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a b s t r a c t

In this paper, we extend the VIKOR method for dynamic intuitionistic fuzzy multiple
attribute decision making (DIF-MADM). Two new aggregation operators called dynamic
intuitionistic fuzzy weighted geometric (DIFWG) operator and uncertain dynamic
intuitionistic fuzzy weighted geometric (UDIFWG) operator are presented. Based on the
DIFWA and UDIFWA operators respectively, we develop two procedures to solve the
DIF-MADM problems where all attribute values are expressed in intuitionistic fuzzy
numbers or interval-valued intuitionistic fuzzy numbers, which are collected at different
periods. Finally, a numerical example is used to illustrate the applicability of the proposed
approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As extension of Zadeh’s fuzzy set [1] whose basic component is only a membership function, Atanassov [2–4] introduced
the concept of intuitionistic fuzzy sets (IFSs). Bustince and Burillo [5] showed that IFS are vague sets [6]. IFSs has been proven
to be highly useful to deal with uncertainty and vagueness, and a lot of work has been done to develop and enrich the IFS
theory [7,8]. In many complex decision making problems, the decision information provided by the decision maker is often
imprecise or uncertain [9] due to time pressure, lack of data, or the decision maker’s limited attention and information
processing capabilities. Thus, IFS is a very suitable tool to be used to describe imprecise or uncertain decision information.
Recently, some researchers have shown great interest in IFS theory and applied it to the field of decision making [10–18].
Li [19] extended the linear programming techniques for multi-dimensional analysis of preference (LINMAP) to develop a
new methodology for solving multi-attribute decision making problems under intuitionistic fuzzy environments. Xu and
Yager [20] developed some geometric aggregation operators, which extend the traditional weighted geometric operator and
ordered weighed geometric operator to accommodate the environment where the given arguments are IFSs, and developed
an approach, based on the intuitionistic fuzzy hybrid geometric operator, to multi-attribute decision making based on
IFSs. Liu and Wang [21] gave an evaluation function for the decision making problems to measure the degrees to which
alternatives satisfy and do not satisfy the decisionmaker’s requirement. Then, they introduced the intuitionistic fuzzy point
operators, and defined a series of new score functions for multi-attribute decision making problems based on intuitionistic
fuzzy point operators and evaluation function. Li et al. [22] developed a new methodology for solving multiple attribute
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group decision making problems using IFSs, in which multiple attributes are explicitly considered. In this methodology,
for each decision maker in group two auxiliary fractional programming models are derived from the TOPSIS method to
determine the relative closeness coefficient intervals of alternatives, which are aggregated for the group to generate the
ranking order of all alternatives by computing their optimal degrees ofmembership based on the rankingmethod of interval
numbers. All these studies are focused on decision making problems where all original decision information is provided in
the same period. However, in many decision areas, such as multi-period investment decision making, medical diagnosis,
personnel dynamic examination, and military system efficiency dynamic evaluation, the original decision information is
usually collected at different periods. Thus, it is necessary to develop some approaches to deal with these issues. Xu and
Yager [23] developed two new aggregation operators such as the dynamic intuitionistic fuzzy weighted averaging (DIFWA)
operator and uncertain dynamic intuitionistic fuzzyweighted averaging (UDIFWA) operator, and developed twoprocedures,
based on DIFWA and UDIFWA operators respectively, to solve the dynamic intuitionistic fuzzy multi-attribute decision
making (DIF-MADM) problems where all attribute values are expressed in intuitionistic fuzzy numbers or interval-valued
intuitionistic fuzzy numbers, which are collected at different periods.

The VIKOR method proposed by Opricovic [24], was developed for multiple attribute optimizations of complex systems.
The VIKOR method is a compromise ranking approach for multiple criteria decision making problems. It determines a
compromise solution, providing a maximum utility for the majority and a minimum regret for the opponent. There exists
a large amount of literature involving VIKOR theory and application. For example, Opricovic and Tzeng [25] suggested
using fuzzy logic for the VIKOR method. Tzeng et al. [26] used and compared the VIKOR and TOPSIS methods in solving
a public transportation problem. Büyüközkan and Ruan [27] extended the VIKOR method to effectively solve software
evaluation problem under a fuzzy environment. Opricovic and Tzeng [28] extended the VIKOR method with a stability
analysis determining the weight stability intervals and with trade-offs analysis and compared the extended VIKOR method
with threemulticriteria decisionmakingmethods: TOPSIS, PROMETHEE, and ELECTRE. Sayadi et al. [29] extended the VIKOR
method to multiple attribute decision making problem with interval numbers. Chang and Hsu [30] showed that the VIKOR
method is advantageous for evaluating the relative environmental vulnerability of subdivisions in a watershed. According
to a comparative analysis of VIKOR and TOPSIS written by Opricovic and Tzeng [31], the VIKOR and TOPSIS methods,
respectively, use different aggregation functions and different normalization methods. The TOPSIS method is suitable for
cautious decision maker(s), because the decision maker(s) might like to have a decision which not only makes as much
profit as possible, but also avoids as much risk as possible, whereas the VIKOR method is suitable for those situations in
which the decision maker wants to have maximum profit and the risk of decisions is less important for him.

In this paper, we shall extend the VIKOR method to solve the DIF-MADM problems. To do that, we first develop
an aggregation operator called dynamic intuitionistic fuzzy weighted geometric (DIFWG) operator, and then develop a
procedure for DIF-MADM. Furthermore, we extend the develop operator and procedure to deal with the situation where
all the attribute values are expressed in interval-valued intuitionistic fuzzy numbers collected at different periods. Finally,
a numerical example is used to illustrate the applicability of the proposed approach.

2. Preliminaries

Let us first define some basic concepts related to IFSs [2].

Definition 1. Let X be a fixed set, a fuzzy set F in X is given by Zadeh [1] as follows:

F = {⟨x, µF (x)⟩|x ∈ X}, (1)

where µF : X → [0, 1] denotes the membership function of the set F .

Definition 2. Let X be a fixed set, an IFS A in X is given by Atanassov [2] as an object having the following form:

A = {⟨x, µA(x), νA(x)⟩|x ∈ X}, (2)

where µA : X → [0, 1] and νA : X → [0, 1] denote, respectively, membership function and non-membership function of A
with the condition 0 ≤ µA(x) + νA(x) ≤ 1 for any x ∈ X .

For each IFS A in X ,

πA(x) = 1 − µA(x) − νA(x) (3)

is called the degree of indeterminacy of x to A, or called the degree of hesitancy of x to A. Especially, if πA(x) = 0 for all x ∈ X ,
then the IFS is reduced to a fuzzy set.

Clearly, a prominent characteristic of an IFS is that it assigns to each element a membership degree, a non-membership
degree and a hesitation degree, and thus, IFS constitutes an extension of Zadeh’s fuzzy setwhich only assigns to each element
a membership degree.
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For convenience of computation, Xu and Yager [20] called α = (µα, να, πα) an intuitionistic fuzzy number2 (IFN), where

µα ∈ [0, 1], να ∈ [0, 1], µα + να ≤ 1, πα = 1 − µα − να. (4)

For an IFN α = (µα, να, πα), if the value µα gets bigger and the value να gets smaller, then the IFN α gets greater, and
thus from (4), we know that (1, 0, 0) and (0, 1, 0) are the largest and smallest IFNs, respectively.

Based on the score function and the accuracy function, we define a method to compare two IFNs as follows:

Definition 3. Let α1 = (µα1 , να1 , πα1) and α2 = (µα2 , να2 , πα2) be two IFNs, s(α1) = µα1 − να1 and s(α2) = µα2 − να2
be the score of α1 and α2, respectively, and h(α1) = µα1 + να1 and h(α2) = µα2 + να2 be the accuracy degree of ã1 and ã2,
respectively, then:

• if s(α1) < s(α2), then α1 is smaller than α2, denoted by α1 < α2;
• if s(α1) = s(α2), then

(1) if h(α1) = h(α2), then α1 and α2 represent the same information, i.e.,µα1 = µα2 , να1 = να2 , and πα1 = πα2 , denoted
by α1 = α2;

(2) if h(α1) < h(α2), then α1 is smaller than α2, denoted by α1 < α2.

