
Expert Systems with Applications 38 (2011) 3023–3033
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A multi-criteria interval-valued intuitionistic fuzzy group decision making
with Choquet integral-based TOPSIS

Chunqiao Tan
School of Business, Central South University, Changsha 410083, China
a r t i c l e i n f o

Keywords:
Multi-criteria group decision making
Interval-valued intuitionistic fuzzy sets
Fuzzy measures
Geometric aggregation operator
Choquet integral
TOPSIS
0957-4174/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.eswa.2010.08.092

E-mail address: chunqiaot@sina.com
a b s t r a c t

An extension of TOPSIS, a multi-criteria interval-valued intuitionistic fuzzy decision making technique, to
a group decision environment is investigated, where inter-dependent or interactive characteristics
among criteria and preference of decision makers are taken into account. To get a broad view of the tech-
niques used, first, some operational laws on interval-valued intuitionistic fuzzy values are introduced.
Based on these operational laws, a generalized interval-valued intuitionistic fuzzy geometric aggregation
operator is proposed which is used to aggregate decision makers’ opinions in group decision making pro-
cess. In addition, some of its properties are discussed. Then Choquet integral-based Hamming distance
between interval-valued intuitionistic fuzzy values is defined. Combining the interval-valued intuitionis-
tic fuzzy geometric aggregation operator with Choquet integral-based Hamming distance, an extension of
TOPSIS method is developed to deal with a multi-criteria interval-valued intuitionistic fuzzy group deci-
sion making problems. Finally, an illustrative example is used to illustrate the developed procedures.
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1. Introduction 2004; Yeh, Deng, & Chang, 2000). As an extension of Zadeh’s
TOPSIS (Technique for Order Preference by Similarity to Ideal
Solution), developed by Hwang and Yoon (1981), is a classical ap-
proach to multi-attribute or multi-criteria decision making
(MADM/MCDM) problems. It is a practical and useful technique
for ranking and selection of a number of externally determined
alternatives through distance measures. The basic principle is that
the chosen alternative should have the shortest distance from the
positive-ideal solution and the farthest distance from the negative-
ideal solution. There exists a large amount of literature involving
TOPSIS theory and applications. In the TOPSIS, the performance
ratings and the weights of the criteria are given as crisp values.
Under many conditions, crisp values are inadequate to model
real-world situations because human judgment and preference
are often ambiguous and cannot be estimated with exact numeri-
cal values. To resolve the ambiguity frequently arising in informa-
tion from human judgment and preference, fuzzy set theory
(Zadeh, 1965) has been successfully used to handle imprecision
(or uncertainty) in decision making problems. Since fuzzy numbers
were applied to establish a prototype fuzzy TOPSIS (Chen & Hwang,
1992; Negi, 1989), many works on fuzzy TOPSIS have been inves-
tigated (Chen, 2000; Chu & Lin, 2009; Jahanshahloo, Hosseinzadeh
Lotfi, & Izadikhah, 2006; Kuo, Tzeng, & Huang, 2007; Mahdavi,
Mahdavi-Amiri, Heidarzade, & Nourifar, 2008; Wang & Chang,
2007; Wang & Elhag, 2006; Wang & Lee, 2007, 2009; Yeh & Deng,
ll rights reserved.
fuzzy set whose basic component is only a membership function,
Atanassov (1986) introduced the intuitionistic fuzzy sets (IFS),
characterized by a membership function and a non-membership
function, Accordingly, IFS has been proven to be a very suitable tool
to be used to describe the imprecise or uncertain decision informa-
tion. A lot of work has been done to develop and enrich the IFS
theory (Atanassov, 1999; Bustince, Herrera, & Montero, 2007). As
a generalization of the fuzzy sets, IFS has received more and more
attention and has been applied to the field of decision making. And
fuzzy TOPSIS has been extended to IFS (Ashtiani, Haghighirad,
Makui, & Montazer, 2009; Boran, Gen, Kurt, & Akay, 2009; Chen
& Tsao, 2008; Li, Wang, Liu, & Shan, 2008). Later, Atanassov and
Gargov (1989) introduced the concept of interval-valued intuition-
istic fuzzy sets (IVIFS) as a further generalization of that of IFS. The
fundamental characteristic of the IVIFS is that the values of its
membership function and non-membership function are intervals
rather than exact numbers. Atanassov (1994) defined some opera-
tional laws of the IVIFS. Recently, Tan and Zhang (2006) presented
a novel method for multiple attribute decision making based on
IVIFS and TOPSIS method in uncertain environments. Xu (2007)
developed some geometric aggregation operators, such as the
interval-valued intuitionistic fuzzy weighted geometric averaging
(IIFWGA) operator and the interval-valued intuitionistic fuzzy or-
dered weighted geometric averaging (IIFOWGA) operator and gave
an application of the IIFWGA and IIFOWGA operators to multiple
attribute group decision making with interval-valued intuitionistic
fuzzy information. Wei (2009) applied IIFWGA aggregation func-
tions to dealing with dynamic multiple attribute decision making

http://dx.doi.org/10.1016/j.eswa.2010.08.092
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http://www.sciencedirect.com/science/journal/09574174
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where all the attribute values are expressed in intuitionistic fuzzy
numbers or interval-valued intuitionistic fuzzy numbers.

However, these aggregation process are based on the assump-
tion that the criteria (attribute) or preferences of decision makers
are independent, and the aggregation operators are linear opera-
tors based on additive measures, which is characterized by an
independence axiom (Keeney & Raiffa, 1976; Wakker, 1999). For
real decision making problems, there is a phenomenon that there
exists some degree of inter-dependent or interactive characteris-
tics between criteria (Grabisch, 1995; Grabisch, Murofushi, &
Sugeno, 2000). And for a decision problem, decision makers invited
usually come from same or similar fields. They have similar knowl-
edge, social status and preference. Decision makers’ subjective
preference always shows non-linearity. Independence phenomena
among these criteria and mutual preferential independence of
decision makers are violated. In 1974, Sugeno (1974) introduced
the concept of non-additive measure (fuzzy measure), which only
make a monotonicity instead of additivity property. It is a most
effective tool to modeling interaction phenomena (Grabisch,
1996; Ishii & Sugeno, 1985; Kojadinovic, 2002; Roubens, 1996)
and deal with decision problems (Grabisch, 1995, 1997; Grabisch
et al., 2000; Onisawa, Sugeno, Nishiwaki, Kawai, & Harima,
1986). A review on analyzing decision maker behavior using fuzzy
measure theory can be seen in Liginlal and Ow (2006). In group
decision making problems, aggregation of decision makers’ opin-
ions is very important to appropriately perform evaluation process.
To overcome this limitation of above aggregation operator, in this
paper, based on fuzzy measure we first shall develop a generalized
interval-valued intuitionistic fuzzy geometric aggregation operator
for aggregating all individual decision makers’ opinions under
interval-valued intuitionistic fuzzy group decision making envi-
ronment. Combining this operator with TOPSIS on Choquet inte-
gral-based Hamming distance, a multi-criteria interval-valued
intuitionistic fuzzy group decision making is investigated, where
interactions phenomena among the decision making problem are
considered.

In order to do this, the paper is organized as follows: In Section
2, we review fuzzy measure. In Section 3, we introduce interval-
valued intuitionistic fuzzy set and some operational laws on inter-
val-valued intuitionistic fuzzy values, In Section 4, based on these
operational laws, a generalized interval-valued intuitionistic fuzzy
geometric aggregation operator is proposed, and some of its prop-
erties are investigated. In Section 5, according to definition of
Choquet integral, we invoke the well-known Hamming distance
to define the Choquet integral-based Hamming distance between
any two interval-valued intuitionistic fuzzy sets. Combining the
generalized interval-valued intuitionistic fuzzy geometric aggrega-
tion operator with Choquet integral-based Hamming distance, an
extension of TOPSIS is developed to deal with a multi-criteria inter-
val-valued intuitionistic fuzzy group decision making problems
where inter-dependent or interactive characteristics among crite-
ria and preference of decision makers are taken into account. In
Section 6, an example is given to illustrate the concrete application
of the method and to demonstrate its feasibility and practicality.
Conclusions are made in Section 7.
2. Fuzzy measure

For traditional additive aggregation operators, such as the
weighted arithmetic mean or OWA (Yager, 1988) operator, each
criteria i 2 N (N denotes a criteria set) is given a weight wi 2 [0,1]
representing the importance of this criteria during the decision
process, and the sun of all wi (i = 1,2, . . . ,n) amount to one. But it
does not define a weight on each combination of criteria. In real
decision problems, since there are often inter-dependent or
interactive phenomena among criteria, the overall importance of a
criterion i 2 N is not solely determined by itself i, but also by all other
criteria T, i 2 T. Suppose that w(i) denotes the importance degree of
i, we may have w(i) = 0, suggesting that element is unimportant,
but it may happen that for many subsets T # N, w(T [ i) is much
greater than w(T), suggesting that i is actually an important ele-
ment in the decision. In 1974, Sugeno (1974) introduced the con-
cept of fuzzy measure (non-additive measure), which only make
a monotonicity instead of additivity property. For real decision
making problems, fuzzy measure define a weight on not only each
criteria but also each combination of criteria, and the sun of every
wi (i = 1,2, . . . ,n) does not equal to one. Thus it is used as a powerful
tool for describing the interaction among the criteria in a set.

