ¼ 45;900

z2 þ d�21 � dþ21 ¼ 132

z3 þ d�31 � dþ31 ¼ 2000
Eqs: ð4Þ—ð9Þ
0 6 Lð1Þ 6 1

tij;Yij; Ei; Ej; d
�
ge;d

þ
ge P 0 8i; 8j; 8g; 8e

ð11Þ

LINDO computer software is used to run this ordinary LP model.
The optimal solutions are z1 = $35,900, z2 = 116.82 days,
z3 = $727.43, (L1, L2, L3) = (1, 0.775, 0.782), and the overall DM sat-
isfaction with the given objective values is 0.7805. Furthermore,
entering the phase II, initial solutions in phase I forced to improve
by adding satisfaction degrees as a constraint, and the compensa-
tory weighted average operator is used to obtain overall DM satis-
faction degree. If the DM specifies the minimum satisfaction
degree ðLl

1; L
l
2; L

l
3Þ ¼ ð0:95;0:92;0:92Þ and the corresponding

weights (w1, w2, w3) = (0.4, 0.4, 0.2) for three fuzzy objectives by
referring the historical data, then the equivalent ordinary single-
goal LP model can be formulated according to Model (10). Conse-
quently, the improved efficient solutions are z1 = $35,951.36,
z2 = 111.29 days, z3 = $1608.16, but the overall degree of DM satis-
faction increases sharply to 0.8515. Table 3 presents initial and im-
proved PM plans for the Daya case with the proposed approach
based on current information.

5.3. Findings

Several significant management implications when practically
applying the proposed TPFGP approach to fuzzy multi-objective
PM decisions are as follows. First, the proposed approach yields
Table 2
Piecewise linear membership functions for the objectives.

z1 >65,900 65,900 55,900 45,900 35,900 <35,900
f1ðz1Þ 0 0 0.5 0.8 1.0 1.0

z2 >144 144 132 120 108 <108
f2ðz2Þ 0 0 0.4 0.7 1.0 1.0

z3 >3000 3000 2000 1000 0 <0
f3ðz3Þ 0 0 0.4 0.7 1.0 1.0



Table 3
Initial and improved PM plans for the Daya case.

Item Initial solutions (phase I) Improved solutions (phase II)

Goal values Lð1Þ ¼ 0:7818; z1 ¼ $35;900:00; z2 ¼ 116:82 days, z3 ¼ $727:43 Lð2Þ ¼ 0:8515; z1 ¼ $35;951:36; z2 ¼ 111:29 days, z3 ¼ $1608:16
Yij (days) Y12 ¼ 0; Y15 ¼ 0; Y23 ¼ 0;Y24 ¼ 0; Y47 ¼ 0; Y12 ¼ 0;Y15 ¼ 1:71;Y23 ¼ 0; Y24 ¼ 0;

Y410 ¼ 0; Y56 ¼ 0;Y58 ¼ 0; Y67 ¼ 0;Y79 ¼ 4; Y47 ¼ 0;Y410 ¼ 0;Y56 ¼ 0; Y58 ¼ 0;Y67 ¼ 3;
Y89 ¼ 0; Y910 ¼ 2:18;Y1011 ¼ 2 Y79 ¼ 4; Y89 ¼ 0;Y910 ¼ 3;Y1011 ¼ 2

tij (days) t12 ¼ 14; t15 ¼ 18; t23 ¼ 19; t24 ¼ 15; t12 ¼ 14; t15 ¼ 16:29; t23 ¼ 19; t24 ¼ 15;
t47 ¼ 8; t410 ¼ 19; t56 ¼ 22; t58 ¼ 24; t47 ¼ 8; t410 ¼ 19; t56 ¼ 22; t58 ¼ 24;
t67 ¼ 27; t79 ¼ 16; t89 ¼ 22; t910 ¼ 15:82; t67 ¼ 24; t79 ¼ 16; t89 ¼ 22; t910 ¼ 15; t1011 ¼ 18
t1011 ¼ 18