Three methods of defining the Hamming distance between IFSs have been proposed by Burillo and Bustince [34], Szmidt
and Kacprzyk [35], and Grzegorzewski [36], respectively. So we adopt these methods to define Hamming distance between
IFNs as follows:

Definition 4. Let α1 = (µα1 , να1 , πα1) and α2 = (µα2 , να2 , πα2) be IFNs, then

• Hamming distance proposed by Burillo and Bustince, d1:

d1(α1, α2) =
1
2
(|µα1 − µα2 | + |να1 − να2 |); (5)

• Hamming distance proposed by Szmidt and Kacprzyk, d2:

d2(α1, α2) =
1
2
(|µα1 − µα2 | + |να1 − να2 | + |πα1 − πα2 |); (6)

• Hamming distance proposed by Grzegorzewski, d3:

d3(α1, α2) = max{|µα1 − µα2 |, |να1 − να2 |}. (7)

3. Dynamic intuitionistic fuzzy weighted geometric operator

Information aggregation is an essential process of gathering relevant information from multiple sources and thus is an
important research topic in the field of information fusion. Atanassov [2–4] defined some basic operations and relations
over IFSs. De et al. [37] developed some new operations such concentration, dilation and normalization of IFSs. Xu and Yager
[20] developed some geometric operators to aggregate intuitionistic fuzzy information. All these operations, relations and
operators can only be used to deal with time independent arguments. However, if time is taken into account, for example,
the argument informationmay be collected at different periods, then the aggregation operators and their associatedweights
should not be kept constant. As a result, based on (4), Xu and Yager [23] defined the notion of intuitionistic fuzzy variables.

Definition 5. Let t be a time variable, then we call α(t) = (µα(t), να(t), πα(t)) an intuitionistic fuzzy variable, where

µα(t) ∈ [0, 1], να(t) ∈ [0, 1], µα(t) + να(t) ≤ 1, πα(t) = 1 − µα(t) − να(t). (8)

For an intuitionistic fuzzy variable α(t) = (µα(t), να(t), πα(t)), if t = t1, t2, . . . , tp, then α(t1), α(t2), . . . , α(tp) indicate p
IFNs collected at p different periods. Below we introduce some operations related to IFNs.

Definition 6. Let α(t1) = (µα(t1), να(t1), πα(t1)) and α2(t2) = (µα(t2), να(t2), πα(t2)) be two IFNs, then

(1) α(t1) ⊗ α(t2) = (µα(t1)µα(t2), να(t1) + να(t2) − να(t1)να(t2), (1 − να(t1))(1 − να(t2)) − µα(t1)µα(t2)).
(2) (α(t1))λ = (µλ

α(t1)
, 1 − (1 − να(t1))

λ, (1 − να(t1))
λ
− µλ

α(t1)
), λ > 0.

2 The notion of intuitionistic fuzzy numbers, already used in the present form in some papers [17,18,20], has two problems: in the particular fuzzy case
the well-known notion of fuzzy numbers is not found again; given the possibility of confusion — another notion of intuitionistic fuzzy numbers, which in
a particular case becomes a fuzzy number, was studied and used in [32,33].
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From Definition 6, the operation results are also IFNs and we can get the following results:

(1) α(t1) ⊗ α(t2) = α(t2) ⊗ α(t1).
(2) (α(t1) ⊗ α(t2))λ = α(t1)λ ⊗ α(t2)λ, λ > 0.
(3) α(t1)λ1 ⊗ α(t1)λ2 = α(t1)λ1+λ2 , λ1, λ2 > 0.

Definition 7. Let α(t1), α(t2), . . . , α(tp) be a collection of IFNs collected at p different periods tk (k = 1, 2, . . . , p), and
λ(t) = (λ(t1), λ(t2), . . . , λ(tp))T be the weight vector of periods tk (k = 1, 2, . . . , p), then we call

DIFWGλ(t)(α(t1), α(t2), . . . , α(Tp)) = α(t1)λ(t1) ⊗ α(t2)λ(t2) ⊗ · · · ⊗ α(tp)λ(tp) (9)

a dynamic intuitionistic fuzzy weighted geometric (DIFWG) operator.

By Definition 6, (9) can be rewritten as follows:

DIFWGλ(t)(α(t1), α(t2), . . . , α(tp))

=


p

k=1

µ
λ(tk)
α(tk)

, 1 −

p
k=1

(1 − να(tk))
λ(tk),

p
k=1

(1 − να(tk))
λ(tk) −

p
k=1

µ
λ(tk)
α(tk)


, (10)

where λ(tk) ≥ 0, k = 1, 2, . . . , p, and
p

k=1 λ(tk) = 1.
Based on Definition 7, we have the following properties.

Theorem 1. Let α(t1), α(t2), . . . , α(tp) be a collection of IFNs collected at p different periods tk(k = 1, 2, . . . , p) and λ(t) =

(λ(t1), λ(t2), . . . , λ(tp))T is the weight vector of the periods tk(k = 1, 2, . . . , p) with λ(tk) ≥ 0 and
p

k=1 λ(tk) = 1; then we
have the following.

(1) (Idempotency): If all α(tk) = (µα(tk), να(tk), πα(tk))(k = 1, 2, . . . , p) are equal, i.e., α(tk) = α(t) for all k, then

DIFWGλ(t)(α(t1), α(t2), . . . , α(tp)) = α(t).

(2) (Boundedness):

α(t)− ≤ DIFWGλ(t)(α(t1), α(t2), . . . , α(tp)) ≤ α(t)+,

where α(t)− = mink α(tk) and α(t)+ = maxk α(tk).
(3) (Monotonicity): Let α(tk)∗ = (µ∗

α(tk)
, ν∗

α(tk)
, π∗

α(tk)
)(k = 1, 2, . . . , p) be a collection of IFNs. If α(tk) ≤ α(tk)∗, for all k, then

DIFWGλ(t)(α(t1), α(t2), . . . , α(tp)) ≤ DIFWGλ(t)(α(t1)∗, α(t2)∗, . . . , α(tp)∗).

4. An approach to DIF-MADM

In this section, we consider DIF-MADMproblemswhere all attribute values are expressed in intuitionistic fuzzy numbers,
which are collected at different periods.

Let X = {x1, x2, . . . , xn} be a discrete set of n feasible alternatives, and let G = {G1,G2, . . . ,Gm} be a finite set of
m attributes, whose weight vector is w = (w1, w2, . . . , wm)T , where wj ≥ 0, j = 1, 2, . . . ,m,

m
j=1 wj = 1. There

are p periods tk(k = 1, 2, . . . , p), whose weight vector is λ(t) = (λ(t1), λ(t2), . . . , λ(tp))T , where λ(tk) ≥ 0, k =

1, 2, . . . , p,
p

k=1 λ(tk) = 1. Suppose that R(tk) = (rij(tk))n×m is an intuitionistic fuzzy decision matrix of the period tk,
where rij(tk) = (µrij(tk), νrij(tk), πrij(tk)) is an attribute value, denoted by an IFN,µrij(tk) indicates the degree that the alternative
xi should satisfy the attribute Gj at period tk, νrij(tk) indicates the degree that the alternative xi should not satisfy the attribute
Gj at period tk, and πrij(tk) indicates the degree of indeterminacy of the alternative xi to the attribute Gj, such that

µrij(tk) ∈ [0, 1], νrij(tk) ∈ [0, 1], µrij(tk) + νrij(tk) ≤ 1, (11)
πrij(tk) = 1 − µrij(tk) − νrij(tk), i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Based on the above decision information, in what follows, we propose a practical procedure to rank and select the most
alternative(s):

