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The Information Source (IS) selection involves various aspects with different requirements under indeter-
minate conditions. It is such a complicated process pertaining to seeking for the most appropriate solu-
tion that how to resolve the constraint resources needs to be congruously considered. This paper
proposes a Multi-Criteria Group Decision Making (MCGDM) model, which uniforms the quantitative and
qualitative factual value of different attributes with trapezoidal fuzzy numbers. Analytic Hierarchy Process
(AHP) and Entropy Weights (EW) are integrated to alleviate the conflicts by experts’ intuitions and provide
the accurate weight vector in this model. Besides, the Euclidean Distance (ED) is substituted by the Value of
Chi-Square Test (VCST) to refine the Relative Closeness (RC), which theoretically excluded the potential bias
arising from relative importance of the two types of distances, in a revised Technique for Order Preference
by Similarity to an Ideal Solution (TOPSIS). The optimal recommendation compromises in a social decision
making way. Finally, the software named ‘‘Evaluator’’, which is based on the presented model, is illus-
trated to show how it can be practically used for IS selection with comparative analysis.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The regular function of modern organizations prominently relies
on IS due to the increasing significance of information and intelli-
gence. Hence, people begin to realize that it is crucial to evaluate a
pool of IS providers comprehensively before they decide to achieve
the most reasonable one to meet their practical demand from a fi-
nite set of alternatives [1]. For instance, a company needs to select
one IS as their source access from several vendors for business rea-
sons. Although the first party offers specific criteria on which it fo-
cuses, it has to leverage all the ingredients owing to financial state
and source restriction with the difficulties of acquiring accurate
data etc. Therefore, it is a challenging task to identify such a perfect
candidate in terms of all indicators. Consequently, a systematic
model accommodating goals to constraints seems essential to re-
move the barriers by a complex industrial environment.

Multi-Criteria Decision Making (MCDM) and MCGDM are pro-
vided to deal with the ranking and selecting the ideal IS under mul-
tiple influential criteria (attributes) by single expert or a group of
professional members. Numerous methodologies and models have
been studied on MCDM and MCGDM, yet the flaws of the current
research are still obvious:

(a) Because of the vagueness of data, methods for evaluation of
linguistic terms and qualitative information process are irra-
ll rights reserved.

: +86 10 82317657.
).
tional or imprecise. (b) Many approaches of weights assign-
ments are unilaterally subjective or simply depending on
experts’ preference ranking index. (c) In classic TOPSIS, an
alternative might be erroneously judged as the best one
via RC-value where ED metric does not consider the relative
importance of distances to both the Positive Ideal Solution
(PIS) and the Negative Ideal Solution (NIS).
The prime contributions of this paper are stated as follows:

(a) The fuzzy set theory is introduced to improve the accuracy
in the presentation and processing of linguistic terms, while
the triangular fuzzy number is replaced by the trapezoidal
fuzzy number with modified value assignments for a
broader range. (b) The subjective and objective methods
are incorporated to determine the final weights which take
both personal opinions of each individual Decision Maker
(DM) and the information that the known data offers into
consideration. (c) The chi-square test is used to calculate
the degree of deviation between each alternative and its cor-
responding expected value, which mathematically ensures
that the best alternative is the closest to PIS and the farthest
from NIS simultaneously.

The rest of the paper is organized as follows: Section 2 over-
views the recent related research works in this domain. Section 3
provides the preliminaries about trapezoidal fuzzy numbers and
a social decision making method. Then the model is proposed
through a novel approach particularly articulated in Section 4,
while an illustrative example is given to apply the new fuzzy
MCGDM model for IS selection through a software in Section 5.

http://dx.doi.org/10.1016/j.knosys.2012.09.010
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And Section 6 presents the comparative analysis with the existing
research in five aspects. After the future work is outlined in Section
7, the conclusion is discussed in Section 8.
2. Related work