Ei (days) E1 ¼ 0; E2 ¼ 14; E4 ¼ 33; E5 ¼ 18; E1 ¼ 0; E2 ¼ 14; E4 ¼ 33; E5 ¼ 16:29;
E6 ¼ 40; E7 ¼ 67; E8 ¼ 42; E9 ¼ 83; E6 ¼ 38:29; E7 ¼ 62:29; E8 ¼ 39:57;
E10 ¼ 98:82; E11 ¼ 116:82 E9 ¼ 78:29; E10 ¼ 93:29; E11 ¼ 111:29

 Completion time

0.0

0.2

0.4

0.6

0.8

1.0

108 116.5 125 133.5 139

zz1

z2

z3

z1 (z2) (z3) 

40,000(150)(2500) 

32,000(120)(2000) 

24,000(90)(1500) 

16,000(60)(1000) 

8000(30)(500) 

0(0)(0) 

Fig. 1. Goal values of analyzing sensitivity for the total completion time.

Table 4
Results of sensitivity analysis for varying the project duration.

Item Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

En (days) <108.00 108.00 116.50 125.00 133.50 >139.00
z1 ($) Infeasible 36,290 35,900 36,400 37,650 Infeasible
z2 (days) 108.00 116.50 125.00 133.50
z3 ($) 2440.00 775.00 0 0

1412 T.-F. Liang / Computers & Industrial Engineering 57 (2009) 1407–1416
an efficient solution. An extreme point (feasible solution) vector
�x 2 S (S is the feasible region) with corresponding objective func-
tion zgð�xÞ is said to be efficient if there exists no other feasible point
x e S such that zgðxÞ 6 zgð�xÞ for all g and zgðxÞ < zgð�xÞ for at least one
g, g = 1, 2, . . ., K (Hannan, 1981; Zimmermann, 1978). The proposed
two-phase fuzzy programming technique can overcome the disad-
vantage of using the minimum operator by adding phase I satisfac-
tion degrees to phase II as a constraint, and the compensatory
weighted average operator is employed for to obtain overall DM
satisfaction degree. From Table 3, the optimal results by the pro-
posed approach are an efficient solution, because of the solutions
obtained using the proposed two-phase fuzzy programming are
obviously better than that of one-stage minimum operator ap-
proach. Related investigations, such as Hannan (1981), Lee and Li
(1993), Guu and Wu (1999), Li et al. (2006) and Özgen, Önut,
Gülsün, Tuzkaya, and Tuzkaya (2008), had proved why the output
result by the two-phase fuzzy programming approach is always
an efficient solution by adopting the average operator in phase II
to aggregate fuzzy sets. As a result, an improved PM plan can be ob-
tained by the proposed approach under an acceptable degree of DM
satisfaction. Particularly, the proposed approach presents the over-
all DM satisfaction (L) with the determined goal values in a fuzzy
multi-objective PM decision problem. If the solution is L ¼ 1, then
each goal is fully satisfied; if it is 0 < L < 1, then all of the goals are
satisfied at the level of L, and if it is L = 0, then none of the goals
are satisfied. Additionally, the L value may be adjusted to identify
a better PM plan if the DM did not accept the initial overall degree
of DM satisfaction. For example, the improved solutions in the Daya
case are z1 = $35,951.36, z2 = 111.29 days, z3 = $1608.16, and overall
degree of DM satisfaction was generated as 0.8515.