Definition 1. Let X = {x1,x2, . . . ,xn} be a universe of discourse, P(X)
be the power set of X. A fuzzy measure on X is a set function
l :P(X) ? [0,1], satisfying the following conditions:

(1) l(/) = 0, l(X) = 1.
(2) If A, B 2 P(X) and A # B then l(A) 6 l(B).

If the universal set X is infinite, it is necessary to add an extra
axiom of continuity (Wang & Klir, 1992). However, in actual prac-
tice, it is enough to consider the finite universal set. l(S) can be
viewed as the grade of subjective importance of decision criteria
set S. Thus, in addition to the usual weights on criteria taken sep-
arately, weights on any combination of criteria are also defined.
This makes possible the representation of interaction between cri-
teria. Let Ej = {xj,xj+1, . . . ,xn} (1 6 j 6 n) be a criteria set. The interac-
tion among the criteria in Ej can be described by employing l(Ej) to
express the degree of importance of Ej. That is, the degree of impor-
tance of Ej is evaluated by simultaneously considering xj, xj+1 , . . . ,
and xn. Hence, l can be called an importance measure (Wang,
Wang, & Klir, 1998), and l(Ej) can be also employed to express
the discriminatory power of Ej. Intuitively, we could say the follow-
ing about any a pair of criteria sets A, B 2 P(X), A \ B = /: A and B are
considered to be without interaction (or to be independent) if
l(A [ B) = l(A) + l(B), which is called an additive measure. A and
B exhibit a positive synergetic interaction between them (or are
complementary) if l(A [ B) > l(A) + l(B), which is called a super-
additive measure. A and B exhibit a negative synergetic interaction
between them (or are redundant or substitutive) if
l(A [ B) < l(A) + l(B), which is called a sub-additive measure.

In order to determine such fuzzy measure, we generally need to
find 2n � 2 values for n criteria, only values l(/) and l (X) are al-
ways equal to 0 and 1, respectively. So the evaluation model ob-
tained becomes quite complex, and the structure is difficult to
grasp. To avoid the problems with computational complexity and
practical estimations, k-fuzzy measure g, a special kind of fuzzy
measure, was proposed by Sugeno (1974), which satisfies the fol-
lowing additional property:

gðA [ BÞ ¼ gðAÞ þ gðBÞ þ kgðAÞgðBÞ; ð1Þ

where k > �1 for all A, B 2 P(X) and A \ B = /. However, there are
several methods for the determination of the fuzzy measure. For in-
stance, linear methods (Marichal & Roubens, 1998), quadratic
methods (Grabisch, 1996; Grabisch & Nicolas, 1994), heuristic-
based methods (Grabisch, 1995) and genetic algorithms (Wang
et al., 1998) are available in the literature.

In Eq. (1), k = 0 indicates that the k-fuzzy measure g is additive
measure. k – 0 indicates that the k-fuzzy measure g is non-additive
and there is interaction between A and B. If k > 0, then
g(A [ B) > g(A) + g(B), which implies that g is a super-additive mea-
sure. If k < 0, then g(A [ B) < g(A) + g(B), which implies that g is a
sub -additive measure. By parameter k the interaction between cri-
teria can be represented.
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If X is a finite set, then [n
i¼1xi ¼ X. The k-fuzzy measure g satis-

fies following Eq. (2)

gðXÞ ¼ gð [
n

i¼1
xiÞ ¼

1
k

Qn
i¼1
½1þ kgðxiÞ� � 1

� �
if k – 0;

Pn
i¼1

gðxiÞ if k ¼ 0;

8>>><
>>>:

ð2Þ

where xi \ xj = / for all i, j = 1,2, . . . ,n and i – j. It can be noted that
g(xi) for a subset with a single element xi is called a fuzzy density,
and can be denoted as gi = g(xi).

Especially for every subset A 2 P(X), we have

gðAÞ ¼
1
k

Q
i2A
½1þ kgðiÞ� � 1

� �
if k – 0;P

i2A
gðiÞ if k ¼ 0:

8>><
>>: ð3Þ

Based on Eq. (2), the value k of can be uniquely determined from
g(X) = 1, which is equivalent to solving

kþ 1 ¼
Yn

i¼1

ð1þ kgiÞ: ð4Þ

It should be noted that k can be uniquely determined by g(X) = 1.

3. Interval-valued intuitionistic fuzzy sets

Let X be a universe of discourse, a fuzzy set in X is an expression
A given by

A ¼ fhx; tAðxÞijx 2 Xg;

where tA :X ? [0,1] is a membership function which characterizes
the degree of membership of the element x to the set A. The main
characteristic of fuzzy sets is that: the membership function assigns
to each element x in a universe of discourse X a membership degree
in interval [0,1] and the non-membership degree equals one minus
the membership degree, i.e., this single membership degree com-
bines the evidence for x and the evidence against x, without indicat-
ing how much there is of each. The single membership value tells us
nothing about the lack of knowledge. In real applications, however,
the information of an object corresponding to a fuzzy concept may
be incomplete, i.e., the sum of the membership degree and the non-
membership degree of an element in a universe corresponding to a
fuzzy concept may be less than one. In fuzzy set theory, there is no
means to incorporate the lack of knowledge with the membership
degrees. In 1986, Atanassov (1986) generalized the concept of fuzzy
set, and defined the concept of intuitionistic fuzzy set as follows.

Definition 2. Let X = {x1,x2, . . . ,xn} be a universe of discourse, an
intuitionistic fuzzy set in X is an expression A given by

A ¼ fhx; tAðxiÞ; fAðxiÞijxi 2 Xg;

where tA :X ? [0,1], fA :X ? [0,1] with the condition: 0 6 tA(xi) +
fA(xi) 6 1, for all xi in X. The numbers tA(xi) and fA(xi) represent the
degree of membership and the degree of non-membership of the
element xi in the set A, respectively.

For each intuitionistic fuzzy set A in X, if

pAðxÞ ¼ 1� tAðxÞ � fAðxÞ; 8x 2 X:

Then pA(x) is called the degree of indeterminacy of x to A. Especially,
if

pAðxÞ ¼ 1� tAðxÞ � fAðxÞ ¼ 0; 8x 2 X;

then the intuitionistic fuzzy set A is reduced to a fuzzy set.
Atanassov and Gargov (1989) further introduced the interval-

valued intuitionistic fuzzy set (IVIFS), which is a generalization of
the IFS. The fundamental characteristic of the IVIFS is that the
values of its membership function and non-membership function
are intervals rather than exact numbers.

Definition 3. Let X = {x1,x2, . . . ,xn} be a universe of discourse,
D[0,1] be the set of all closed subintervals of the interval [0,1].
An interval-valued intuitionistic fuzzy set A in X is an expression
given by

A ¼ fhx; tAðxiÞ; fAðxiÞijxi 2 Xg; ð5Þ

where tA :X ? D[0,1], fA :X ? D[0,1] with the condition 0 6 sup
tAðxiÞ þ sup f AðxiÞ 6 1. The intervals tA(xi) and fA(xi) denote, respec-
tively, the degree of belongingness and the degree of non-belong-
ingness of the element xi to the set A.

For any two intervals [a,b] and [c,d] with b + d 6 1 belonging to
D[0,1], let tA(x) = [a,b], fA(x) = [c,d], so an interval-valued intuition-
istic fuzzy set whose value is denoted by A = {hx, [a,b], [c,d] > jx 2 X}.
In this paper, we call ([a,b], [c,d]) an interval-valued intuitionistic
fuzzy value. For convenience, let X be the set of all interval-valued
intuitionistic fuzzy values on X. Obviously, according to Definition
3, we know that ~aþ ¼ ð½1;1�; ½0; 0�Þ and ~a� ¼ ð½0;0�; ½1;1�Þ are the
largest and smallest interval-valued intuitionistic fuzzy values,
respectively.

In the following, we define a distance measure between inter-
valued intuitionistic fuzzy values.

Definition 4. Let X = {x1, . . . ,xn} be a universe of discourse,
~a ¼ ð½ai; bi�; ½ci; di�Þ and ~b ¼ a0i; b

0
i

� �
; c0i; d

0
i

� �� �
ði ¼ 1;2; . . . ;nÞ be two

interval-valued intuitionistic fuzzy values on X, then

dð~a; ~bÞ ¼ 1
4

Xn

i¼1

ai � a0i
�� ��þ bi � b0i

�� ��þ ci � c0i
�� ��þ di � d0i

�� ��;
is called the normalized Hamming distance between ~a and ~b. If

dð~a; ~bÞ ¼ 1
4

Xn

i¼1

wi ai � a0i
�� ��þ bi � b0i

�� ��þ ci � c0i
�� ��þ di � d0i

�� ��� �
;

where w = (w1,w2, . . . ,wn) is the weight vector of xj such that
wi 2 [0,1] and

Pn
i¼1wi ¼ 1, then dð~a; ~bÞ is called the weighted Ham-

ming distance between ~a and ~b.