Many researchers have presented analytic models for MCDM
including Simple Additive Weighting (SAW) [2,5], Preference Ranking
Organization Method for Enrichment Evaluation (PROMETHEE) [3]
and ELimination and Choice Expressing REality (ELECTRE) [4], etc.
However, TOPSIS developed by Hwang and Yoon [5,11] has been
prevalent because of the efficiency in identifying the best alterna-
tive. Rouhani et al. [6] designed an evaluation model for enterprise
systems with considering Business Intelligence (BI) as a new cus-
tomized fuzzy TOPSIS method with detailed stages. Five enterprise
systems with those thirty-four criteria were assessed by a deci-
sion-making team after fuzzy PIS and NIS are determined. Then
by computing final fuzzy score for each enterprise system and
comparing them, the ranking of evaluating enterprise systems
was presented. Olson [7] comparatively tested nine combinations
of weight generation and distance metrics via both selections of
the top-ranked alternative and matching rank at the end of the
season. He highlighted that the key to accuracy in TOPSIS was to
obtain an accurate weight. As methods merging AHP/ANP into TOP-
SIS had been exploited and applied in a variety of fields [8–11], Yu
and Bai [12] proposed a methodology based on interval-valued
AHP and triangular fuzzy number to facilitate the evaluation pro-
cess. Wang and Lee [13] developed a novel approach that involves
end-users into the whole decision making process which could be
used for software outsourcing problem. In the fuzzy model, the
subjective weights assigned by the end-users and objective
weights based on Shannon’s entropy theory were hybrid with lin-
guistic variables handled by fuzzy numbers. Moreover, Li et al.
[14] generalized Bernardo’s method to MCGDM to get the final
rankings by aggregating individual ordinal preference to obtain
the rankings of alternatives under each criterion in the opinion of
the group. However, Opricovic and Tzeng [15] comparatively ana-
lyzed TOPSIS and VIKOR. Four types of differences were clarified be-
tween them in procedural basis, normalization, aggregation and
solution. It was pointed that TOPSIS introduced the ranking index
when simply computing the RC using the distances from the PIS
and the NIS, and the lack of the relative importance, which should
be the major concern, made TOPSIS even infeasible for decision
making. The ‘‘satisfactory level’’ proposed by Lai et al. [16] and
weighted ED documented by Deng et al. [17] as well as VIKOR
are all trials to conquer the drawback. Lu et al. [18] established a
New Product Development (NPD) evaluation model under the theme
of well-being design. It could be suitably used in many kinds of
other products and/or with other themes. Moreover, a specific soft-
ware tool was also developed to build the corresponding relation
between human-sense and machine measurements.
3. Preliminaries

3.1. Trapezoidal fuzzy numbers

A generalized fuzzy number is a special fuzzy set satisfying
F = {x 2 RjlF(x)}, where the value of x is in the domain of real num-
ber set R, while lF(x), named membership function, is a continuous
mapping from R to the closed interval [0,1]. A generalized fuzzy
number can be characterized as a tuple as eA ¼ ða1; a2; a3; a4; wÞLR,
where w is the weight of eA and a1, a2, a3, a4, w P 0 with the restric-
tion a1 6 a2 6 a3 6 a4 as well as L and R denote left and right
bounded continuous functions respectively [19], so the member-
ship function is
leAðxÞ ¼
0; x < a1

LðxÞ is monotonic increasing; a1 6 x 6 a2

w; a2 6 x 6 a3

RðxÞ is monotonic decreasing; a3 6 x 6 a4

0; x > a4

8>>>>>><>>>>>>:
ð1Þ

when both L(x) and R(x) are straight lines with w ¼ 1; eA is a trape-
zoidal fuzzy number defined as a tetrad eA ¼ ða1; a2; a3; a4Þ. In the
quadruplet, a1 and a4 are called the lower bound and the upper
bound of eA respectively with the particular case that a trapezoidal
fuzzy number is equivalently referred as a triangular fuzzy number
if a2 = a3.

Then eA ¼ ða1; a2; a3; a4Þ obeys the following rules [11]:

k� eA ¼ ðk� a1; k� a2; k� a3; k� a4Þ; k 2 R ð2Þ
ðeAÞ�1 ¼ ð1=a4;1=a3;1=a2;1=a1Þ; a1; a2; a3; a4 – 0 ð3Þ

when a fuzzy number eB ¼ ða; b; c;dÞ a; b; c;d 2 R operates with ^
and _, it regulates as

a ^ b ¼minða; bÞ
a _ b ¼maxða; bÞ

ð4Þ

In this paper, the authors employ the uniform representation
for both qualitative and quantitative numbers by expressing them
with the trapezoidal fuzzy numbers. Take a quantitative number q
for instance, it could be denoted as (q, q, q, q).