Second, the project DM generally must solve PM decision prob-
lems with multiple fuzzy objectives owing to some information
being incomplete or unobtainable over the planning horizon, and
these conflicting objectives must be optimized simultaneously by
the DM in the framework of imprecise aspiration levels. The com-
parisons listed in Table 3 shows that the interaction of trade-offs
and conflicts among dependent multiple objective functions. Due
to conflicting and vagueness nature of the multiple objectives,
the conventional techniques may not comply with the actual aims
of modeling PM decisions and are unsuitable to yield an effective
solution. Alternatively, applying fuzzy set theory to imprecise mul-
ti-objective PM decisions provides more efficient and flexible mod-
el formulation and arithmetic operations (Arikan & Gungor, 2001;
Buckley, 1989; Chen & Huang, 2006; DePorter & Ellis, 1990; Long &
Ohsato, 2008). Analytical results obtained by implementing Daya
case indicate that the developed TPFGP approach satisfies the
requirement for the practical application since it attempts to
simultaneously minimize the total project costs, total completion
time and total crashing costs in a fuzzy environment.

Sensitivity analysis results for varying project duration indicate
that minimizing completion time conflicts with minimizing the to-
tal project costs and the total crashing costs. The results of analyz-
ing sensitivity for varying project duration indicate that
minimizing completion time conflicts with minimizing the total
project costs and the total crashing costs, as depicted in Fig. 1.
From Table 4, as the duration of the project falls below 116.5 days,
the total project costs and the total crashing costs increase. Nota-
bly, the solution is infeasible when the duration of the project is
far below 108 days, because the cumulative crashing time for all
activities on the critical path exceeds the allowed upper limit
(17 days). Conversely, when the duration of the project exceeds
116.5 days, the total project costs increase sharply because the rel-
evant indirect and contractual penalties are incurred. Especially, if
the project duration is extended beyond 139 days, the project be-
comes infeasible because the total project costs exceed the total
allocated budget. Thus, a DM may be able to shorten project com-
pletion time, realizing savings on indirect costs, by increasing di-
rect expenses to accelerate the project. If the DM faces costly
indirect and contractual penalties for being late in completing a
project, the use of additional resources to reduce the project com-
pletion time may be worthwhile.

The comparisons of initial and improved compromise solutions
in Table 3 reveal that the changes in the weight and the minimum
satisfaction degree of each fuzzy objective function in Model (10)
influence both goal and L values. In real-world situations, the val-
ues of the relative weights among multiple objective functions can
be adjusted subjectively based on the experience and knowledge of
DM and/or experts. Related techniques for determining weights in-
clude the analytic hierarchy process (AHP), fuzzy AHP and direct



T.-F. Liang / Computers & Industrial Engineering 57 (2009) 1407–1416 1413
assessment methods. Several studies had presented related con-
cepts and solution procedure of AHP and fuzzy AHP techniques
(Klir & Yuan, 1995; Satty, 1980; Tam & Tummala, 2001; Özgen
et al., 2008). Notably, if the minimum satisfaction degree for each
of the objective functions is improperly given, it will make the
solution procedure more complicated. If the DM increases the min-
imum satisfaction degree of one fuzzy objective function, it implies
that the value of this fuzzy objective function is closer to the opti-
mal value, but it may make other fuzzy objective values far from
their optimal values. In particular, when the minimum satisfaction
degree specified by DM is too great, Model (10) may have no solu-
tion (Li et al., 2006; Özgen et al., 2008). Generally, the derived de-
gree of membership of each fuzzy objective function can be taken
as its initial minimum satisfaction degree. As a result, the comput-
ing amounts of Model (10) will be decreased.

Additionally, this work uses the piecewise linear membership
function to represent the fuzzy goals of the DM for the PM decision
problems, and achieves more flexible doctrines via a fuzzy deci-
sion-making process. After the DM elicits a small finite number
of membership values for each of the objective functions, the
piecewise linear membership function enables the DM to approx-
imate satisfactory levels for intermediate points located between
these elicited points using line segments. The main advantage of
the piecewise linear membership function is that it produces a
computationally tractable membership function that closely re-
flects the real-world structure of the subjective concept of the
DM regarding the objectives associated with maximizing the DM
preferences (Hannan, 1981; Liang, 2008). In practice, ordinary sin-
gle-goal LP optimal solutions were normally used as a starting
point of positive ideal solution for specifying the degree of mem-
bership for several values for each of the objective functions in
Model (9). The negative ideal solution for each of the objective
functions can be specified subjectively based on historical data
and/or knowledge and experience of DM.