The following expressions are defined in Atanassov and
Gargov (1989), Atanassov (1994) for any two interval-valued
intuitionistic fuzzy values ~a1 ¼ ð½a1; b1�; ½c1; d1�Þ and ~a2 ¼ ð½a2; b2�;
½c2; d2�Þ:

ð1Þ ~a1 6 ~a2 iff b1 6 b2 and a1 6 a2 and d1 P d2 and c1 P c2:

ð2Þ ~a1 ¼ ~a2 iff b1 ¼ b2 and a1 ¼ a2 and d1 ¼ d2 and c1 ¼ c2:

ð6Þ

However, Eq. (6) is not satisfied in some situations. So it cannot be
used to compare intuitionistic fuzzy values. In the following, similar
to IFS, we define a score function and an accuracy function of inter-
val-valued intuitionistic fuzzy values for the comparison between
two interval-valued intuitionistic fuzzy values.

Definition 5. Let ~a ¼ ð½a; b�; ½c; d�Þ be an interval-valued intuition-
istic fuzzy values, if Sð~aÞ ¼ ða� c þ b� dÞ=2, then S(~aÞ is called a
score function of ~a, where Sð~aÞ 2 ½�1;1�.
Definition 6. Let ~a ¼ ð½a; b�; ½c; d�Þ be an interval-valued intuitionis-
tic fuzzy values, if Hð~aÞ ¼ ðaþ bþ c þ dÞ=2, then H(~aÞ is called an
accuracy function of ~a, where Hð~aÞ 2 ½0;1�.

As presented above, the score function S and the accuracy func-
tion H are, respectively, defined as the difference and the sum of
the membership function tA(x) and the non-membership function
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fA(x). In fact, the relation between the score function S and the
accuracy function H is similar to the relation between mean and
variance in statistics. Based on the score function S and the
accuracy function H, in the following, Xu (2007) give an order rela-
tion between two interval-valued intuitionistic fuzzy values, which
is defined as follows:

Definition 7. Let ~a1 ¼ ð½a1; b1�; ½c1; d1�Þ and ~a2 ¼ ð½a2; b2�; ½c2; d2�Þ
be any two interval-valued intuitionistic fuzzy values, Sð~a1Þ and
Sð~a2Þ be the score functions of ~a1 and ~a2, respectively, and let
Hð~a2Þ and Hð~a2Þ be the accuracy functions of ~a and ~b, respectively,
then

If Sð~a1Þ < Sð~a2Þ, then ~a1 is smaller than ~a2, denoted by ~a1 < ~a2.
If Sð~a1Þ ¼ Sð~a2Þ, then

(1) If Hð~a1Þ < Hð~a2Þ, then ~a1 is smaller than ~a2, denoted by
~a1 < ~a2;

(2) If Hð~a1Þ ¼ Hð~a2Þ, then ~a1 and ~a2 represent the same informa-
tion, denoted by ~a1 ¼ ~a2.

Motivated by the operations in Atanassov (1999, 1994), we de-
fine two operational laws of interval-valued intuitionistic fuzzy
values.

Definition 8. Let ~a1 ¼ ð½a1; b1�; ½c1; d1�Þ and ~a2 ¼ ð½a2; b2�; ½c2; d2�Þ be
two interval-valued intuitionistic fuzzy values, then

(1) ~a1 � ~a2 ¼ ð½a1a2; b1b2�; ½c1 þ c2 � c1c2; d1 þ d2 � d1d2�Þ;
(2) ~ak

1 ¼ ð½ak
1; b

k
1�; ½1� ð1� c1Þk;1� ð1� d1Þk�Þ; k > 0.
For two operational laws of Definition 8, it is easy to obtain the
following these properties.

Proposition 1. Let ~a1 ¼ ð½a1; b1�; ½c1; d1�Þ and ~a2 ¼ ð½a2; b2�; ½c2; d2�Þ
be two interval-valued intuitionistic fuzzy values, and let ~c ¼ ~a1 � ~a2

and ~d ¼ ~ak
1, then both ~c and ~d are also interval-valued intuitionistic

fuzzy values.

Proposition 2. Let ~a1 ¼ ð½a1; b1�; ½c1; d1�Þ and ~a2 ¼ ð½a2; b2�; ½c2; d2�Þ
be two interval-valued intuitionistic fuzzy values, "k1,k2 > 0. Then
we have:

(1) ~a1 � ~a2 ¼ ~a2 � ~a1;
(2) ð~a1 � ~a2Þk ¼ ~ak

1 � ~ak
2;

(3) ~ak1þk2
1 ¼ ~ak1

1 � ~a
k2
1 .

4. Generalized interval-valued intuitionistic fuzzy geometric
aggregation operator

In the following, based on fuzzy measure, we first give the def-
inition of generalized interval-valued intuitionistic geometric
aggregation operator.

Definition 9. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collec-
tion of interval-valued intuitionistic fuzzy values on X, and l be
a fuzzy measure on X. Based on fuzzy measure, a generalized
interval-valued intuitionistic fuzzy geometric aggregation
(GIIFGA) operator of dimension n is a mapping GIIFGA: Xn ? X
such that

GIIFGAlð~a1; ~a2; . . . ; ~anÞ ¼ ð~að1ÞÞlðAð1ÞÞ�lðAð2ÞÞ

� ð~að2ÞÞlðAð2ÞÞ�lðAð3ÞÞ � � � ð~aðnÞÞlðAðnÞÞ�lðAðnþ1ÞÞ;

ð7Þ

where (�) indicates a permutation on X such that ~að1Þ 6 ~að2Þ 6 � � �
6 ~aðnÞ. And A(i) = ((i), . . . , (n)), A(n+1) = /.
Theorem 1. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection
of interval-valued intuitionistic fuzzy values on X, and l be a
fuzzy measure on X. then their aggregated value by using the
GIIFGAl operator is also an interval-valued intuitionistic fuzzy
value, and

GIIFGAlð~a1; . . . ; ~anÞ ¼
Yn

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ;
Yn

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

" #
;

 

1�
Yn

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ;

"

1�
Yn

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

#!
; ð8Þ

where (�) indicates a permutation on X such that ~að1Þ 6 ~að2Þ 6 � � � 6 ~aðnÞ.
And A(i) = ((i), . . . , (n)), A(n+1) = /.
Proof. The first result follows quickly from Definition 9 and Prop-
osition 1. Below we prove Eq. (8) by using mathematical induction
on n.

For n = 2, according to the operational laws of Definition 8, we
have

ð~að1ÞÞlðAð1ÞÞ�lðAð2ÞÞ

¼ ðað1ÞÞlðAð1ÞÞ�lðAð2ÞÞ; ðbð1ÞÞlðAð1ÞÞ�lðAð2ÞÞ
h i

; 1� ð1� cð1ÞÞlðAð1ÞÞ�lðAð2ÞÞ;
h	

1� ð1� dð1ÞÞlðAð1ÞÞ�lðAð2ÞÞ
i

;

ð~að2ÞÞlðAð2ÞÞ�lðAð3ÞÞ

¼ ðað2ÞÞlðAð1ÞÞ�lðAð2ÞÞ; ðbð2ÞÞlðAð1ÞÞ�lðAð2ÞÞ
h i

; 1� ð1� cð2ÞÞlðAð1ÞÞ�lðAð2ÞÞ;
h	

1� ð1� dð2ÞÞlðAð1ÞÞ�lðAð2ÞÞ
i

:

Since

~a1 � ~a2 ¼ ð½a1a2; b1b2�; ½c1 þ c2 � c1c2;d1 þ d2 � d1d2�Þ
¼ ð½a1a2; b1b2�; ½1� ð1� c1Þð1� c2Þ;1� ð1� d1Þð1� d2Þ�Þ:

Then

GIIFGAlð~a1; ~a2Þ ¼ ð~að1ÞÞlðAð1ÞÞ�lðAð2ÞÞ � ð~að2ÞÞlðAð2ÞÞ�lðAð3ÞÞ

¼ ð½ðað1ÞÞlðAð1ÞÞ�lðAð2ÞÞðað2ÞÞlðAð2ÞÞ�lðAð3ÞÞ;

ðbð1ÞÞlðAð1ÞÞ�lðAð2ÞÞðbð2ÞÞlðAð2ÞÞ�lðAð3ÞÞ�;

½1� ð1� cð1ÞÞlðAð1ÞÞ�lðAð2ÞÞð1� cð2ÞÞlðAð2ÞÞ�lðAð3ÞÞ;

1� ð1� dð1ÞÞlðAð1ÞÞ�lðAð2ÞÞð1� dð2ÞÞlðAð2ÞÞ�lðAð3ÞÞ�Þ:

That is, for n = 2, the Eq. (8) holds.