To produce a quantifiable result, the defuzzified value ofeA; e 2 R yields [20]

e ¼ 1
2

Z 1

0
ðL�1ðxÞ þ R�1ðxÞÞdx ¼ ða1 þ a2 þ a3 þ a4Þ=4 ð5Þ

where L�1(x) and R�1(x) are respective inverse functions of L(x) and
R(x) about eA.

3.2. Social decision making

A social decision function establishes a mapping from the sub-
set of alternatives to personal preferences by receiving a series of
individual preference ranks then outputting a single option. The
Borda Function is a classic approach for social decision making pro-
posed by Jena Charles de Borda. It is such a rating vote schema that
voters elicit their preference orders on candidates by voting and
the victory belongs to the one with the highest scores accumulated
according to the poll.

The Weighted Borda Function (WBF) [21] is defined as:

BFwðxÞ ¼
Xd

i¼1

v iNðx�iyÞ ð6Þ

where � is the partial relation and x � iy means x is better than y in
the ith DM’s viewpoint (1 6 i 6 d), as N is the votes that the ith DM
attained according to x � iy with the corresponding weight power Vi

assigned by an expert. The individual who achieves the highest va-
lue of BFw(x) outperforms the other rivals.

4. Model proposed

The global process for information source selection is illustrated
in Fig. 1.

4.1. Initialization

4.1.1. Initial conditions
The global MCDM process involves d DMs, m alternatives and n

criteria.
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Firstly the following initial data is prepared:

fAk ¼ fxk
ij

� �
m�n
ð1 6 k 6 dÞ; Wk ¼ wk

1;w
k
2; . . . ;wk

n

� �
ð1 6 k 6 dÞ;

V ¼ ðv1; v2; . . . ; vdÞ

Here fAk represents the evaluation matrix with trapezoidal fuzzy

numbers of the kth DM for all alternatives, where fxk
ij is the assess-

ment of the kth DMs for the ith alternative on the jth criteria withfxk
ij ¼ ak

ij; b
k
ij; c

k
ij; d

k
ij

� �
. Wk is the weight vector that the kth DM uses

during the decision making process. Meanwhile, the element wk
j

denotes the weight that the kth DM offers on the jth criteria, satis-

fying
Pn

j¼1Wk
j ¼ 1. Moreover, V is the voting power vector and vk

refers the voting weight of the kth DM during the group decision
making process.

4.1.2. Normalization
Premise I: The data values of the same criterion own the same

data model or schema with the same representation forma.
According to Premise I, all the data values from the same crite-

rion should gain the same semantic interpretation with the same
format. Furthermore, all the data values of the same attribute from
different alternatives in this paper should be only either qualitative
or quantitative simultaneously. And if it meets the latter situation,
a uniform measurement unit has to be provided for all factual val-
ues towards the identical criterion.

In order to resist the disturbance by distinct physical measure-
ment units and to preserve the property that the ranges of the fuz-
zy numbers belong to [0,1], it is indispensable to transform fAk into
a dimensionless matrix.

For the values on positive criteria (or benefit indicators),

yk
ij ¼ ok

ij;p
k
ij; q

k
ij; r

k
ij

� �
¼ ak

ij=maxi dk
ij

n o� �
^ 1 bk

ij=maxi ck
ij

n o� �
^ 1 ck

ij=maxi bk
ij

n o� ��
^1 dk

ij=maxi ak
ij

n o� �
^ 1
�

ð7Þ

For the values on negative criteria (or cost indicators),

yk
ij ¼ ok

ij;p
k
ij; q

k
ij; r

k
ij

� �
¼ mini ak

ij

n o
=dk

ij

� �
^ 1 mini bk

ij

n o
=ck

ij

� �
^ 1 mini ck

ij

n o
=bk

ij

� ��
^ 1 mini dk

ij

n o
=ak

ij

� �
^ 1
�

ð8Þ

Consequently, a normalized matrix with full trapezoidal fuzzy
numbers is achieved:

eBk ¼ yk
ij

� �
m�n

; ð1 6 k 6 dÞ
4.2. Individual decision making

4.2.1. Weights determination
The evaluation of criteria entails diverse opinions and mean-

ings, and there are two types of weighting methods: subjective
methods and objective methods. Here a hybrid means from each
of them is synthesized.