Finally, the optimal solution yielded by using the minimum
operator in phase I may not be an efficient solution, and the com-
puting efficiency of the solution is not be assured. The minimum
operator is preferable when the DM wishes to make the optimal
membership function values approximately equal or when the
Table 5
Comparisons of common aggregation operators.

Operator Example Brief descriptio

Intersection (t-norms) Minimum An aggregation
Algebraic product The result of c
Bounded sum The minimum
Drastic intersection

Union (t-conorms) Maximum An aggregation
Algebraic sum The result of c
Bounded difference The minimum
Drastic union

Averaging
(compensative)

Mean Have the comp
Weighted Consider the r
c The c-operator
OWA (The ordered weighted averaging) OWA enables a

Table 6
Solution comparisons.

Item LP-1 LP-2 LP-3

Objective function Min z1 Min z2 Min z3

L (%) 100 100 100
~z1 ($) 35,900* 36,290 36,400
z2 (days) 113 108* 125
z3 ($) 1300 2440 0*

* Denotes the optimal value by ordinary single-goal LP model.
DM feels that the minimum operator is an approximate represen-
tation. Aggregate operators can be roughly classified into three cat-
egories - intersection, union and averaging operators. Table 5 lists
the comparisons of major types of aggregation operators in the
existing literature (Klir & Yuan, 1995; Wang & Liang, 2004b;
Zimmermann, 1996). Among the various types of aggregate opera-
tors, the minimum operator is used most often for solving fuzzy
mathematical programming problems, through other patterns
may be preferable in some applications. However, the primary
drawback of the minimum operator is its lack of discriminatory
power between solutions that strongly differ with respect to the
fulfillment of membership to the various constraints (Dubois,
Fargier, & Prade, 1996; Werner, 1987). For some practical situa-
tions, the application of the aggregate operator to draws maps
above the maximum operator and below the minimum operator
is important. Alternatively, average operators consider the relative
importance of fuzzy sets and have the compensative property so
that the result of combination will be medium. The proposed
two-phase fuzzy programming approach is presented to overcome
the main disadvantage of minimum operator by adding phase I sat-
isfaction degrees to phase II as a constraint, and the compensatory
weighted average operator is used for to obtain overall DM satis-
faction degree. Zimmermann (1996) pointed out that the following
eight criteria must be applied selecting an adequate aggregate
operator– axiomatic strength, empirical fit, compensation, numer-
ical efficiency, range of compensation, adaptability, aggregating
behavior and required scale level of membership function.

5.4. Comparisons

Table 6 compares the results obtained by the ordinary single-goal
LP model and the conventional one-stage FGP techniques (Arikan &
Gungor, 2001; DePorter & Ellis, 1990; Wang & Liang, 2004a) with the
proposed two-phase fuzzy programming approach based on current
information for the Daya case. LP-1, LP-2 and LP-3 denote minimiz-
ing the total project costs, the total completion time and the total
crashing costs by using ordinary single-goal LP model, respectively.
As listed in Table 6, the results obtained using the conventional one-
stage FGP techniques with linear membership functions are
n

scheme is implemented where fuzzy sets are connected by a logical ‘and’
ombination is high if and only if all values are high
operator is a greatest t-norm

scheme is implemented where fuzzy sets are connected by a logical ‘or’
ombination is high if some values are high
operator is a smallest t-conorm

ensative property so that the result of combination will be medium
elative importance of the fuzzy sets

is the convex combination of the min-operator and the max-operator
DM to specify linguistically his agenda for aggregating a collection of fuzzy sets