Suppose that if for n = k, Eq. (8) holds, i.e.,

GIIFGAlð~a1; . . . ; ~akÞ ¼
Yk

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ;
Yk

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

" #
;

 

1�
Yk

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ;

"

1�
Yk

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

#!
:

Then, for n = k + 1, according to Definition 9, we have
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GIIFGAlð~a1; . . . ;~akþ1Þ ¼ ðaðkþ1ÞÞlðAðkþ1Þ Þ�lðAðkþ2Þ Þ
Yk

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ;

" 

ðbðkþ1ÞÞlðAðkþ1ÞÞ�lðAðkþ2ÞÞ
Yk

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ

#
;

1�ð1� cðkþ1ÞÞlðAðkþ1ÞÞ�lðAðkþ2Þ Þ
Yk

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ;

"

1�ð1�dðkþ1ÞÞlðAðkþ1ÞÞ�lðAðkþ2Þ Þ
Yk

i¼1

ð1�dðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ

#!

¼
Ykþ1

i¼1

ðaðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ;
Ykþ1

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ

" #
;

 

1�
Ykþ1

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ;

"

1�
Ykþ1

i¼1

ð1�dðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ

#!
:

That is, for n = k + 1, Eq. (8) still holds.
Therefore, for all n, the Eq. (8) always holds, which completes

the proof of Theorem 1.

Remark 1. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ and ~bi ¼ a0i; b
0
i

� �
;

�
c0i; d

0
i

� �
Þ ði ¼ 1;

2; . . . ;nÞ be two collections of interval-valued intuitionistic fuzzy
values on X. Sinceai; bi; ci; dia0i; b

0
i; c
0
i; d
0
i 2 ½0;1� for any i, if we assume

that TPðci; c0iÞ ¼ cic0i, TP di; d
0
i

� �
¼ did

0
i; SP ai; a0i

� �
¼ ai þ a0i � aia0i; SP bi;ð

b0iÞ ¼ bi þ b0i � bib
0
i, then TP ci; c0i

� �
and TP di; d

0
i

� �
is one of the basic t-

norms, called the product, which is satisfying the following
properties (Klement, Mesiar, & Pap, 2000): TP(x,1) = x (boundary);
TP(x,y) 6 TP(x,z) whenever y 6 z (monotonicity); TP(x,y) = TP(y,x)
(commutativity); TP(x,TP(y,z)) = TP(TP(x,y)) (associativity), where
x,y,z 2 [0,1]. SP ai; a0i

� �
and SP bi; b

0
i

� �
is one of the basic t-conorms,

called the probabilistic sum (Klement et al., 2000), andSP is also
called the dual t-conorm of TP, which is satisfying the boundary, i.e.
SP(x,0) = x, monotonicity, commutativity, and associativity (Kle-
ment et al., 2000). The associativity of t-norms and t-conorms
allows us to extend the product TP and probabilistic sum SP in
unique way to an n-ary operation in the usual way by induction,
defining for each n-tuple (x1,x2, . . . ,xn) 2 [0,1]n and (y1,y2, . . . ,yn)
2 [0,1]n, respectively:

TPðx1; x2; . . . ; xnÞ ¼ TP

n

i¼1
xi ¼ TP TP

n�1

i¼1
xi; xn

� �
¼
Yn

i¼1

xi;

SPðy1; y2; . . . ; ynÞ ¼ SP

n

i¼1
yi ¼ SP SP

n�1

i¼1
yi; yn

� �
¼ 1�

Yn

i¼1

ð1� yiÞ:

Assume that yi ¼ 1� ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ, y0i ¼ 1� ð1�
dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ, xi ¼ ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ; x0i ¼ ðbðiÞÞ

lðAðiÞÞ�lðAðiþ1ÞÞ, then
from Theorem 1 we have

GIIFGAlð~a1; . . . ; ~anÞ ¼ ð TPðx1; . . . ; xnÞ; TP x01; . . . ; x0n
� �� �

;

½SPðy1; . . . ; ynÞ; SP y01; . . . ; y0n
� �

�Þ:

It is shown that the generalized interval-valued intuitionistic fuzzy
geometric aggregation operator can be represented by one of the
basic t-norms TP and t-conorms SP.

Proposition 3. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection
of interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X. If all ~ai ði ¼ 1;2; . . . ;nÞ are equal, that is, for all
i; ~ai ¼ ~a ¼ ð½a; b�; ½c; d�Þ, then

GIIFGAlð~a1; . . . ; ~anÞ ¼ ~a:
Proof. According to Theorem 1, if for all i ði ¼ 1;2; . . . ;nÞ; ~ai ¼ ~a,
then
GIIFGAlð~a1; . . . ; ~anÞ ¼ a

Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
; b

Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
2
4

3
5;

0
@
�

1� ð1� cÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
;

1� ð1� dÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
�!

Since

Xn

i¼1

ðlðAðiÞÞ � lðAðiþ1ÞÞÞ ¼ 1:

So

GIIFGAlð~a1; . . . ; ~anÞ ¼ ð½a; b�; ½c;d�Þ ¼ ~a: �
Proposition 4. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ and ~bi ¼ a0i; b
0
i

� �
; c0i; d

0
i

� �� �
ði ¼

1;2; . . . ;nÞ be two collections of interval-valued intuitionistic fuzzy
values on X, and l be a fuzzy measure on X. (�) indicates a permutation
on X such that ~að1Þ 6 � � � 6 ~aðnÞ and ~bð1Þ 6 � � � 6 ~bðnÞ. If
bðiÞ 6 b0ðiÞ; aðiÞ 6 a0ðiÞ and dðiÞ P d0ðiÞ; cðiÞ P c0ðiÞ for all i, that is,
~aðiÞ 6 ~bðiÞ, then

GIIFGAlð~a1; . . . ; ~anÞ 6 GIIFGAlð~b1; . . . ; ~bnÞ:
Proof. Since A(i+1) # A(i), then l(A(i)) � l(A(i+1)) P 0. For all
i; bðiÞ 6 b0ðiÞ; aðiÞ 6 a0ðiÞ and dðiÞ P d0ðiÞ; cðiÞ P c0ðiÞ, we haveYn

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ
6

Yn

i¼1

a0ðiÞ
	 
lðAðiÞÞ�lðAðiþ1ÞÞ

;

Yn

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ
6

Yn

i¼1

b0ðiÞ
	 
lðAðiÞÞ�lðAðiþ1ÞÞ

;

1�
Yn

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ P 1�
Yn

i¼1

1� c0ðiÞ
	 
lðAðiÞÞ�lðAðiþ1ÞÞ

;

1�
Yn

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ P 1�
Yn

i¼1

1� d0ðiÞ
	 
lðAðiÞÞ�lðAðiþ1ÞÞ

: �

According to Theorem 1 and Eq. (6), we have

GIIFGAlð~a1; . . . ; ~anÞ 6 GIIFGAlð~b1; . . . ; ~bnÞ:
Proposition 5. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection
of interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X. If

~a� ¼ min
i

ai;min
i

bi

� �
; max

i
ci;max

i
di

� �� �
;

~aþ ¼ max
i

ai;max
i

bi

� �
; min

i
ci;min

i
di

� �� �
;

then
~a� 6 GIIFGAlð~a1; . . . ; ~anÞ 6 ~aþ:
Proof. For any ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1; . . . ;nÞ, it is obvious that
~a� and ~aþ are interval-valued intuitionistic fuzzy values. Since
A(i+1) # A(i), then l(A(i)) � l(A(i+1)) P 0.