Step 1. The subjective weight is assigned via a preference elicita-
tion technique: AHP [22]. In light of this method, every
DM use ‘‘the 1-to-9 scale strategy by trapezoidal fuzzy num-
bers’’ to construct his own comparison matrix and get the

subjective weight vector ak ¼ ak
1; . . . ;ak

j ; . . . ;ak
n

� �
for each

variable by computing the eigenvectors of that matrix.
Step 2. Get the objective weight vector bk ¼ bk
1; . . . ; bk

j ; . . . ; bk
n

� �
by

computing the amounts of objective information offered
by each attribute via EW [1,23]:
wj ¼ dj

Xn

h¼1

dh

,
; dj ¼ 1� ej; ej ¼ �k

Xn

j¼1

yij ln yij;

k ¼ 1= lnðmÞ ð9Þ
Step 3. Integrate the above two approaches to make sure that the
final result reflect both the judgment by experience and
the discrepancy between the objective information and
the alternatives. Thereupon, the aggregating function is
designed by Minimum-Information-Entropy Principle in
the additive way:
min F ¼
Xn

j¼1

wk
j ln wk

j � ln ak
j

h i
þ
Xn

j¼1

wk
j ln wk

j � ln bk
j

h i
s:t:

Xn

j¼1

wk
j ¼ 1; wk

j > 0; j ¼ 1;2; . . . ;n

ð10Þ
Step 4. Figure out wk
j ¼

ffiffiffiffiffiffiffiffiffiffi
ak

j b
k
j

q
=
Pn

j¼1

ffiffiffiffiffiffiffiffiffiffi
ak

j b
k
j

q
; j ¼ 1;2; . . . ;n by

Lagrangian Multiplier Method [24]. Thus, for each DM, the

weights vector Wk and his weighted matrix eCk ¼ Zk
ij

� �
m�n

can be calculated, where zk
ij ¼ wk

j ok
ij;w

k
j pk

ij;w
k
j qk

ij;w
k
j rk

ij

� �
;

1 6 i 6 m; 1 6 j 6 n.

4.2.2. Computing relative closeness
Finishing defuzzifications in matrix eCk with f k

ij ¼
wk

j ok
ij þwk

j pk
ij þwk

j qk
ij þwk

j rk
ij

� �
=4 by (5), a regular fusion matrix

Fk ¼ f k
ij

� �
m�n

is subsequently attained.

The Set of PIS and the Set of NIS are respectively associated
with:

f kþ ¼ f kþ
1 ; f kþ

2 ; . . . ; f kþ
n

� �
¼ maxif k

ij

			j 2 J
� �

; minif k
ij

			j 2 J0
� �n o

f k� ¼ f k�
1 ; f k�

2 ; . . . ; f k�
n

� �
¼ minif k

ij

			j 2 J
� �

; maxif k
ij

			j 2 J0
� �n o ð11Þ

where J is the set of positive criteria, and J0 is the set of negative
criteria.

Premise II: All the alternatives with PIS and NIS derive from the
attributes of the identical population.

Based on Premise II, the consistency of two cases is evaluated
by degrees of deviation from the random variables to the respec-
tively calculated expected values. The lower VCST [25] explicitly
indicates higher probability to pass the hypothesis that both of
them are from the same population, implying the higher degree
of both consistency and closeness.

Moreover, it should be emphasized that the VCST does not
scale the spatial distance between two cases as the (n-dimen-
sional) ED does, instead, it measures the accumulated ratio
sum of the square difference between the data value of any ran-
dom variable and its expectation over the latter. As the VCST
intrinsically illustrates the degree of dispersion between the fac-
tual observation of any random variable and its statistical
expectation, it covers not only the interrelation of all the ele-
ments pertaining to a specific attribute, but also the correlation
of distinct criteria. Nonetheless, ED neglects the relative impor-
tance which is the major concern in the decision making pro-
cess. Consequently, in TOPSIS, ED has to be replaced by the
VCST for distance metric. Then the separations of each alterna-
tive from PIS and NIS are
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Dkþ
i ¼