Procedure I. Step 1. Utilize the DIFWG operator:

rij = DIFWGλ(t)(rij(t1), rij(t2), . . . , rij(tp))

=


p

k=1

µ
λ(tk)
rij(tk)

, 1 −

p
k=1

(1 − νrij(tk))
λ(tk),

p
k=1

(1 − νrij(tk))
λ(tk) −

p
k=1

µ
λ(tk)
rij(tk)


(12)
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to aggregate all the intuitionistic fuzzy decision matrices R(tk) = (rij(tk))n×m(k = 1, 2, . . . , p) into a complex intuitionistic
fuzzy decision matrix R = (rij)n×m, where rij = (µij, νij, πij), i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Step 2. Defineα+
= (α+

1 , α+

2 , . . . , α+
m )T as the intuitionistic fuzzy ideal solution (IFIS), whereα+

j = maxi rij(j = 1, 2, . . . ,m)

are the m largest IFNs. Denote α+

j by α+

j = (µ+

j , ν+

j , π+

j ). Furthermore, for convenience of depiction, we denote the
alternatives xi(i = 1, 2, . . . , n) by xi = (ri1, ri2, . . . , rim)T , i = 1, 2, . . . , n.

Step 3. Utilize (5)–(7) to compute the values S(xi) and R(xi) for each alternative xi (i = 1, 2, . . . , n), which represent the
average and the worst group scores of the alternatives xi, respectively, with the relations

• Burillo and Bustince’s method, d1:

Sd1(xi) =

m
j=1

wj · d1(α+

j , rij)

=
1
2

m
j=1

wj(|µ
+

j − µij| + |ν+

j − νij|), (13)

Rd1(xi) = max
1≤j≤m

wj · d1(α+

j , rij)

= max
1≤j≤m

wj(|µ
+

j − µij| + |ν+

j − νij|)

2
. (14)

• Szmidt and Kacprzyk’s method, d2:

Sd2(xi) =

m
j=1

wj · d2(α+

j , rij)

=
1
2

m
j=1

wj(|µ
+

j − µij| + |ν+

j − νij| + |π+

j − πij|), (15)

Rd2(xi) = max
1≤j≤m

wj · d2(α+

j , rij)

= max
1≤j≤m

wj(|µ
+

j − µij| + |ν+

j − νij| + |π+

j − πij|)

2
. (16)

• Grzegorzewski’s method, d3:

Sd3(xi) =

m
j=1

wj · dh(α+

j , rij)

=

m
j=1

wj · max{|µ+

j − µij|, |ν
+

j − νij|}, (17)

Rd3(xi) = max
1≤j≤m

wj · dh(α+

j , rij)

= max
1≤j≤m

wj · max{|µ+

j − µij|, |ν
+

j − νij|}. (18)

Step 4. Compute the Qh(xi) (h = d1, d2, d3) values for each alternative xi(i = 1, 2, . . . , n) with the relation

Qh(xi) =
v(Sh(xi) − S∗

h )

S−

h − S∗

h
+

(1 − v)(Rh(xi) − R∗

h)

R−

h − R∗

h
, (19)

where

S∗

h = min
1≤i≤n

Sh(xi), S−

h = max
1≤i≤n

Sh(xi), h = d1, d2, d3, (20)

R∗

h = min
1≤i≤n

Rh(xi), R−

h = max
1≤i≤n

Rh(xi), h = d1, d2, d3, (21)

and v ∈ [0, 1] is the weight of the decision making strategy of ‘‘the majority of attribute’’ (or ‘‘the maximum group utility’’).

Step 5. Rank the alternatives by sorting each Sh, Rh and Qh (h = d1, d2, d3) values in an decreasing order. The result is a set
of three ranking lists.
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Step 6. Propose the alternative x′
∈ X which is ranked the best by Qh(xi) (h = d1, d2, d3) (where Qh(x′) = min1≤i≤n{Qh(xi)})

as compromise solution if the following two conditions (a) and (b) are satisfied

(a) ‘‘Acceptable advantage’’:

Qh(x′′) − Qh(x′) ≥
1

(m − 1)

where x′′
∈ X is the alternative in the second position in the list ranked by Qh(xi).

(b) ‘‘Acceptable stability in decision making’’: x′ must also be the best ranked by Sh(xi) or/and Rh(xi). This compromise
solution is stable within a decision making process, which could be: ‘‘voting by majority rule’’ (when v > 0.5), or ‘‘by
consensus’’ (when v = 0.5), or ‘‘with veto’’ (when v < 0.5).

If one of the above conditions is not satisfied, then a set of compromise solutions is proposed, which consists of:
• Alternatives x′ and x′′ if only the condition (b) is not satisfied, or
• Alternatives x′, x′′, . . . , xN if the condition (a) is not satisfied, whereN is the largest i such thatQh(xi)−Qh(x′) < 1

(m−1) ,
which means that the positions of these alternatives are in closeness.

Step 7. End.

5. An approach to DIF-MADM under interval uncertainty

Atanassov andGargov [38] generalized IFS anddefined thenotion of the interval-valued IFS (IVIFS),which is characterized
by a membership function and a non-membership function whose values are intervals rather than exact numbers.

Definition 8. Let X be a fixed set, an IVIFS Ã in X is an object having the form:

Ã = {⟨x, µ̃Ã(x), ν̃Ã(x)⟩| x ∈ X}, (22)

where µ̃Ã(x) = [µ̃L
Ã
(x), µ̃U

Ã
(x)] ⊂ [0, 1] and ν̃Ã(x) = [ν̃L

Ã
(x), ν̃U

Ã
(x)] ⊂ [0, 1] are intervals, µ̃L

Ã
(x) = inf µ̃Ã(x), µ̃

U
Ã
(x) =

sup µ̃Ã(x), ν̃
L
Ã
(x) = inf ν̃Ã(x), ν̃

U
Ã
(x) = sup ν̃Ã(x), and for every x ∈ X:

µ̃U
Ã
(x) + ν̃U

Ã
(x) ≤ 1. (23)

Let π̃Ã(x) = [π̃ L
Ã
(x), π̃U

Ã
(x)], where

π̃ L
Ã
(x) = 1 − µ̃U

Ã
(x) − ν̃U

Ã
(x), π̃U

Ã
(x) = 1 − µ̃U

Ã
(x) − ν̃U

Ã
(x), for all x ∈ X . (24)

Xu and Yager [23] called the triple (µ̃Ã(x), ν̃Ã(x), π̃Ã(x)) an interval-valued intuitionistic fuzzy number (IVIFN). For
convenience, we denote an IVIFN by α̃ = (µ̃α̃, ν̃α̃, π̃α̃), where

µ̃α̃ = [µ̃L
α̃, µ̃U

α̃ ] ⊂ [0, 1], ν̃α̃ = [ν̃L
α̃, ν̃U

α̃ ] ⊂ [0, 1], µ̃U
α̃ + ν̃U

α̃ ≤ 1, (25)

π̃α̃ = [π̃ L
α̃, π̃U

α̃ ] = [1 − µ̃U
α̃ − ν̃U

α̃ , 1 − µ̃L
α̃ − ν̃L

α̃].

Obviously, by (25), we know that ([1, 1], [0, 0], [0, 0]) and ([0, 0], [1, 1], [0, 0]) are the largest and smallest IVIFNs,
respectively.