Let (�) indicate a permutation on X such that~að1Þ 6 � � � 6 ~aðnÞ, we
have

min
i

ai 6 aðiÞ 6 max
i

ai;min
i

bi 6 bðiÞ 6 max
i

bi;min
i

ci 6 cðiÞ

6 max
i

ci;min
i

di 6 dðiÞ 6 max
i

di:
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Thus,

Yn

i¼1

ðmin
i

aiÞlðAðiÞÞ�lðAðiþ1ÞÞ
6

Yn

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6

Yn

i¼1

ðmax
i

aiÞlðAðiÞÞ�lðAðiþ1ÞÞ;

Yn

i¼1

ðmin
i

biÞlðAðiÞÞ�lðAðiþ1ÞÞ
6

Yn

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6

Yn

i¼1

ðmax
i

biÞlðAðiÞÞ�lðAðiþ1ÞÞ;

and

1�
Yn

i¼1

ð1�min
i

ciÞlðAðiÞÞ�lðAðiþ1ÞÞ
6 1�

Yn

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6 1�
Yn

i¼1

ð1�max
i

ciÞlðAðiÞÞ�lðAðiþ1ÞÞ;

1�
Yn

i¼1

ð1�min
i

diÞlðAðiÞÞ�lðAðiþ1ÞÞ
6 1�

Yn

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6 1�
Yn

i¼1

ð1�max
i

diÞlðAðiÞÞ�lðAðiþ1ÞÞ:

i.e.,

ðmin
i

aiÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
6

Yn

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6 ðmax
i

aiÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
;

ðmin
i

biÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
6

Yn

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6 ðmax
i

biÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
;

and

1� ð1�min
i

ciÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
6 1�

Yn

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6 1� ð1�max
i

ciÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
;

1� ð1�min
i

diÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
6 1�

Yn

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

6 1� ð1�max
i

diÞ
Pn

i¼1

lðAðiÞÞ�lðAðiþ1ÞÞ
:

Since

Xn

i¼1

ðlðAðiÞÞ � lðAðiþ1ÞÞÞ ¼ 1:

So we have

min
i

ai 6
Yn

i¼1

ðaðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ
6max

i
ai;

min
i

bi 6
Yn

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ
6max

i
bi;
min
i

ci 6 1�
Yn

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ
6max

i
ci;

min
i

di 6 1�
Yn

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ
6 max

i
di:

According to Theorem 1 and Eq. (6), we have

½min
i

ai;min
i

bi�; ½max
i

ci;max
i

di�
� �

6 GIIFGAlð~a1; . . . ; ~anÞ

6 ð½max
i

ai;max
i

bi�; ½min
i

ci;min
i

di�Þ;

That is, ~a� 6 GIIFGAlð~a1; . . . ; ~anÞ 6 ~aþ. h
Proposition 6. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection
of interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X. If ~s ¼ ð½a; b�; ½c; d�Þ is an interval-valued intuitionistic
fuzzy value on X, then

GIIFGAlð~a1 � ~s; . . . ; ~an � ~sÞ ¼ GIIFGAlð~a1; . . . ; ~anÞ � ~s:
Proof. Since for any i (i = 1,2, . . . ,n)

~ai � ~s ¼ ð½aia; bib�; ½ci þ c � cic;di þ d� did�Þ
¼ ð½aia; bib�; ½1� ð1� ciÞð1� cÞ;1� ð1� diÞð1� dÞ�Þ:

According to Theorem 1, we have

GIIFGAlð~a1 �~s; . . . ;~an �~sÞ ¼
Yn

i¼1

ðaðiÞaÞlðAðiÞÞ�lðAðiþ1Þ Þ;
Yn

i¼1

ðbðiÞbÞlðAðiÞ Þ�lðAðiþ1Þ Þ

" #
;

 

1�
Yn

i¼1

ðð1� cðiÞÞð1� cÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ;

"

1�
Yn

i¼1

ðð1�dðiÞÞð1�dÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ

#!

¼ a
Yn

i¼1

ðaðiÞÞlðAðiÞ Þ�lðAðiþ1Þ Þ; b
Yn

i¼1

ðdðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ

" #
;

 

1�ð1� cÞ
Yn

i¼1

ð1� cðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ;

"

1�ð1�dÞ
Yn

i¼1

ð1�dðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ

#!
:

According to Definition 8, we have

GIIFGAlð~a1; . . . ; ~anÞ � ~s ¼ a
Yn

i¼1

ðaðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ; b
Yn

i¼1

ðbðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ

" #
;

 

1� ð1� cÞ
Yn

i¼1

ð1� cðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ;

"

1� ð1� dÞ
Yn

i¼1

ð1� dðiÞÞlðAðiÞÞ�lðAðiþ1ÞÞ

#!
:

Thus,

GIIFGAlð~a1 � ~s; . . . ; ~an � ~sÞ ¼ GIIFGAlð~a1; . . . ; ~anÞ � ~s: �
Proposition 7. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection
of interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X. If r > 0, then

GIIFGAlðð~a1Þr; . . . ; ð~anÞrÞ ¼ ðGIIFGAlð~a1; . . . ; ~anÞÞr :
Proof. According to Definition 8, for any i (i = 1,2, . . . ,n) and r > 0
we have.

According to Theorem 1, we have
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GIIFGAlðð~a1Þr ; . . . ; ð~anÞrÞ ¼
Yn

i¼1

ððaðiÞÞrÞðlðAðiÞÞ�lðAðiþ1ÞÞÞ;

" 

Yn

i¼1

ððbðiÞÞrÞðlðAðiÞÞ�lðAðiþ1ÞÞÞ;

#

1�
Yn

i¼1

ðð1� cðiÞÞrÞlðAðiÞÞ�lðAðiþ1ÞÞ;

"

1�
Yn

i¼1

ðð1� dðiÞÞrÞlðAðiÞÞ�lðAðiþ1ÞÞ

#!

¼
Yn

i¼1

ðaðiÞÞrðlðAðiÞÞ�lðAðiþ1ÞÞÞ;

" 

Yn

i¼1

ðbðiÞÞrðlðAðiÞÞ�lðAðiþ1ÞÞÞ

#
;

1�
Yn

i¼1

ð1� cðiÞÞrðlðAðiÞÞ�lðAðiþ1ÞÞÞ;

"

1�
Yn

i¼1

ð1� dðiÞÞrðlðAðiÞÞ�lðAðiþ1ÞÞÞ

#!
:

Since

ðGIIFGAlð~a1; . . . ;~anÞÞr ¼ ð
Yn

i¼1

ðaðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞÞr ;
" 

Yn

i¼1

ðbðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ

 !r#
;

"
1�

Yn

i¼1

ð1� cðiÞÞlðAðiÞÞ�lðAðiþ1Þ Þ

 !r

;

1�
Yn

i¼1

ð1�dðiÞÞlðAðiÞ Þ�lðAðiþ1ÞÞ

 !r#!

¼
Yn

i¼1

ðaðiÞÞrðlðAðiÞ Þ�lðAðiþ1Þ ÞÞ;
Yn

i¼1

ðbðiÞÞrðlðAðiÞÞ�lðAðiþ1ÞÞÞ

" #
;

 

1�
Yn

i¼1

ð1� cðiÞÞrðlðAðiÞÞ�lðAðiþ1Þ ÞÞ;

"

1�
Yn

i¼1

ð1�dðiÞÞrðlðAðiÞ Þ�lðAðiþ1ÞÞÞ

#!
:

Thus,

GIIFGAlðð~a1Þr ; . . . ; ð~anÞrÞ ¼ ðGIIFGAlð~a1; . . . ; ~anÞÞr: �

According to Propositions 6 and 7, we can obtain the following
corollary.
Corollary 1. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection of
interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X. If r > 0 and ~s ¼ ð½a; b�; ½c; d�Þ is an interval-valued
intuitionistic fuzzy value on X, then
GIIFGAlðð~a1Þr � ~s; . . . ; ð~anÞr � ~sÞ ¼ ðGIIFGAlð~a1; ~a2; . . . ; ~anÞÞr � ~s:

According to Theorem 1, it is easily obtained the following
conclusion.
Proposition 8. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collection
of interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X.

(1) If l(A) = 1 for any A 2 P(X), then GIIFGAlð~a1; . . . ; ~anÞ ¼
maxð~a1; . . . ; ~anÞ ¼ ~aðnÞ

(2) If l(A) = 0 for any A 2 P(X) and A – X, then GIIFGAlð~a1; . . . ;
~anÞ ¼ minð~a1; . . . ; ~anÞ ¼ ~að1Þ.
(3) For any A, B 2 P(X) such that jAj = jBj, if l(A) = l(B) and
l{(i), . . . , (n)} = n�iþ1

n , 1 6 i 6 n, then
GIIFGAlð~a1; . . . ; ~anÞ ¼
Yn

i¼1

ðaiÞ
1
n;
Yn

i¼1

ðbiÞ
1
n

" #
; 1�

Yn

i¼1

ð1� ciÞ
1
n;

" 

1�
Yn

i¼1

ð1� diÞ
1
n

#!
:

According to Definitions 7 and 8, Xu (2007) proposed interval-
valued intuitionistic fuzzy ordered weighted geometric averaging
(IIFOWGA) operator, which are defined as follows.

Definition 10. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ;nÞ be a collec-
tion of interval-valued intuitionistic fuzzy values on X. An interval-
valued intuitionistic fuzzy ordered weighted geometric averaging
(IIFOWGA) operator of dimension n is a mapping IIFOWGA: Xn ? X,
that has associated with it an exponential weighting vector
w = (w1,w2, . . . ,wn)T, with wi 2 [0,1] and

Pn
i¼1wi ¼ 1, such that

IIFOWGAwð~a1; ~a2; . . . ; ~anÞ ¼ ð~að1ÞÞw1 � ð~að2ÞÞw2 � � � ð~aðnÞÞwn ;

where (�) indicates is a permutation on X such that ~að1Þ 6 ~að2Þ 6
� � � 6 ~aðnÞ. Furthermore

IIFOWGAwð~a1; ~a2; . . . ; ~anÞ ¼
Yn

i¼1

ðaðiÞÞwi ;
Yn

i¼1

ðbðiÞÞwi

" #
;

 

1�
Yn

i¼1

ð1� cðiÞÞwi ;1�
Yn

i¼1

ð1� dðiÞÞwi

" #!
:

In the following, we will find some relations between GIIFGA
and IIFOWGA operators.