Xm

j¼1

f k
ij � gkþ

ij

� �2
=gkþ

ij þ f kþ
j � gkðmax; jÞ

� �2
=gkðmax; jÞ


 �

Dk�
i ¼

Xm

j¼1

f k
ij � gk�

ij

� �2
=gk�

ij þ f k�
j � gkðmin; jÞ

� �2
=gkðmin; jÞ


 �
ð12Þ

where

gkþ
ij ¼ f k

ij

Xm

i¼1

f k
ij

Xn

j¼1

f k
ij þ

Xn

j¼1

f kþ
j

 !
; gk�

ij ¼ f k
ij

Xm

i¼1

f k
ij

, , Xn

j¼1

f k
ij þ

Xn

j¼1

f k�
j

 !
;

gkðmax; jÞ ¼ f kþ
j

Xm

i¼1

f k
ij

Xn

j¼1

f k
ij þ

Xn

j¼1

f kþ
j

 !
;

,

gkðmin; jÞ ¼ f k�
j

Xm

i¼1

f k
ij

, Xn

j¼1

f k
ij þ

Xn

j¼1

f k�
j

 !
ð13Þ
Proposition 1. Dkþ
i > Dk�

i

Proof. Let

h ¼
Xm

i¼1

f k
ij

Xn

j¼1

f k
ij þ

Xn

j¼1

f kþ
j

 !
; g ¼

Xm

i¼1

f k
ij

, , Xn

j¼1

f k
ij þ

Xn

j¼1

f k�
j

 !

Then gkþ
ij ¼ hf k

ij ; gk�
ij ¼ gf k

ij ; gkðmax; jÞ ¼ hf kþ
j ; gkðmin; jÞ ¼ gf k�

j .

Therefore h < g, 1 � h > 1 � g and (1 � h)2 > (1 � g)2, due toPn
j¼1f kþ

j >
Pn

j¼1f k�
j .

Dkþ
i � Dk�

i ¼
Xm

j¼1

f k
ij � hf k

ij

� �2
= hf k

ij

� �
þ f kþ

j � hf kþ
j

� �2
= hf kþ

j

� �
 �

� f k

ij � gf k
ij

� �2
= gf k

ij

� �
þ f k�

j � gf k�
j

� �2
= gf k�

j

� �
 ��
¼
Xm

j¼1

½ð1� hÞ2g� ð1� gÞ2h�f k
ij =ðhgÞ

nn
þ ð1� hÞ2gf kþ

j � ð1� gÞ2hf k�
j

h i
=ðhgÞ

oo
For (1 � h)2g � (1 � g)2h > 0 and ð1� hÞ2gf kþ

j � ð1� gÞ2hf k�
j > 0
Fig. 1. The global proce
Thus Dkþ
i � Dk�

i > 0) Dkþ
i > Dk�

i is proved. h

The result ensures the unequal distances from an individual to
either PIS or NIS, thus, the refined RC is formulated as

ðRCÞki ¼ Dk�
i = Dkþ

i þ Dk�
i

� �
; i ¼ 1;2; . . . ;m ð14Þ

The higher value of ðRCÞki plausibly declares the better alterna-
tive, then the ith DM concludes his preference ranking. Actually,
two conditions [15] impact the correctness of (14) when the pair-
wise superiority of alternatives ar and as needs affirmation. If ar -

� as, then ðRCÞkr > ðRCÞks , i.e. Dk�
r = Dkþ

r þ Dk�
r

� �
> Dk�

s =ðDkþ
s þ Dk�

s Þ,
which will hold if

ðiÞ Dkþ
r < Dkþ

s and Dk�
r > Dk�

s ; or

ðiiÞ Dkþ
r > Dkþ

s and Dk�
r < Dk�

s ; but Dkþ
r < Dkþ

s Dk�
r =Dk�

s

ð15Þ

Condition (i) of (15) shows the ‘‘regular’’ situation, where ar is
superior to as because ar is closer to PIS with a longer distance to
NIS than as. However, condition (ii) in (15) claims an apparent de-
fect of the original TOPSIS, namely mistaking ar that is more distant
from the PIS in fact as the better one instead of as.

Next, we would like to prove that condition (ii) could be math-
ematically excluded from our model. Suppose A and A0 refer to the
PIS and NIS respectively, with the aforementioned ar and as (ar -
� as), the coordinate graph is demonstrated in Fig. 2.

Whereas ar � as implies Dkþ
r < Dkþ

s , we focus on whether
Dk�

r > Dk�
s or not.

Proposition 2. Dk�
r > Dk�

s

Proof. Since the origin point depicts the midpoint of the distance
from A to A0 (termed as kAA0k) in Fig. 2, 0 6 jbj < jaj < p/4 holds
due to Dkþ

r > Dk�
r and Dkþ

s > Dk�
s .