DePorter and Ellis (1990), Arikan and
Gungor (2001), Wang and Liang (2004a)

The proposed TPFGP
approach

Max L Max L
75.60 85.15
35,900.00 35,951.36
116,79.00 111.29
732.14 1608.16
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z1 = $35,900, z2 = 116.79 days, z3 = $732.14, and the overall degree of
DM satisfaction is 0.7560. These figures indicate that the proposed
approach yields an efficient compromise solution, compared to the
ordinary single-goal LP and the conventional one-stage FGP tech-
niques. In the real-world situations, most of the PM decisions prob-
lem in an environment takes place in which the goals and/or the
constraints are not precisely known due to incomplete and unob-
tainable information over the project planning horizon. The con-
cepts and techniques of probability theory and fuzzy theory are
employed to deal quantitatively with uncertainty. This work intro-
duced fuzzy set theory to develop a fuzzy goal programming ap-
proach for solving the multi-objective PM decision problems to
obtain an efficient compromise solution in fuzzy environments.

Additionally, Table 7 presents the qualitative comparisons
among the proposed TPFGP approach with those of the representa-
tive PM techniques, such as deterministic CPM/LP, stochastic pro-
gramming (Rabbani et al., 2007), fuzzy linear programming
(Wang & Fu, 1998) and FGP (Arikan & Gungor, 2001) models. Sev-
eral important advantages of the proposed approach are summa-
rized as follows. First, the proposed approach satisfies the
practical application requirements because it simultaneously min-
imize total project costs, total completion time and total crashing
costs with reference to direct costs, indirect costs, contractual pen-
alty costs, duration of activities and the constraint on available to-
tal budget. Second, the proposed approach provides a systematic
decision-making framework that the DM adjusts interactively the
search direction, until the efficient solution satisfies the DM’s pref-
erences and is considered to be the preferred satisfactory solution.
Third, the proposed approach exhibits greater computational flex-
ibility of the fuzzy arithmetic operations by employing the piece-
wise linear membership functions to represent fuzzy objectives,
and the original fuzzy MOLP model can be converted into an equiv-
alent ordinary single-goal LP form that is easily solved by the sim-
plex method. Finally, computational methodology developed in
this work can easily be extended to any other situations and can
handle the realistic PM decision problems. Although only involves
about 200 decision variables and related decision parameters, the
industrial case illustrated in this work is sufficient to lay a strong
foundation on which the DM can formulate additional applications
of the proposed approach for solving large scale fuzzy/imprecise
PM decision problems with multiple goals in a fuzzy environment.
6. Conclusions

In practical PM decisions, the project DM must simultaneously
handle multiple conflicting objectives that govern the use of the con-
strained resources within organizations, and these conflicting objec-
tives are normally imprecise because information is incomplete and/
or unavailable over the planning horizon. This work aims to develop
Table 7
Comparisons of the major PM decision models.

Factor Conventional deterministic CPM/LP Stochastic programm
(Rabbani et al., 2007

Objective function Single, linear Single, non-linear
Main consideration Cost or time Cost or time
Objective property Crisp Probabilistic
Degree of satisfaction Not presented Not presented
Main consideration Time or cost Time or cost
Aggregate operator — —
Output solution Efficient Not assured
Decision parameter Crisp Probabilistic
Revised flexibility — Low
Activity time Crisp Probabilistic
Indirect cost Not included Not included
Budget limit Not included Not included
a two-phase fuzzy mathematical programming approach to impre-
cise multi-objective PM decisions. The proposed TPFGP approach at-
tempts to minimize total project costs, total completion time and
total crashing costs with reference to direct costs, indirect costs, con-
tractual penalty costs, duration of activities and the of constraint
available budget. An industrial case is used to demonstrate the fea-
sibility of applying the proposed approach to real PM decisions. Sen-
sitivity analysis results for varying project duration indicate that
minimizing completion time conflicts with minimizing the total
project costs and the total crashing costs. It implies that if the project
DM faces costly indirect and contractual penalties for being late in
completing a project, the use of additional resources to reduce the
project completion time may be worthwhile.