Suppose that IIFOWGA operator has associated with it an expo-
nential weighting vector w = (w1,w2, . . . ,wn)T, according to Theo-
rem 1 and Definition 10, it is easily seen that IIFOWGA operator
will be equivalent to a GIIFGA operator, where fuzzy measure l
associated to the GIIFGA is given by

lðSÞ ¼
X

i¼n�sþ1

wiðS # X; S – /Þ:

Conversely, the GIIFGA operator will be equivalent to the IIFOWGA
operator that has associated with it an exponential weighting vec-
tor w = (w1,w2, . . . ,wn)T, wn�s = l(S [ i) � l(S), i 2 X, S # X n i.

According to above analysis, it is easily obtained the following
conclusion.

Theorem 2. Let ~ai ¼ ð½ai; bi�; ½ci; di�Þ ði ¼ 1;2; . . . ; nÞ be a collection of
interval-valued intuitionistic fuzzy values on X, and l be a fuzzy
measure on X. The following assertions are equivalent:

(1) For any A, B 2 P(X) such that jAj = jBj, we have l(A) = l(B).
(2) There exists an exponential weighting vector w = (w1,w2,

. . . ,wn) such that
GIIFGAlð~a1; ~a2; . . . ; ~anÞ ¼ IIFOWGAwð~a1; ~a2; . . . ; ~anÞ:
(3) GIFOGA is a symmetric function.
Proof. The proof is similar to that of Proposition 4.1 in Marichal
(2002). Here we do not duplicate it.

Suppose that IIFWGA operator has an exponential weighting
vector w = (w1,w2, . . . ,wn)T, according to Theorem 1, it is easily seen
that if l is an additive fuzzy measure, GIIFGA operator will be
equivalent to a IIFWGA operator, where wi = l(i). Reciprocally, one
can readily see that IIFWGA is a GIIFGA operator which has an
additive fuzzy measure l:
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lðAÞ ¼
X
i2A

wi; ðA # XÞ:

From Theorem 2 and above analysis, it is easily known that the
GIIFOGA operator generalizes both IIFOWGA and IIFWGA opera-
tors. The IIFOWGA and IIFWGA operators are two special cases of
GIIFOGA operator.
5. Choquet integral-based TOPSIS for multi-criteria interval-
valued intuitionistic fuzzy group decision making

As generalization of the linear Lebesgue integral (e.g. weighted
average method), Choquet integral is defined as follows.

Definition 11. Grabisch et al., 2000 Let X = {x1,x2, . . . ,xn} be a
universe of discourse, f be a positive real-valued function on X, and
l be a fuzzy measure on X. The discrete Choquet integral of f with
respective to l is defined by

Clðf Þ ¼
Xn

i¼1

f ðxðiÞÞ½lðAðiÞÞ � lðAðiþ1ÞÞ�;

where (�) indicates a permutation on X such that f(x(1)) 6 f(x(2)) 6
� � � 6 f(x(n)). Also A(i) = {x(i), . . . ,x(n)}, A(n+1) = /.

The main advantage of the Choquet integral is that it coincides
with the Lebesgue integral when the measure is additive. An addi-
tive measure may be directly tied to the notions of additive ex-
pected utility (Schmeidler, 1989) and mutual preferential
independence (Marichal, 1998). The Choquet integral is able to
perform aggregation of criteria even when mutual preferential
independence is violated.

Inspired by Definition 11, Choquet integral-based Hamming
distance between two interval-valued intuitionistic fuzzy values
is defined as follows.

Definition 12. Let ~a ¼ ð½ai; bi�; ½ci; di�Þ and ~b ¼ a0i; b
0
i

� �
; ½c0i; d

0
i�

� �
(i = 1,2, . . . ,n) be two interval-valued intuitionistic fuzzy values
on X, and l be a fuzzy measure on X. dð~a; ~bÞ is defined by Choquet
integral-based Hamming distance as

dð~a; ~bÞ ¼ 1
4

Xn

i¼1

dðiÞð~a; ~bÞðlðAðiÞÞ � lðAðiþ1ÞÞÞ;

where dið~a; ~bÞ ¼ ai � a0i
�� ��þ bi � b0i

�� ��þ ci � c0i
�� ��þ di � d0i

�� ��, so that
dð1Þð~a; ~bÞ 6 dð2Þð~a; ~bÞ 6 � � � 6 dðnÞð~a; ~bÞ, A(i) = {x(i), . . . ,x(n)}, A(n+1) = /.

In general, multi-criteria group decision making problem in-
cludes uncertain and imprecise data and information. We consider
the multi-criteria group decision making problems where all the
criteria values are expressed in interval-valued intuitionistic fuzzy
values, and interactions phenomena among the decision making
criteria or preference of decision makers are taken into account.
The following notations are used to depict the considered
problems:

E = (e1,e2, . . . ,er) is the set of the experts involved in the decision
process;
A = (a1,a2, . . . ,am) is the set of the considered alternatives;
C = (c1,c2, . . . ,cn) is the set of the criteria used for evaluating the
alternatives.

In group decision making problems, aggregation of expert opin-
ions is very important to appropriately perform evaluation process.
In the following, according to Choquet integral-based Hamming
distance, Choquet integral-based TOPSIS is proposed for multi-cri-
teria interval-valued intuitionistic fuzzy group decision making
where expert opinions are aggregated by the generalized inter-
val-valued intuitionistic fuzzy geometric aggregation operator,
which involves the following steps:

Step 1. As for every alternative ai (i = 1,2, . . . ,m), each expert ek

(k = 1,2, . . . ,r) is invited to express their individual evalua-
tion or preference according to each criteria cj

(j = 1,2, . . . ,n) by an interval-valued intuitionistic fuzzy
value ~ak

ij ¼ ð½a~ak
ij
; b~ak

ij
�; ½c~ak

ij
; d~ak

ij
�Þ (i = 1,2, . . . ,m; j = 1,2, . . . ,n,

k = 1,2, . . . ,r), where ½a~ak
ij
; b~ak

ij
� indicates the uncertain

degree that expert ek considers what the alternative ai

should satisfy the criteria cj, ½c~ak
ij
; d~ak

ij
� indicates the uncer-

tain degree that expert ek considers what the alternative
ai should not satisfy the criteria cj. Then we can obtain a
decision making matrix as follow:
Rk ¼

~ak
11; ~a

k
12; . . . ; ~ak

1n

~ak
21; ~a

k
22; . . . ; ~ak

2n

� � �
~ak

m1; ~a
k
m2; . . . ; ~ak

mn

0
BBB@

1
CCCA:
Step 2. Confirm the fuzzy density gi = g(ei) of each expert. Accord-
ing to Eq. (4), parameter k1 of expert can be determined.

Step 3. By Eq. (6) or Definition 7, ~ak
ij is reordered such that

~aðkÞij 6
~aðkþ1Þ

ij .
Utilize the interval-valued intuitionistic fuzzy Choquet
integral operator
~aij ¼ GIIFGAgð~a1
ij; . . . ; ~ar

ijÞ ¼
Yr

k¼1

ða~aðkÞ
ij
ÞgðAðkÞÞ�lðAðkþ1ÞÞ;

" 

Yr

k¼1

ðb~aðkÞ
ij
ÞgðAðkÞÞ�lðAðkþ1ÞÞ

#
;

1�
Yr

k¼1

ð1� c~aðkÞ
ij
ÞgðAðkÞÞ�gðAðkþ1ÞÞ;

"

1�
Yr

k¼1

ð1� d~aðkÞ
ij
ÞgðAðkÞÞ�gðAðkþ1ÞÞ

#!

to aggregate all the interval-valued intuitionistic fuzzy
decision matrices Rk ¼ ð~ak

ijÞm�n ðk ¼ 1;2; . . . ; rÞ into a com-
plex interval-valued intuitionistic fuzzy decision matrix
R ¼ ð~aijÞm � n, where ~aij ¼ ð½a~aij

; b~aij
�; ½c~aij

;d~aij
�Þ (i = 1,2, . . . ,

m; j = 1,2, . . . ,n), A(k) = {e(k), . . . , e(r)}, A(r+1) = /, and g(A(k))
can be calculated by Eq. (3).
Step 4. Let J1 be a collection of benefit criteria (i.e., the larger cj, the
greater preference) and J2 be a collection of cost criteria
(i.e., the smaller cj, the greater preference). The interval-
valued intuitionistic fuzzy positive-ideal solution (IV-
IFPIS), denoted as ~aþ, and the interval-valued intuitionistic
fuzzy negative-ideal solution (IV-IFNIS), denoted as
~a� ¼ ð~a�1 ; ~a�2 ; . . . ; ~a�n Þ, are defined as follows:
~aþ ¼ cj; ðmax
i

a~aij
;max

i
b~aij
Þ j2 J1j ;ðmin

i
a~aij

;min
i

b~aij
Þ
����j2 J2

� �� �

;

�

ðmin
i

c~aij
;min

i
d~aij
Þ j2 J1j ;ðmax

i
c~aij
;max

i
d~aij
Þ j2 J2j

� �� ������
i¼1;2; . . . ;m

where ~aþj ¼ ð½a~aþ
j
; b~aþ

j
�; ½c~aþ

j
;d~aþ

j
�Þ (j = 1,2, . . . ,n).