Based on the Law of Cosines,

Dk�
r

� �2
¼ kAA0k2 þ Dkþ

r

� �2
� 2kAA0kDkþ

r cos a

Dk�
s

� �2
¼ kAA0k2 þ Dkþ

s

� �2
� 2kAA0kDkþ

s cos b
ss for IS selection.



Table 1
The criteria involved in IS selection.

Criteria Accuracy (C1) Flexibility (C2) Cost (C3) Complaint (C4)

Type Positive Positive Negative Negative
Quantitative Qualitative Quantitative Qualitative

Fig. 2. The distances from two alternatives to PIS and NIS.
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Then Dk�
r

� �2
� Dk�

s

� �2
¼ Dkþ

r

� �2
� Dkþ

s

� �2
� 2kAA0k Dkþ

r cos a�
�

Dkþ
s cos bÞ

Dkþ
r > Dkþ

s > 0
0 6 jbj < jaj < p=4) cos b > cos a

)
) Dkþ

r cos a < Dkþ
s cos b

) Dkþ
r

� �2
� Dkþ

s

� �2
� 2kAA0k Dkþ

r cos a� Dkþ
s cos b

� �
> 0

) Dk�
r

� �2
� Dk�

s

� �2
> 0

Hence Dk�
r > Dk�

s is proved. h
Fig. 3. Linguistic terms and their corresp
Therefore, it is impossible that the global process would be
trapped into condition (ii) of (15) or the relative importance of
the parametric values in (14) would be omitted. It inherently states
that the optimal candidate via VCST metric is definitely the closest
from the PIS and farthest from the NIS simultaneously.

4.3. Group decision making

As the WBF is used to vote on the rankings from all DMs, the IS
which wins the highest amount of votes is eventually regarded as
the optimal choice.
5. Experimental study

To fairly assess multiple ISs and identify the best one for large
institutes or enterprises, the software named ‘‘Evaluator’’ is devel-
oped. It is based on our model and has been deployed with good
performance in China Academy of Space Technology (CAST) to sup-
port MCGDM for upper-layer applications. It is designed as ‘‘Cli-
ent/Server’’ architecture so that it could be conveniently
delivered and installed. This section demonstrates how the ‘‘Evalu-
ator’’ performs to make the most suitable option from a finite num-
ber of ISs by several DMs for data integration in CAST.

The IS selection task consists of three alternatives, four criteria
and five DMs. The criteria cover accuracy, flexibility, cost and com-
plaint with a brief instruction in Table 1.

Trapezoidal fuzzy numbers are adopted due to both the higher
generality and the boarder range than triangular fuzzy numbers. So
DMs are provided more information to make more subtle deci-
sions. The value for each term with a trapezoidal fuzzy number
could be predesigned through the interface in Fig. 3 before the glo-
bal process starts.

The mapping relationship between linguistic terms and their
corresponding coverage of fuzzified values are displayed in Fig. 4.

The related initial and normalization information is described in
Tables 2 and 3.

Traditional ‘‘the 1-to-9 scale strategy’’ [26] has some defects
when describing linguistic terms with inadequate smoothness for
empirical comparison. If A is assumed weakly more important than
B, for instance, the proportion A over B is defined as ‘‘3:1’’, namely
onding trapezoidal fuzzy numbers.



Table 2
Initial information for each DMs.

DMs Alternative Criteria

C1 C2 C3 C4

D1 A1 0.99 M 5000 H
A2 0.95 L 3000 M
A3 0.90 H 4500 M

D2 A1 0.99 L 5000 M
A2 0.95 VL 3000 H
A3 0.90 M 4500 VH

D3 A1 0.99 H 5000 M
A2 0.95 M 3000 H
A3 0.90 VH 4500 L

D4 A1 0.99 M 5000 VL
A2 0.95 L 3000 H
A3 0.90 H 4500 M

D5 A1 0.99 VH 5000 L
A2 0.95 H 3000 VL
A3 0.90 H 4500 H

Fig. 4. The linguistic variables for each criterion.

Table 4
An expert-designed ‘‘1-to-9 scale strategy by trapezoidal fuzzy number’’.

Trapezoidal fuzzy number Value of membership function

~1 1;1; 3
2 ;2

� �
~x x� 1; x� 1

2 ; xþ 1
2 ; xþ 1

� �
; x ¼ 2;3; . . . ;8

~9 8; 17
2 ;9;9

� �

Table 5
The relative importance and value assigned of pairwise comparison.