Based on the score function [39] and the accuracy function [40] of IVIFNs, we define a method to compare two IVIFNs as
follows:

Definition 9. Let α̃1 = ([µ̃L
α̃1

, µ̃U
α̃1

], [ν̃L
α̃1

, ν̃U
α̃1

], [π̃ L
α̃1

, π̃U
α̃1

]) and α̃2 = ([µ̃L
α̃2

, µ̃U
α̃2

], [ν̃L
α̃2

, ν̃U
α̃2

], [π̃ L
α̃2

, π̃U
α̃2

]) be two IVIFNs,
s(α̃1) =

1
2 (µ̃

L
α̃1

− ν̃L
α̃1

+ µ̃U
α̃1

− ν̃U
α̃1

) and s(α̃2) =
1
2 (µ̃

L
α̃2

− ν̃L
α̃2

+ µ̃U
α̃2

− ν̃U
α̃2

) be the score of α̃1 and α̃2, respectively, and
h(α̃1) =

1
2 (µ̃

L
α̃1

+ ν̃L
α̃1

+ µ̃U
α̃1

+ ν̃U
α̃1

) and h(α̃2) =
1
2 (µ̃

L
α̃2

+ ν̃L
α̃2

+ µ̃U
α̃2

+ ν̃U
α̃2

) be the accuracy degree of ã1 and ã2, respectively,
then:

• if s(α̃1) < s(α̃2), then α̃1 is smaller than α̃2, denoted by α̃1 < α̃2;
• if s(α̃1) = s(α̃2), then

(1) if h(α̃1) = h(α̃2), then α̃1 and α̃2 represent the same information, i.e., µ̃α̃1 = µ̃α̃2 , ν̃α̃1 = ν̃α̃2 , and π̃α̃1 = π̃α̃2 , denoted
by α̃1 = α̃2;

(2) if h(α̃1) < h(α̃2), then α̃1 is smaller than α̃2, denoted by α̃1 < α̃2.

In what follows, we extend Definition 4 to define three types of the Hamming distance between two IVIFNs as
follows:
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Definition 10. Let α̃1 = ([µ̃L
α̃1

, µ̃U
α̃1

], [ν̃L
α̃1

, ν̃U
α̃1

], [π̃ L
α̃1

, π̃U
α̃1

]) and α̃2 = ([µ̃L
α̃2

, µ̃U
α̃2

], [ν̃L
α̃2

, ν̃U
α̃2

], [π̃ L
α̃2

, π̃U
α̃2

]) be IVIFNs, then

• Hamming distance by an extension of Burillo and Bustince’s method, d1:

d1(α̃1, α̃2) =
1
4


|µ̃L

α̃1
− µ̃L

α̃2
| + |µ̃U

α̃1
− µ̃U

α̃2
| + |ν̃L

α̃1
− ν̃L

α̃2
| + |ν̃U

α̃1
− ν̃U

α̃2
|

; (26)

• Hamming distance by an extension of Szmidt and Kacprzyk’s method, d2:

d2(α̃1, α̃2) =
1
4


|µ̃L

α̃1
− µ̃L

α̃2
| + |µ̃U

α̃1
− µ̃U

α̃2
| + |ν̃L

α̃1
− ν̃L

α̃2
| + |ν̃U

α̃1
− ν̃U

α̃2
| + |π̃ L

α̃1
− π̃ L

α̃2
| + |π̃U

α̃1
− π̃U

α̃2
|

; (27)

• Hamming distance by an extension of Grzegorzewski’s method, d3:

d3(α̃1, α̃2) =
1
2


max{|µ̃L

α̃1
− µ̃L

α̃2
|, |µ̃U

α̃1
− µ̃U

α̃2
|} + max{|ν̃L

α̃1
− ν̃L

α̃2
|, |ν̃U

α̃1
− ν̃U

α̃2
|}

. (28)

From Definitions 5–7, we extend those to the case of IVIFNs.

Definition 11. Let t be a time variable, then we call α̃(t) =

[µ̃L

α̃(t), µ̃
U
α̃(t)], [ν̃

L
α̃(t), ν̃

U
α̃(t)], [π̃

L
α̃(t), π̃

U
α̃(t)]


an uncertain

intuitionistic fuzzy variable, where

µ̃α̃(t) = [µ̃L
α̃(t), µ̃

U
α̃(t)] ⊂ [0, 1], ν̃α̃(t) = [ν̃L

α̃(t), ν̃
U
α̃(t)] ⊂ [0, 1], µ̃U

α̃(t) + ν̃U
α̃(t) ≤ 1, (29)

π̃α̃(t) = [π̃ L
α̃(t), π̃

U
α̃(t)] = [1 − µ̃U

α̃(t) − ν̃U
α̃(t), 1 − µ̃L

α̃(t) − ν̃L
α̃(t)].

For an uncertain intuitionistic fuzzy variable α̃(t) =

[µ̃L

α̃(t), µ̃
U
α̃(t)], [ν̃

L
α̃(t), ν̃

U
α̃(t)], [π̃

L
α̃(t), π̃

U
α̃(t)]


, if t = t1, t2, . . . , tp, then

α̃(t1), α̃(t2), . . . , α̃(tp) indicate p IVIFNs collected at p different periods.
Now we introduce the following operations related to IVIFNs.

Definition 12. Let α̃(tk) =

[µ̃L

α̃(tk)
, µ̃U

α̃(t+k)], [ν̃
L
α̃(tk)

, ν̃U
α̃(tk)

], [π̃ L
α̃(tk)

, π̃U
α̃(tk)

]

(k = 1, 2) be two IVIFNs, then

(1) α̃(t1) ⊗ α̃(t2) =


µ̃L
α̃(t1)

µ̃L
α̃(t2)

, µ̃U
α̃(t1)

µ̃U
α̃(t2)


,

ν̃L

α̃(t1)
+ ν̃L

α̃(t2)
− ν̃L

α̃(t1)
ν̃L

α̃(t2)
, ν̃U

α̃(t1)
+ ν̃U

α̃(t2)
− ν̃U

α̃(t1)
ν̃U

α̃(t2)


,

(1− ν̃L

α̃(t1)
)(1−

ν̃L
α̃(t2)

) − µ̃L
α̃(t1)

µ̃L
α̃(t2)

, (1 − ν̃U
α̃(t1)

)(1 − ν̃U
α̃(t2)

) − µ̃U
α̃(t1)

µ̃U
α̃(t2)


.

(2) α̃(t1)λ =


(µ̃L
α̃(t1)

)λ, (µ̃U
α̃(t1)

)λ

,

1 − (1 − ν̃L

α̃(t1)
)λ, 1 − (1 − ν̃U

α̃(t1)
)λ

,

(1 − ν̃L

α̃(t1)
)λ − (µ̃L

α̃(t1)
)λ, (1 − ν̃U

α̃(t1)
)λ −

(µ̃U
α̃(t1)

)λ


, λ > 0.

Definition 13. Let α̃(t1), α̃(t2), . . . , α̃(tp) be a collection of IVIFNs collected at p different periods tk(k = 1, 2, . . . , p), and
λ(t) = (λ(t1), λ(t2), . . . , λ(tp))T be the weight vector of periods tk (k = 1, 2, . . . , p), then we call

UDIFWGλ(t)(α̃(t1), α̃(t2), . . . , α̃(tp)) = α̃(t1)λ(t1) ⊗ α̃(t2)λ(t2) ⊗ · · · ⊗ α̃(tp)λ(tp) (30)

an uncertain dynamic intuitionistic fuzzy weighted geometric (UDIFWG) operator, which can be rewritten as follows:

UDIFWGλ(t)(α̃(t1), α̃(t2), . . . , α̃(tp)) =


p

k=1

(µ̃L
α̃(tk)

)λ(tk),

p
k=1

(µ̃U
α̃(tk)

)λ(tk)


,

1 −

p
k=1

(1 − ν̃L
α̃(tk)

)λ(tk), 1 −

p
k=1

(1 − ν̃U
α̃(tk)

)λ(tk)


,


p

k=1

(1 − ν̃L
α̃(tk)

)λ(tk) −

p
k=1

(µ̃L
α̃(tk)

)λ(tk),

p
k=1

(1 − ν̃U
α̃(tk)

)λ(tk) −

p
k=1

(µ̃U
α̃(tk)

)λ(tk)


, (31)

where λ(tk) ≥ 0, k = 1, 2, . . . , p, and
p

k=1 λ(tk) = 1.