~a� ¼ cj; ðmin
i

a~aij
;min

i
b~aij
Þ
����j 2 J1; ðmax

i
a~aij

;max
i

b~aij
Þ
����j 2 J2

� �
;

�
�

ðmax
i

c~aij
;max

i
d~aij
Þ
����j 2 J1; ðmin

i
c~aij
;min

i
d~aij
Þ
����j 2 J2

� �������
i¼ 1;2; . . . ;mg ¼ ð~a�1 ; ~a�2 ; . . . ; ~a�n Þ;



R1 ¼

ð
ð
ð
ð
ð

0
BBBBBB@

R2 ¼

ð
ð
ð
ð
ð

0
BBBBBB@

R3 ¼

ð
ð
ð
ð
ð

0
BBBBBB@
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where ~a�j ¼ ð½a~a�
j
; b~a�

j
�; ½c~a�

j
; d~a�

j
�Þ (j = 1,2, . . . ,n).

Moreover, we denote the alternatives ai (i = 1,2, . . . ,m) by
xi ¼ ð~ai1; ~ai2; . . . ; ~ainÞ.
Step 5. Confirm the fuzzy density gi = g(ci) of each criteria. Accord-
ing to Eq. (4), parameter k2 of criteria can be determined.

Step 6. According to Choquet integral-based Hamming distance,
calculate the distance between the alternative xi and the
IV-IFPIS ~aþ and the distance between the alternative xi

and the IV-IFNIS ~a�, respectively:
diðxi; ~aþÞ ¼
1
4

Xn

j¼1

diðjÞð~aij; ~aþj ÞðgðAðjÞÞ � gðAðjþ1ÞÞÞ; ð9Þ

where dijð~aij; ~aþj Þ ¼ a~aþ
j
� a~aij

��� ���þ b~aþ
j
� b~aij

��� ���þ c~aþ
j
� c~aij

��� ���þ
d~aþ

j
� d~aij

��� ���, so that dið1Þð~aij; ~aþj Þ 6 dið2Þð~aij; ~aþj Þ 6 � � � 6 diðnÞ

ð~aij; ~aþj Þ, A(j) = {c(j), . . . ,c(n)}, A(n+1) = /. g(A(j)) can be calcu-
lated by Eq. (3)
½0:4;0:5�; ½0:3;0:4�Þ ð½0:4;0:6�; ½0:2;0:4�Þ ð½0:1; 0:3�; ½0:5;0:6�Þ ð½0:3;0:4�; ½0:3;0:5�Þ
½0:6;0:7�; ½0:2;0:3�Þ ð½0:6;0:7�; ½0:2;0:3�Þ ð½0:4; 0:7�; ½0:1;0:2�Þ ð½0:5;0:6�; ½0:1;0:3�Þ
½0:6;0:7�; ½0:1;0:2�Þ ð½0:5;0:6�; ½0:3;0:4�Þ ð½0:5;0:6�; ½0:1;0:3�Þ ð½0:4;0:5�; ½0:2;0:4�Þ
½0:3;0:4�; ½0:2;0:3�Þ ð½0:6;0:7�; ½0:1;0:3�Þ ð½0:3;0:4�; ½0:1;0:2�Þ ð½0:3;0:7�; ½0:1;0:2�Þ
½0:7;0:8�; ½0:1;0:2�Þ ð½0:3;0:5�; ½0:1;0:3�Þ ð½0:5;0:6�; ½0:2;0:3�Þ ð½0:3;0:4�; ½0:5;0:6�Þ

1
CCCCCCA
;

½0:3;0:4�; ½0:4;0:5�Þ ð½0:5;0:6�; ½0:1;0:3�Þ ð½0:4; 0:5�; ½0:3;0:4�Þ ð½0:4;0:6�; ½0:2;0:4�Þ
½0:3;0:6�; ½0:3;0:4�Þ ð½0:4;0:7�; ½0:1;0:2�Þ ð½0:5; 0:6�; ½0:2;0:3�Þ ð½0:6;0:7�; ½0:2;0:3�Þ
½0:6;0:8�; ½0:1;0:2�Þ ð½0:5;0:6�; ½0:1;0:2�Þ ð½0:5;0:7�; ½0:2;0:3�Þ ð½0:1;0:3�; ½0:5;0:6�Þ
½0:4;0:5�; ½0:3;0:5�Þ ð½0:5;0:8�; ½0:1;0:2�Þ ð½0:2;0:5�; ½0:3;0:4�Þ ð½0:4;0:7�; ½0:1;0:2�Þ
½0:6;0:7�; ½0:2;0:3�Þ ð½0:6;0:7�; ½0:1;0:2�Þ ð½0:5;0:7�; ½0:2;0:3�Þ ð½0:6;0:7�; ½0:1;0:3�Þ

1
CCCCCCA
;

½0:2;0:5�; ½0:3;0:4�Þ ð½0:4;0:5�; ½0:1;0:2�Þ ð½0:3; 0:6�; ½0:2;0:3�Þ ð½0:3;0:7�; ½0:1;0:3�Þ
½0:2;0:7�; ½0:2;0:3�Þ ð½0:3;0:6�; ½0:2;0:4�Þ ð½0:4; 0:7�; ½0:1;0:2�Þ ð½0:5;0:8�; ½0:1;0:2�Þ
½0:5;0:6�; ½0:3;0:4�Þ ð½0:7;0:8�; ½0:1;0:2�Þ ð½0:5;0:6�; ½0:2;0:3�Þ ð½0:4;0:5�; ½0:3;0:4�Þ
½0:3;0:6�; ½0:2;0:4�Þ ð½0:4;0:6�; ½0:2;0:3�Þ ð½0:1;0:4�; ½0:3;0:6�Þ ð½0:3;0:7�; ½0:1;0:2�Þ
½0:6;0:7�; ½0:1;0:3�Þ ð½0:5;0:6�; ½0:3;0:4�Þ ð½0:5;0:6�; ½0:2;0:3�Þ ð½0:5;0:6�; ½0:2;0:4�Þ

1
CCCCCCA
:

diðxi; ~a�Þ ¼
1
4

Xn

j¼1

dijð~aij; ~a�j ÞðgðAðjÞÞ � gðAðjþ1ÞÞÞ; ð10Þ

where dij ~aij; ~a�j
	 


¼ a~a�
j
� a~aij

��� ���þ b~a�
j
� b~aij

��� ���þ c~a�
j
� c~aij

��� ���þ
d~a�

j
� d~aij

��� ���, so that dið1Þð~aij; ~a�j Þ 6 dið2Þð~aij; ~a�j Þ 6 � � � 6 diðnÞ

ð~aij; ~a�j Þ, A(j) = {c(j), . . . , c(n)}, A(n+1) = /. g(A(k)) can be calcu-
lated by Eq. (3).
Step 7. Calculate the closeness coefficient of each alternative:
rðxiÞ ¼
diðxi; ~a�Þ

diðxi; ~aþÞ þ diðxi; ~a�Þ
; i ¼ 1;2; . . . ;m: ð11Þ
Step 8. Rank all the alternatives ai (i = 1,2, . . . ,m) according to the
closeness coefficients r(xi), the greater the value r(xi), the
better the alternative ai.

Step 9. End.

The main difference between the traditional TOPSIS and Cho-
quet integral-based TOPSIS (CITOPSIS) is that the CITOPSIS takes
the Choquet Integral-based Hamming distance into account. It is
reasonable to employ the Choquet integral in terms of the fuzzy
measure to aggregate the performance values instead of the
weighted average method, since the Choquet integral does not as-
sume the independence of one element from another.
6. A numerical example

Let us suppose there is an investment company, which wants to
invest a sum of money in the best option (adapted from Ref.
Schmeidler, 1989). There is a panel with five possible alternatives
to invest the money: a1 is a car company; a2 is a food company;
a3 is a computer company; a4 is an arms company; a5 is a TV com-
pany. The investment company must take a decision according to
the following four criteria: c1 is the risk analysis; c2 is the growth
analysis; c3 is the social–political impact analysis; c4 is the environ-
mental impact analysis. The five possible alternatives ai(i = 1,2,
3,4,5) are to be evaluated using the interval-valued intuitionistic
fuzzy information by three decision makers ek (k = 1,2,3), as listed
in the following matrix
In the follows, we can utilize the proposed procedure to get the
most desirable alternative(s).