The main contribution of this work lies in presenting a two-
phase fuzzy programming methodology for imprecise multi-objec-
tive PM decisions. The major limitations of the proposed approach
concern the certain assumptions made for each of the unit cost/
time coefficients in the objective functions and related available re-
sources in the constraints. Future researchers may explore the fuz-
zy goals and fuzzy constraints that the properties of decision
variables, unit cost/time coefficients and parameters in PM deci-
sion problems are fuzzy/imprecise. Moreover, the proposed ap-
proach implicitly assumes that the piecewise linear membership
function is the proper representative fuzzy goals of the human
DM for the PM decisions. Future works may also apply the linear
and/or non-linear membership functions to develop a suitable
PM plan. Additionally, in the Daya case implemented in this work,
the corresponding weights for three fuzzy objectives are specified
by referring the historical data and knowledge of project DM. Fu-
ture researchers can adopt AHP, fuzzy AHP and other techniques
for exploring the relative weights among multiple objective func-
tions to make it better suited to practical applications.

Appendix A

The complete equivalent ordinary LP model for solving the fuz-
zy multi-objective PM decision problems in phase I is derived as
follows (Hannan, 1981; Liang, 2008; Wang & Liang, 2004b)

Step 1: Specify the degree of membership fg(zg) for several values
for each of the objective functions zg, g = 1, 2, . . ., K, as Table A1.
Step 2: Convert the membership functions fg(zg) into the follow-
ing form
fgðzgÞ ¼
XPg

e¼1

agejzg � Xgej þ bgzg þ cg g ¼ 1;2; . . . ;K ðA1Þ

where, age ¼ � tg;eþ1�tge

2 ; bg ¼
tg;Pgþ1þtg1

2 ; cg ¼
Sg;Pgþ1þSg1

2 . Here it is as-
sumed that fgðzgÞ ¼ tgrzg þ Sgr for each segment Xg;r�1 6 zg 6 Xgr ,
where tgr denotes the slope and Sgr is the y-intercept of the sec-
ing
)

Fuzzy linear programming
(Wang & Fu, 1998)

FGP (Arikan &
Gungor, 2001)

The proposed
TPFGP approach

Single, linear Multiple, linear Multiple, linear
Cost or time Cost and time Cost and time
Fuzzy Fuzzy Fuzzy
Presented Presented Presented
Time or cost Time and cost Time and cost
Minimum Minimum Minimum and average
Not assured Not assured Efficient
Fuzzy Crisp Crisp
Medium Medium High
Fuzzy Crisp Crisp
Not included Not included Included
Not included Not included Included



Table A1
Piecewise linear membership functions fgðzgÞ.

z1 > X10 X10 X11 X12 . . . X1P1 X1;P1þ1 < X1;P1þ1

f1ðz1Þ 0 0 q11 q12 . . . q1P1
1 1

z2 > X20 X20 X21 X22 . . . X2P2 X2;P2þ < X2;P2þ1

f2ðz2Þ 0 0 q21 q22 . . . q2P2
1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

zK > XK0 XK0 XK1 XK2 . . . XKP2 XK;P2þ1 < XK;P2þ1

fK ðzK Þ 0 0 qK1 qK2 . . . qKP2
1 1

Note: 0 6 qge 6 1:0; qge 6 qg;eþ1; g ¼ 1;2; . . . ;K; e ¼ 1;2; . . . ; Pg .
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tion of the line segment initiated at Xg,r�1 and terminated at Xgr