Now we consider the DIF-MADM problems under interval uncertainty where all the attribute values are expressed in
IVIFNs, which are collected at different periods. The following notations are used to depict the considered problems:

Let X,G, w and λ(t) be presented as in Section 4, and let R̃(tk) = (r̃ij(tk))n×m be an uncertain intuitionistic fuzzy decision
matrix of the period tk, where r̃ij(tk) = ([µ̃L

r̃ij(tk)
, µ̃U

r̃ij(tk)
], [ν̃L

r̃ij(tk)
, ν̃U

r̃ij(tk)
], [π̃ L

r̃ij(tk)
, π̃U

r̃ij(tk)
]) is an attribute value, denoted by

an IVIFN, [µ̃L
r̃ij(tk)

, µ̃U
r̃ij(tk)

] indicates the uncertain degree that the alternative xi should satisfy the attribute Gj at period
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tk, [ν̃L
r̃ij(tk)

, ν̃U
r̃ij(tk)

] indicates the uncertain degree that the alternative xi should not satisfy the attribute Gj at period tk, and

[π̃ L
r̃ij(tk)

, π̃U
r̃ij(tk)

] indicates the range of indeterminacy of the alternative xi to the attribute Gj, such that

[µ̃L
r̃ij(tk)

, µ̃U
r̃ij(tk)

] ⊂ [0, 1], [ν̃L
r̃ij(tk)

, ν̃U
r̃ij(tk)

] ⊂ [0, 1], µ̃U
r̃ij(tk)

+ ν̃U
r̃ij(tk)

≤ 1, (32)

[π̃ L
r̃ij(tk)

, π̃U
r̃ij(tk)

] = [1 − µ̃U
r̃ij(tk)

− ν̃U
r̃ij(tk)

, 1 − µ̃L
r̃ij(tk)

− ν̃L
r̃ij(tk)

], i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Similar to Section 4, a procedure for solving the above problems can be described as follows:

Procedure II. Step 1. Utilize the UDIFWG operator:

r̃ij = UDIFWGλ(t)(r̃ij(t1), r̃ij(t2), . . . , r̃ij(tp))

=


p

k=1

(µ̃L
r̃ij(tk)

)λ(tk),

p
k=1

(µ̃U
r̃ij(tk)

)λ(tk)


,


1 −

p
k=1

(1 − ν̃L
r̃ij(tk)

)λ(tk),

1 −

p
k=1

(1 − ν̃U
r̃ij(tk)

)λ(tk)


,


p

k=1

(1 − ν̃U
r̃ij(tk)

)λ(tk) −

p
k=1

(µ̃U
r̃ij(tk)

)λ(tk),

p
k=1

(1 − ν̃L
r̃ij(tk)

)λ(tk) −

p
k=1

(µ̃L
r̃ij(tk)

)λ(tk)


(33)

to aggregate all the uncertain intuitionistic fuzzy decision matrices R̃(tk) = (r̃ij(tk))n×m(k = 1, 2, . . . , p) into a complex
uncertain intuitionistic fuzzy decision matrix R̃ = (r̃ij)n×m, where r̃ij = ([µ̃L

ij, µ̃
L
ij], [ν̃

L
ij, ν̃

L
ij], [π̃

L
ij, π̃

U
ij ]), i = 1, 2, . . . , n, j =

1, 2, . . . ,m.

Step 2. Define α̃+
= (α̃+

1 , α̃+

2 , . . . , α̃+
m )T as the uncertain intuitionistic fuzzy ideal solution (UIFIS), where α̃+

j =

maxi r̃ij(j = 1, 2, . . . ,m) are the m largest IVIFNs. Denote α̃+

j by α̃+

j = ([µ̃+L
j , µ̃+U

j ], [ν̃+L
j , ν̃+U

j ], [π̃+L
j , π̃+L

j ]). Furthermore,
for convenience of depiction, we denote the alternatives xi(i = 1, 2, . . . , n) by xi = (r̃i1, r̃i2, . . . , r̃im)T , i = 1, 2, . . . , n.

Step 3. Utilize (26)–(28) to compute the values S̃(xi) and R̃(xi) for each alternative xi (i = 1, 2, . . . , n), which represent the
average and the worst group scores of the alternatives xi, respectively, with the relations

• The extension of Burillo and Bustince’s method, d1:

S̃d1(xi) =

m
j=1

wj · d1(α̃+

j , r̃ij)

=
1
4

m
j=1

wj

|µ̃+L

j − µ̃L
ij| + |µ̃+U

j − µ̃U
ij | + |ν̃+L

j − ν̃L
ij| + |ν̃+U

j − ν̃U
ij |

, (34)

R̃d1(xi) = max
1≤j≤m

wj · d1(α̃+

j , r̃ij)

=
1
4

max
1≤j≤m

wj

|µ̃+L

j − µ̃L
ij| + |µ̃+U

j − µ̃U
ij | + |ν̃+L

j − ν̃L
ij| + |ν̃+U

j − ν̃U
ij |

. (35)

• The extension of Szmidt and Kacprzyk’s method, d2:

S̃d2(xi) =

m
j=1

wj · d2(α̃+

j , r̃ij)

=
1
4

m
j=1

wj

|µ̃+L

j − µ̃L
ij| + |µ̃+U

j − µ̃U
ij | + |ν̃+L

j − ν̃L
ij| + |ν̃+U

j − ν̃U
ij |

+ |π̃+L
j − π̃ L

ij | + |π̃+U
j − π̃U

ij |

, (36)

R̃d2(xi) = max
1≤j≤m

wj · d2(α̃+

j , r̃ij)

=
1
4

max
1≤j≤m

wj

|µ̃+L

j − µ̃L
ij| + |µ̃+U

j − µ̃U
ij | + |ν̃+L

j − ν̃L
ij| + |ν̃+U

j − ν̃U
ij |

+ |π̃+L
j − π̃ L

ij | + |π̃+U
j − π̃U

ij |

. (37)
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• The extension of Grzegorzewski’s method, d3:

S̃d3(xi) =

m
j=1

wj · dh(α̃+

j , r̃ij)

=
1
2

m
j=1

wj

max{|µ̃+L

j − µ̃L
ij|, |µ̃

+U
j − µ̃U

ij |} + max{|ν̃+L
j − ν̃L

ij|, |ν̃
+U
j − ν̃U

ij |}

, (38)

R̃d3(xi) = max
1≤j≤m

wj · dh(α̃+

j , r̃ij)

=
1
2

max
1≤j≤m

wj

max{|µ̃+L

j − µ̃L
ij|, |µ̃

+U
j − µ̃U

ij |} + max{|ν̃+L
j − ν̃L

ij|, |ν̃
+U
j − ν̃U

ij |}

. (39)

Step 4. Compute the Q̃h(xi) (h = d1, d2, d3) values for each alternative xi(i = 1, 2, . . . , n) with the relation

Q̃h(xi) =
v(S̃h(xi) − S̃∗

h )

S̃−

h − S̃∗

h

+
(1 − v)(R̃h(xi) − R̃∗

h)

R̃−

h − R̃∗

h

, (40)

where

S̃∗

h = min
1≤i≤n

S̃h(xi), S̃−

h = max
1≤i≤n

S̃h(xi), h = d1, d2, d3, (41)

R̃∗

h = min
1≤i≤n

R̃h(xi), R̃−

h = max
1≤i≤n

R̃h(xi), h = d1, d2, d3, (42)

and v ∈ [0, 1] is the weight of decision making strategy of ‘‘the majority of attribute’’ (or ‘‘the maximum group utility’’).

Step 5. Rank the alternatives by sorting each S̃h, R̃h and Q̃h (h = d1, d2, d3) values in decreasing order. The result is a set of
three ranking lists.