Step 1. We firstly determine fuzzy density of each decision maker,
and its k parameter. Suppose that g(e1) = 0.40, g(e2) = 0.40,
g(e3) = 0.40. Then k of expert can be determined:
k1 = �0.44. According to Eq. (3), we have g(e1,e2) = g(e1,
e3) = g(e2,e3) = 0.73, g(e1,e2,e3) = 1.

Step 2. By Eq. (6) or Definition 7, ~ak
ij is reordered such

that~aðkÞij 6
~aðkþ1Þ

ij , then Utilize the generalized interval-val-
ued intuitionistic fuzzy geometric aggregation operator
~aij ¼GIIFGAgð~a1
ij;~a

2
ij;~a

3
ijÞ

¼
Y3

k¼1

ða~aðkÞ
ij
ÞlðAðkÞÞ�lðAðkþ1ÞÞ;

Y3

k¼1

ðb~aðkÞ
ij
ÞlðAðkÞ Þ�lðAðkþ1Þ Þ

" # 
;

1�
Y3

k¼1

ð1� c~aðkÞ
ij
ÞlðAðkÞ Þ�lðAðkþ1Þ Þ;

"

1�
Y3

k¼1

ð1�d~aðkÞ
ij
ÞlðAðkÞÞ�lðAðkþ1ÞÞ

#!

to aggregate all the interval-valued intuitionistic fuzzy
decision matrices Rk ¼ ð~ak

ijÞm�n ðk ¼ 1;2;3Þ into a complex
interval-valued intuitionistic fuzzy decision matrix R ¼
ð~aijÞm � n as follows:



R ¼

ð½0:3017;0:4645�; ½0:2685;0:3687�Þ ð½0:4373;0:5650�; ½0:1282;0:2983�Þ
ð½0:3463;0:5386�; ½0:2917;0:3925�Þ ð½0:4353; 0:6715�; ½0:1683;0:2983�Þ
ð½0:5712;0:7083�; ½0:1590; 0:2598�Þ ð½0:5720; 0:6732�; ½0:1590;0:2598�Þ
ð½0:3242;0:4996�; ½0:2283;0:3990�Þ ð½0:5000;0:7083�; ½0:1282;0:2616�Þ
ð½0:6382;0:7384�; ½0:1282;0:2616�Þ ð½0:4685;0:6075�; ½0:1716;0:2982�Þ

0
BBBBBB@
ð½0:2452;0:4685�; ½0:3257;0:4280�Þ ð½0:3299;0:5720�; ½0:1911;0:3925�Þ
ð½0:4248;0:6715�; ½0:1282;0:2283�Þ ð½0:5310; 0:7083�; ½0:1343;0:2616�Þ
ð½0:5000;0:6382�; ½0:1683;0:3000�Þ ð½0:2751; 0:4356�; ½0:3257;0:4622�Þ
ð½0:1951;0:4306�; ½0:2260; 0:3966�Þ ð½0:3366;0:7000�; ½0:1000;0:2000�Þ
ð½0:5000;0:6382�; ½0:2000;0:3000�Þ ð½0:4685;0:5720�; ½0:2614;0:4280�Þ

1
CCCCCCA
:
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Step 3. Since ([1,1], [0,0]) and ([0,0], [1,1]) are the largest and
smallest interval-valued intuitionistic fuzzy values, respec-
tively. For cost criteria c1, c4 and benefit criteria c2, c3, IV-
IFPIS ~aþ and IV-IFNIS ~a� can be simply denoted as follows:
x1 ¼ ð
ð

x2 ¼ ð
ð

x3 ¼ ð
ð

x4 ¼ ð
ð

x5 ¼ ð
ð

~aþ ¼ ðð½0;0�; ½1;1�Þð½1;1�; ½0;0�Þð½1;1�; ½0;0�Þð½0;0�; ½1;1�ÞÞ;
~a� ¼ ðð½1;1�; ½0;0�Þð½0;0�; ½1;1�Þð½0; 0�; ½1;1�Þð½1;1�; ½0;0�ÞÞ:

Denote the alternatives ai (i = 1,2, . . . ,5) by xi ¼
ð~ai1; ~ai2; ~ai3; ~ai4Þ:
ð½0:3017;0:4645�; ½0:2685;0:3687�Þ; ð½0:4373;0:5650�; ½0:1282;0:2982�Þ;
½0:2452;0:4685�; ½0:3257;0:4280�Þ; ð½0:3299;0:5720�; ½0:1911;0:3925�ÞÞ
ð½0:3463;0:5386�; ½0:2917; 0:3925�Þ; ð½0:4353;0:6715�; ½0:1683;0:2983�Þ;
½0:4248;0:6715�; ½0:1282;0:2283�Þ; ð½0:5310;0:7083�; ½0:1343;0:2616�ÞÞ
ð½0:5712;0:7083�; ½0:1590;0:2598�Þ; ð½0:5720;0:6732�; ½0:1590;0:2598�Þ;
½0:5000;0:6382�; ½0:1683; 0:3000�Þ; ð½0:2751;0:4356�; ½0:3257;0:4622�ÞÞ
ð½0:3242;0:4996�; ½0:2283; 0:3990�Þ; ð½0:5000; 0:7083�; ½0:1282;0:2616�Þ;
½0:1951;0:4306�; ½0:2260;0:3966�Þ; ð½0:3366; 0:7000�; ½0:1000;0:2000�ÞÞ
ð½0:6382;0:7384�; ½0:1282; 0:2616�Þ; ð½0:4685;0:6075�; ½0:1716;0:2982�Þ;
½0:5000;0:6382�; ½0:2000;0:3000�Þ; ð½0:4685;0:5720�; ½0:2614;0:4280�ÞÞ:
Step 4. We determine fuzzy density of each criterion, and its k
parameter. Suppose that g(c1) = 0.40, g(c2) = 0.25, g(c3) =
0.37, g(c4) = 0.20, according to Eq. (4), the k of criteria
can be determined: k2 = �0.44. By Eq. (3), we have
g(c1,c2) = 0.60, g(c1,c3) = 0.70, g(c1,c4) = 0.56, g(c2,c3) =
0.68, g(c2,c4) = 0.43, g(c3,c4) = 0.54, g(c1,c2,c3) = 0.88,
g(c1,c2,c4) = 0.75, g(c2,c3,c4) = 0.73, g(c1,c3,c4) = 0.84, g(c1,
c2,c3,c4) = 1.0.

Step 5. According to Eqs. (9) and (10), respectively, we calculate
that
d1ðx1; ~aþÞ ¼ 0:5551;d1ðx1; ~a�Þ ¼ 0:5158;

d2ðx2; ~aþÞ ¼ 0:4836;d2ðx2; ~a�Þ ¼ 0:5827;

d3ðx3; ~aþÞ ¼ 0:5030; d3ðx3; ~a�Þ ¼ 0:5665;

d4ðx4; ~aþÞ ¼ 0:5217;d4ðx4; ~a�Þ ¼ 0:5196;

d5ðx5; ~aþÞ ¼ 0:5440;d5ðx5; ~a�Þ ¼ 0:5350:
Step 6. According to Eq. (11), we calculate the closeness coeffi-
cient of each alternative as follows:
rðx1Þ ¼ 0:4817; rðx2Þ ¼ 0:5465; rðx3Þ ¼ 0:5297;
rðx4Þ ¼ 0:4990; rðx1Þ ¼ 0:4958:
Step 7. Rank all the alternatives ai (i = 1,2, . . . ,5) according to the
closeness coefficients r(xi):
a2 � a3 � a4 � a5 � a1:
Thus the most desirable alternative is a2.
7. Conclusion

This study presents a multi-criteria interval-valued intuitionis-
tic fuzzy group decision making method using Choquet integral-
based TOPSIS, where interactions phenomena among the decision
making criteria or preference of experts are taken into account.
Being a generalization of intuitionistic fuzzy sets, the interval-val-
ued intuitionistic fuzzy sets are suitable way to deal with uncer-
tainty. In the evaluation process, we have developed a
generalized intuitionistic fuzzy geometric aggregation operator
which is shown that the GIIFGA operator generalizes both the II-
FOWGA operator and IIFWGA operator. Then the GIIFGA operator
is utilized to aggregate opinions of decision makers. After inter-
val-valued intuitionistic fuzzy positive-ideal solution and inter-
val-valued intuitionistic fuzzy negative-ideal solution were
calculated based on Choquet integral-based Hamming distance,
the relative closeness coefficients of alternatives were obtained
and alternatives were ranked. Finally, an example has demon-
strated the model is efficient and robust. The proposed procedure
differs from previous approaches for multi-criteria group decision
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making not only due to the fact that the proposed method use
interval-valued intuitionistic fuzzy set theory rather than intui-
tionistic fuzzy set or fuzzy set theory, which will not cause no
any loss of information in the process of aggregation., but also
due to the consideration the interactions phenomena among the
decision making criteria or preference of experts, which approxi-
mates to the truth of real decision making problems. So it is quite
good for real-world applications.
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