in the piecewise linear function. Hence,

fgðzgÞ ¼ �
tg2 � tg1

2

� �
jzg � Xg1j �

tg3 � tg2

2

� �
jzg � Xg2j � � � �

�
tg;Pgþ1 � tgPg

2

� �
jzg � XgPg

j þ
tg;Pgþ1 þ tg1

2

� �
zg

þ
Sg;Pgþ1 þ Sg1

2
tg;eþ1 � tge

2

� �
–0; g ¼ 1;2; . . . ;K;

e ¼ 1;2; . . . ; Pg ðA2Þ

where tg1 ¼
qg1�0

Xg1�Xg0

� �
; tg2 ¼

qg2�qg1
Xg2�Xg1

� �
; . . . ; tg;Pgþ1 ¼

1:0�qgPg

Xg;Pgþ1�XgPg

� �
. Pg

is the numbers of divided points of the gth objective function
(piecewise linear), and Sg;Pgþ1 is the y-intercept of the section
of the line segment initiated at XgPg

and terminated at Xg;Pgþ1.

Step 3: Introduce the nonnegative deviational variables
zg þ d�ge � dþge ¼ Xge g ¼ 1;2; . . . ;K; e ¼ 1;2; . . . ; Pg ðA3Þ

where dþge and d�ge denote the deviational variables at the eth
point and Xge represents the values of the gth objective function
at the eth point.

Step 4: Substituting expression (A3) into expression (A2), yields
fgðzgÞ ¼ �
tg2 � tg1

2

� �
ðd�g1 � dþg1Þ �

tg3 � tg2

2

� �
ðd�g2 � dþg2Þ

� � � � �
tg;Pgþ1 � tgPg

2

� �
ðd�gPg

� dþgPg
Þ

þ
tg;Pgþ1 þ tg1

2

� �
zg þ

Sg;Pgþ1 þ Sg1

2
g ¼ 1;2; . . . ;K ðA4Þ

Step 5: By introducing the auxiliary variable Lð1Þ, and then the
original fuzzy MOLP problem can be converted into the equiva-
lent ordinary LP form using the minimum operator to aggregate
fuzzy sets.

Appendix B

The fuzzy decision-making concept of Bellman and Zadeh
(1970) is described as follows. Let X be a given set of all possible
solutions to a decision problem. A fuzzy goal G is a fuzzy set on
X characterized by its membership function.

lG : X ! ½0;1� ðB1Þ

A fuzzy constraint C is a fuzzy set on X characterized by its
membership function

lC : X ! ½0;1� ðB2Þ
Then, G and C combine to generate a fuzzy decision D on X,
which is a fuzzy set resulting from intersection of G and C, and is
characterized by its membership function.

L ¼ lDðxÞ ¼ lGðxÞ ^ lCðxÞ ¼ MinðlGðxÞ;lCðxÞÞ ðB3Þ

and the corresponding maximizing decision is defined by

Max L ¼ Max lDðxÞ ¼ Max MinðlGðxÞ;lCðxÞÞ ðB4Þ

More generally, suppose the fuzzy decision D results from k fuz-
zy goals G1, . . ., Gk and m constraints C1, . . ., Cm. Then the fuzzy
decision D is the intersection of G1, . . ., Gk and C1, . . ., Cm, and is
characterized by its membership function.

L ¼ lDðxÞ ¼ lG1
ðxÞ ^ lG2

ðxÞ ^ . . . ^ lGk
ðxÞ ^ lC1

ðxÞ ^ lC2
ðxÞ ^ . . . ^ lCm

ðxÞ
¼ Min ðlG1

ðxÞ;lG2
ðxÞ; . . . ;lGk

ðxÞ;lC1
ðxÞ;lC2

ðxÞ; . . . ;lCm
ðxÞÞ ðB5Þ

and the corresponding maximizing decision is defined by

Max L ¼ Max lDðxÞ
¼ Max MinðlG1

ðxÞ;lG2
ðxÞ; . . . ;lGk

ðxÞ;lC1
ðxÞ; . . . ;lCm

ðxÞÞ:
ðB6Þ
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