Step 6. Propose the alternative x′
∈ X which is ranked the best by Q̃h(xi) (h = d1, d2, d3) (where Q̃h(x′) = min1≤i≤n{Q̃h(xi)})

as the compromise solution if the following two conditions (a) and (b) are satisfied

(a) ‘‘Acceptable advantage’’:

Q̃h(x′′) − Q̃h(x′) ≥
1

(m − 1)

where x′′
∈ X is the alternative in the second position in the list ranked by Q̃h(xi).

(b) ‘‘Acceptable stability in decision making’’: x′ must also be the best ranked by S̃h(xi) or/and R̃h(xi). This compromise
solution is stable within a decision making process, which could be: ‘‘voting by majority rule’’ (when v > 0.5), or ‘‘by
consensus’’ (when v = 0.5), or ‘‘with veto’’ (when v < 0.5).

If one of the above conditions is not satisfied, then a set of compromise solutions is proposed, which consists of:
• Alternatives x′ and x′′ if only condition (b) is not satisfied, or
• Alternatives x′, x′′, . . . , xN if condition (a) is not satisfied, where N is the largest i such that Q̃h(xi) − Q̃h(x′) < 1

(m−1) ,
which means that the positions of these alternatives are in closeness.

Step 7. End.

6. Illustrative example

In this section, a problem of evaluating university faculty for tenure and promotion (adapted from Bryson and
Mobolurin [41]) is used to illustrate the developed approach.

A practical use of the proposed approach involves the evaluation of university faculty for tenure and promotion. The
attributes at some university are G1: teaching, G2: research, and G3: service. The committee evaluates the performance of
five faculty candidates (alternatives) xi(i = 1, 2, 3, 4, 5) in the three years tk (k = 1, 2, 3) according to the attributes
Gj(j = 1, 2, 3), and construct, respectively, the intuitionistic fuzzy decisionmatrices R(tk) (k = 1, 2, 3) as listed in Tables 1–
3. Let λ(t) = (0.2, 0.3, 0.5)T be theweight vector of the years tk (k = 1, 2, 3), andw = (0.3, 0.4, 0.3)T be theweight vector
of the attributes Gj (j = 1, 2, 3).

Now we utilize the proposed Procedure I to prioritize these faculty candidates:

Step 1. Utilize the DIFWG operator (10) to aggregate all the intuitionistic fuzzy decision matrices R(tk) into a complex
intuitionistic fuzzy decision matrix R (see Table 4).
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Table 1
Intuitionistic fuzzy decision matrix R(t1).

G1 G2 G3

x1 (0.8, 0.1, 0.1) (0.9, 0.1, 0.0) (0.7, 0.2, 0.1)
x2 (0.7, 0.3, 0.0) (0.6, 0.2, 0.2) (0.6, 0.3, 0.1)
x3 (0.5, 0.4, 0.1) (0.7, 0.3, 0.0) (0.6, 0.3, 0.1)
x4 (0.9, 0.1, 0.0) (0.7, 0.2, 0.1) (0.8, 0.2, 0.0)
x5 (0.6, 0.1, 0.3) (0.8, 0.2, 0.0) (0.5, 0.1, 0.4)

Table 2
Intuitionistic fuzzy decision matrix R(t2).

G1 G2 G3

x1 (0.9, 0.1, 0.0) (0.8, 0.2, 0.0) (0.8, 0.1, 0.1)
x2 (0.8, 0.2, 0.0) (0.5, 0.1, 0.4) (0.7, 0.2, 0.1)
x3 (0.5, 0.5, 0.0) (0.7, 0.2, 0.1) (0.8, 0.2, 0.1)
x4 (0.9, 0.1, 0.0) (0.9, 0.1, 0.0) (0.7, 0.3, 0.0)
x5 (0.5, 0.2, 0.3) (0.6, 0.3, 0.1) (0.6, 0.2, 0.2)

Table 3
Intuitionistic fuzzy decision matrix R(t3).

G1 G2 G3

x1 (0.7, 0.1, 0.2) (0.9, 0.1, 0.0) (0.7, 0.1, 0.2)
x2 (0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.5, 0.2, 0.3)
x3 (0.3, 0.4, 0.3) (0.8, 0.1, 0.1) (0.7, 0.1, 0.2)
x4 (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.9, 0.1, 0.0)
x5 (0.6, 0.3, 0.1) (0.8, 0.2, 0.0) (0.7, 0.2, 0.1)

Table 4
Complex intuitionistic fuzzy decision matrix R.

G1 G2 G3

x1 (0.7752, 0.1000, 0.1248) (0.8688, 0.1312, 0.0000) (0.7286, 0.1210, 0.1504)
x2 (0.6158, 0.1738, 0.2104) (0.5681, 0.1712, 0.2607) (0.5736, 0.2211, 0.2053)
x3 (0.3873, 0.4319, 0.1808) (0.7483, 0.1738, 0.0778) (0.7065, 0.1312, 0.1623)
x4 (0.8485, 0.1000, 0.0515) (0.7548, 0.1712, 0.0740) (0.8152, 0.1848, 0.0000)
x5 (0.5681, 0.2338, 0.1981) (0.7339, 0.2314, 0.0347) (0.6249, 0.1809, 0.1942)

Step 2. Determine the IFIS α+, and the alternatives xi (i = 1, 2, 3, 4, 5) by

α+
= ((0.8485, 0.1000, 0.0515), (0.8688, 0.1312, 0.0000), (0.8152, 0.1848, 0.0000))T ,

x1 = ((0.7752, 0.1000, 0.1248), (0.8688, 0.1312, 0.0000), (0.7286, 0.1210, 0.1504))T ,
x2 = ((0.6158, 0.1738, 0.2104), (0.5681, 0.1712, 0.2607), (0.5736, 0.2211, 0.2053))T ,
x3 = ((0.3873, 0.4319, 0.1808), (0.7483, 0.1738, 0.0778), (0.7065, 0.1312, 0.1623))T ,
x4 = ((0.8485, 0.1000, 0.0515), (0.7548, 0.1712, 0.0740), (0.8152, 0.1848, 0.0000))T ,
x5 = ((0.5681, 0.2338, 0.1981), (0.7339, 0.2314, 0.0347), (0.6249, 0.1809, 0.1942))T .

Step 3. Utilize (13)–(21) to compute the values Sh(xi), Rh(xi) and Qh(xi) (h = d1, d2, d3) for each alternative xi (i =

1, 2, 3, 4, 5), respectively, and rank the alternatives xi(i = 1, 2, 3, 4, 5) by sorting Sh, Rh and Qh in an decreasing order
(see Table 5).

Step 4. (a) In the case of d1, when 0 ≤ v < 0.8151, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 and {x1, x4}
is the set of compromise solutions; when v = 0.8151, the ranked order of all alternatives is x1 ∼ x4 ≻ x5 ≻ x2 ≻ x3 and
{x1, x4} is the set of compromise solutions; when 0.8151 < v ≤ 1, the ranked order of all alternatives is x4 ≻ x1 ≻ x5 ≻

x2 ≻ x3 and {x1, x4} is the set of compromise solutions.
(b) In the case of d2, when 0 ≤ v < 0.0516, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 and {x1, x4}

is the set of compromise solutions; when v = 0.0516, the ranked order of all alternatives is x1 ∼ x4 ≻ x5 ≻ x2 ≻ x3
and {x1, x4} is the set of compromise solutions; when 0.0516 < v < 0.6056, the ranked order of all alternatives is
x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3 and {x1, x4} is the set of compromise solutions; when v = 0.6056, the ranked order of all
alternatives is x4 ≻ x1 ≻ x5 ≻ x2 ∼ x3 and {x1, x4} is the set of compromise solutions; when 0.6056 < v ≤ 1, the ranked
order of all alternatives is x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 and {x1, x4} is the set of compromise solutions.
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Table 5
Decision results obtained from the proposed Procedure I.

(a) The values Sd1 (xi), Rd1 (xi) and Qd1 (xi) and preference ranking order obtained from d1

Sd1 Rd1 Qd1

x1 0.0336 0.0226 0.0193v
x2 0.1558 0.0681 0.4720 + 0.3895v
x3 0.1759 0.1190 1.0000
x4 0.0308 0.0308 0.0851(1 − v)

x5 0.1383 0.0621 0.4098 + 0.3311v

Ranking order x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3
(0 ≤ v < 0.8151)
x1 ∼ x4 ≻ x5 ≻ x2 ≻ x3
(v = 0.8151)
x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3
(0.8151 < v ≤ 1)

(b) The values Sd2 (xi), Rd2 (xi) and Qd2 (xi) and preference ranking order obtained from d2

Sd2 Rd2 Qd2

x1 0.0671 0.0451 0.0991v
x2 0.2626 0.1203 0.8060 + 0.1940v
x3 0.2352 0.1384 1 − 0.1263v
x4 0.0456 0.0456 0.0054(1 − v)

x5 0.1963 0.0841 0.4180 + 0.2765v

Ranking order x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3
(0 ≤ v < 0.0516)
x1 ∼ x4 ≻ x5 ≻ x2 ≻ x3
(v = 0.0516)
x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3
(0.0516 < v < 0.6056)
x4 ≻ x1 ≻ x5 ≻ x2 ∼ x3
(v = 0.6056)
x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2
(0.6056 < v ≤ 1)

(c) The values Sd3 (xi), Rd3 (xi) and Qd3 (xi) and preference ranking order obtained from dh

Sd3 Rd3 Qd3

x1 0.0480 0.0260 0.0111v
x2 0.2626 0.1203 0.8390 + 0.1610v
x3 0.2192 0.1384 1 − 0.2v
x4 0.0456 0.0456 0.1744(1 − v)

x5 0.1952 0.0841 0.5169 + 0.1725v

Ranking order x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3
(0 ≤ v < 0.4460)
x1 ≻ x4 ≻ x5 ≻ x2 ∼ x3
(v = 0.4460)
x1 ≻ x4 ≻ x5 ≻ x3 ≻ x2
(0.4460 < v < 0.9402)
x1 ∼ x4 ≻ x5 ≻ x3 ≻ x2
(v = 0.9402)
x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2
(0.9402 < v ≤ 1)

(c) In the case of d3, when 0 ≤ v < 0.4460, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 and {x1, x4}
is the set of compromise solutions; when v = 0.4460, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ∼ x3
and {x1, x4} is the set of compromise solutions; when 0.4460 < v < 0.9402, the ranked order of all alternatives is
x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 and {x1, x4} is the set of compromise solutions; when v = 0.9402, the ranked order of all
alternatives is x4 ∼ x1 ≻ x5 ≻ x3 ∼ x2 and {x1, x4} is the set of compromise solutions; when 0.9402 < v ≤ 1, the ranked
order of all alternatives is x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 and {x1, x4} is the set of compromise solutions.

From the results above, we can see that the ranking orders of all alternatives xi are different because of the values of v
and the distance measures d1, d2 and d3; while the set of compromise solutions are the same.

If the committee evaluates the performance of five faculty candidates xi(i = 1, 2, 3, 4, 5) in the years tk (k = 1, 2, 3)
according to attributes Gj(j = 1, 2, 3), and constructs, respectively, the uncertain intuitionistic fuzzy decision matrices
R̃(tk)(k = 1, 2, 3) as listed in Tables 6–8. In such case, we can utilize the proposed Procedure II presented in Section 5 to
prioritize these faculty candidates. To do so, we first the UDIFWG operator to aggregate all the uncertain intuitionistic fuzzy
decision matrices R̃(tk) into a complex uncertain intuitionistic fuzzy decision matrix R̃ (see Table 9): and then denote the
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Table 6
Uncertain intuitionistic fuzzy decision matrix R̃(t1).

G1 G2 G3

x1 ([0.8, 0.9], [0.0, 0.1], [0.0, 0.2]) ([0.8, 0.9], [0.0, 0.1], [0.1, 0.2]) ([0.6, 0.8], [0.0, 0.2], [0.0, 0.4])
x2 ([0.6, 0.7], [0.2, 0.3], [0.0, 0.2]) ([0.5, 0.7], [0.2, 0.3], [0.0, 0.3]) ([0.5, 0.6], [0.2, 0.3], [0.1, 0.3])
x3 ([0.4, 0.5], [0.2, 0.4], [0.1, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.1, 0.3]) ([0.4, 0.6], [0.1, 0.2], [0.2, 0.5])
x4 ([0.8, 0.9], [0.0, 0.1], [0.0, 0.2]) ([0.6, 0.8], [0.0, 0.1], [0.1, 0.4]) ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3])
x5 ([0.5, 0.7], [0.1, 0.3], [0.0, 0.4]) ([0.7, 0.8], [0.1, 0.2], [0.0, 0.2]) ([0.4, 0.5], [0.2, 0.4], [0.1, 0.4])

Table 7
Uncertain intuitionistic fuzzy decision matrix R̃(t2).

G1 G2 G3

x1 ([0.7, 0.8], [0.1, 0.2], [0.0, 0.2]) ([0.8, 0.9], [0.0, 0.1], [0.0, 0.2]) ([0.7, 0.9], [0.0, 0.1], [0.0, 0.3])
x2 ([0.5, 0.7], [0.1, 0.2], [0.1, 0.4]) ([0.6, 0.7], [0.1, 0.3], [0.0, 0.3]) ([0.6, 0.8], [0.1, 0.2], [0.0, 0.3])
x3 ([0.3, 0.5], [0.1, 0.3], [0.2, 0.6]) ([0.4, 0.5], [0.1, 0.3], [0.2, 0.5]) ([0.3, 0.6], [0.3, 0.4], [0.0, 0.4])
x4 ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3]) ([0.7, 0.8], [0.1, 0.2], [0.0, 0.2]) ([0.5, 0.7], [0.1, 0.3], [0.0, 0.4])
x5 ([0.5, 0.7], [0.2, 0.3], [0.0, 0.3]) ([0.5, 0.7], [0.1, 0.3], [0.0, 0.4]) ([0.4, 0.6], [0.2, 0.3], [0.1, 0.4])

Table 8
Uncertain intuitionistic fuzzy decision matrix R̃(t3).

G1 G2 G3

x1 ([0.6, 0.7], [0.1, 0.3], [0.0, 0.3]) ([0.7, 0.9], [0.0, 0.1], [0.0, 0.3]) ([0.6, 0.8], [0.0, 0.1], [0.1, 0.4])
x2 ([0.4, 0.6], [0.1, 0.2], [0.2, 0.5]) ([0.5, 0.7], [0.1, 0.2], [0.1, 0.4]) ([0.6, 0.7], [0.1, 0.3], [0.0, 0.3])
x3 ([0.2, 0.4], [0.2, 0.3], [0.3, 0.6]) ([0.3, 0.6], [0.2, 0.3], [0.1, 0.5]) ([0.4, 0.6], [0.2, 0.4], [0.0, 0.4])
x4 ([0.7, 0.8], [0.0, 0.1], [0.1, 0.3]) ([0.8, 0.9], [0.0, 0.1], [0.0, 0.2]) ([0.7, 0.8], [0.1, 0.2], [0.0, 0.2])
x5 ([0.5, 0.6], [0.2, 0.3], [0.1, 0.3]) ([0.8, 0.9], [0.0, 0.1], [0.0, 0.2]) ([0.6, 0.7], [0.2, 0.3], [0.0, 0.2])

Table 9
Complex uncertain intuitionistic fuzzy decision matrix R̃.

G1 G2

x1 ([0.67, 0.77], [0.08, 0.23], [0.00, 0.25]) ([0.75, 0.90], [0.00, 0.10], [0.00, 0.25])
x2 ([0.46, 0.65], [0.12, 0.22], [0.13, 0.42]) ([0.53, 0.70], [0.12, 0.25], [0.05, 0.35])
x3 ([0.26, 0.45], [0.17, 0.32], [0.23, 0.57]) ([0.36, 0.57], [0.17, 0.30], [0.13, 0.47])
x4 ([0.69, 0.79], [0.03, 0.13], [0.08, 0.28]) ([0.73, 0.85], [0.03, 0.13], [0.02, 0.24])
x5 ([0.50, 0.65], [0.18, 0.30], [0.05, 0.32]) ([0.68, 0.82], [0.05, 0.18], [0.00, 0.27])

G3

x1 ([0.63, 0.83], [0.00, 0.12], [0.05, 0.37])
x2 ([0.58, 0.71], [0.12, 0.27], [0.02, 0.30])
x3 ([0.37, 0.60], [0.21, 0.36], [0.04, 0.42])
x4 ([0.61, 0.75], [0.10, 0.23], [0.02, 0.29])
x5 ([0.49, 0.62], [0.20, 0.32], [0.05, 0.31])

UIFIS α̃+, and the alternatives xi(i = 1, 2, 3, 4, 5) by

α+
= (([0.69, 0.79], [0.03, 0.13], [0.08, 0.28]), ([0.75, 0.90], [0.00, 0.10], [0.00, 0.25]),

([0.63, 0.83], [0.00, 0.12], [0.05, 0.37]))T ,

x1 = (([0.67, 0.77], [0.08, 0.23], [0.00, 0.25]), ([0.75, 0.90], [0.00, 0.10], [0.00, 0.25]),
([0.63, 0.83], [0.00, 0.12], [0.05, 0.37]))T ,

x2 = (([0.46, 0.65], [0.12, 0.22], [0.13, 0.42]), ([0.53, 0.70], [0.12, 0.25], [0.05, 0.35]),
([0.58, 0.71], [0.12, 0.27], [0.02, 0.30]))T ,

x3 = (([0.26, 0.45], [0.17, 0.32], [0.23, 0.57]), [0.36, 0.57], [0.17, 0.30], [013, 0.47]),
([0.37, 0.60], [0.21, 0.36], [0.04, 0.42])T ,

x4 = (([0.69, 0.79], [0.03, 0.13], [0.08, 0.28]), ([0.73, 0.85], [0.03, 0.13], [0.02, 0.24]),
([0.61, 0.75], [0.10, 0.23], [0.02, 0.29]))T ,

x5 = (([0.50, 0.65], [0.18, 0.30], [0.05, 0.32]), ([0.68, 0.82], [0.05, 0.18], [0.00, 0.27]),
([0.49, 0.62], [0.20, 0.32], [0.05, 0.31]))T .
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Table 10
Decision results obtained from the proposed Procedure II.

(a) The values S̃d1 (xi), R̃d1 (xi) and Q̃d1 (xi) and preference ranking order obtained from d1

S̃d1 R̃d1 Q̃d1

x1 0.0330 0.0143 0.0271v
x2 0.1470 0.0690 0.5776 − 0.1086v
x3 0.2840 0.1090 1
x4 0.0370 0.0233 0.0950 − 0.0524v
x5 0.0260 0.0563 0.4435(1 − v)

Ranking order x5 ≻ x1 ≻ x4 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3
(0 ≤ v < 0.8911)
x1 ≻ x4 ∼ x5 ∼ x2 ≻ x3
(v = 0.8911)
x1 ≻ x5 ≻ x4 ≻ x2 ≻ x3
(0.8911 < v < 0.9424)
x1 ∼ x5 ≻ x4 ≻ x2 ≻ x3
(v = 0.9424)
x5 ≻ x1 ≻ x4 ≻ x2 ≻ x3
(0.9424 < v ≤ 1)

(b) The values S̃d2 (xi), R̃d2 (xi) and Q̃d2 (xi) and preference ranking order obtained from d2

S̃d2 R̃d2 Q̃d2

x1 0.0225 0.0225 0
x2 0.1800 0.0840 0.5062 − 0.0014v
x3 0.3345 0.1440 1
x4 0.0475 0.0315 0.0741 + 0.0061v
x5 0.1448 0.0608 0.3152 + 0.0768v

Ranking order x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x2 ≻ x5 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3

(c) The values S̃d3 (xi), R̃d3 (xi) and Q̃d3 (xi) and preference ranking order obtained from dh

S̃d3 R̃d3 Q̃d3

x1 0.0125 0.0125 0
x2 0.1215 0.0643 0.4739 + 0.0557v
x3 0.2183 0.1218 1
x4 0.0223 0.0143 0.0165 + 0.0312v
x5 0.1070 0.0603 0.4373 + 0.0219v

Ranking order x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3

By (34)–(42), we calculate the values S̃h(xi), R̃h(xi) and Q̃h(xi) (h = d1, d2, d3) for each alternative xi (i = 1, 2, 3, 4, 5),
respectively, and rank the alternatives xi(i = 1, 2, 3, 4, 5) by sorting S̃h, R̃h and Q̃h in decreasing order (see Table 10).

(a) In the case of d1, when 0 ≤ v < 0.8911, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3
and {x1, x4} is the set of compromise solutions if 0 ≤ v ≤ 0.4363, and {x1, x4, x5} is the set of compromise solutions
if 0.4363 < v < 0.8911; when v = 0.8911, the ranked order of all alternatives is x1 ≻ x4 ∼ x5 ≻ x2 ≻ x3
and {x1, x4, x5} is the set of compromise solutions; when 0.8911 < v < 0.9424, the ranked order of all alternatives is
x1 ≻ x5 ≻ x4 ≻ x2 ≻ x3 and {x1, x4, x5} is the set of compromise solutions; when v = 0.9424, the ranked order of all
alternatives is x1 ∼ x5 ≻ x4 ≻ x2 ≻ x3 and {x1, x4, x5} is the set of compromise solutions; when 0.9424 < v ≤ 1, the
ranked order of all alternatives is x5 ≻ x1 ≻ x4 ≻ x2 ≻ x3 and {x1, x4, x5} is the set of compromise solutions.

(b) In the case of d2, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 and {x1, x4} is the set of compromise
solutions.

(c) In the case of d3, the ranked order of all alternatives is x1 ≻ x4 ≻ x5 ≻ x2 ≻ x3 and {x1, x4} is the set of compromise
solutions.

From the results above, we can see that, in the case of d1, the ranking orders of all alternatives xi are different because
of the values of v and thus the set of compromise solutions are also different; while, in the cases of d2 and d3, the ranking
orders of all alternatives are the same regardless of the values of v, and thus the set of compromise solutions are the same.

7. Conclusion

In this paper, we have studied on the dynamic intuitionistic fuzzy multiple attribute decision making (DIF-MADM)
problems, which occur in many decision areas, such as multi-period investment decision making, medical diagnosis,
personal dynamic examination and military system efficiency dynamic evaluation. Some aggregation operators such
as the dynamic intuitionistic fuzzy weighted geometric (DIFWG) operator and uncertain dynamic intuitionistic fuzzy
weighted geometric (UDIFWG) operator have been proposed to aggregate dynamic or uncertain dynamic intuitionistic fuzzy
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information. Based on the DIFWG operator and UDIFWG operators respectively, we have developed two approaches for
solving the DIF-MADM problems where all the attribute values are expressed in intuitionistic fuzzy numbers or interval-
valued intuitionistic fuzzy numbers. In the proposed approaches,we have extended the VIKORmethod to intuitionistic fuzzy
environment, and used the extended VIKOR method to rank and select the optimal alternative. To verify the effectiveness
and practicality of the developed approaches, we have applied them to evaluate university faculty for tenure and promotion.
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