Relative importance of xi over xj Traditional
value
assigned

Improved value
assigned

Equally Important (EI) 1 ~5=~5 ¼ ð1;1;1;1Þ
Weakly More Important (WMI) 3 ~6=~4 ¼ ð1;11=9;13=7;7=3Þ
Obviously More Important (OMI) 5 ~7=~3 ¼ ð3=2;13=7;3;4Þ
Strongly More Important (SMI) 7 ~8=~2 ¼ ð7=3;3;17=3;9Þ
Extremely More Important (EMI) 9 ~9=~1 ¼ ð4;17=3;9;9Þ
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0.75:0.25, which is apparently unreasonable. So the crisp method
is meliorated to ‘‘1-to-9 scale strategy by trapezoidal fuzzy number’’
via assigning the improved values about relative importance to the
elements in comparison matrices. The tactic is illustrated in Tables
4 and 5 and Figs. 5–7.

Then a single-layer AHP is used during this scenario. Firstly,
each DM should carefully judge the relative importance and make
his decision according to their own experiences, knowledge and
Table 3
The normalized fuzzy information matrices for each DM.

DMs Normalized fuzzy information matrices

D1 ð1;1;1;1Þ; ð0:3333;0:5625;0:7333;1Þ; ð0:
ð0:9596;0:9596;0:9596;0:9596Þ; ð0:1111
ð0:9091;0:9091;0:9091;0:9091Þ; ð0:6667

24
D2 ð1:0;1:0;1:0;1:0Þ; ð0:1538;0:4545;0:7778

ð0:9596;0:9596;0:9596;0:9596Þ; ð0:0;0:2
ð0:9091;0:9091;0:9091;0:9091Þ; ð0:4615

24
D3 ð1:0;1:0;1:0;1:0Þ; ð0:6;0:7895;0:8889;1:

ð0:9596;0:9596;0:9596;0:9596Þ; ð0:3;0:4
ð0:9091;0:9091;0:9091;0:9091Þ; ð0:8;0:9

24
D4 ð1:0;1:0;1:0;1:0Þ; ð0:3333;0:5625;0:7333

ð0:9596;0:9596;0:9596;0:9596Þ; ð0:1111
ð0:9091;0:9091;0:9091;0:9091Þ; ð0:6667

24
D5 ð1:0;1:0;1:0;1:0Þ; ð0:8;0:9474;1:0;1:0Þ; ð

ð0:9596;0:9596;0:9596;0:9596Þ; ð0:6;0:7
ð0:9091;0:9091;0:9091;0:9091Þ; ð0:6;0:7

24
perception of the problem when comparing and weighing each
pair of criteria. Fig. 5 exemplifies a single DM’s opinion. After all
the individuals’ results have been submitted and synchronized to
the server via ‘‘Evaluator’’, the experts could see the details con-
verged in a single form in Fig. 6.

As there are four criteria in the comparison, the value of the
Random Consistency Index (RI) equals 0.90 [26]. The observations
of Consistency Index (CI), Consistency Ratio (CR) and Consistency sit-
uation are computed byCR = CI/RI in Fig. 7.

The weight vectors of AHP are calculated by computing the
eigenvector of the comparison matrices offered in Fig. 6, while
the weight vectors of EW are figured by Eq. 9. Then the composite
weight vectors are aggregated according to the methods detailed in
Section 4.2.1. The result is consequently collected in Fig. 8.

Multiplying the combined weight vector in Fig. 8 and the corre-
sponding fuzzy normalized matrix in Table 3 for each individual
DM respectively, the VCST between the alternatives and the ideal
solutions is regarded as the distance to achieve the RC in Fig. 9
and individual preference ranking in Fig. 10.

The final decision is accomplished by a committee including
five members with the predefined voting power V = (10, 9, 8, 7,
6), the result by WBF is shown in Fig. 11.

Therefore, the top-ranked alternative A3 is eventually identified
as the optimal one.
6;0:6;0:6;0:6Þ; ð0:3333;0:5625;0:7333;1:0Þ
;0:3125;0:4667;0:6667Þ; ð1:0;1:0;1:0;1:0Þ; ð0:4615;0:8182;1:0;1:0Þ
;0:9375;1:0;1:0Þ; ð0:6667;0:6667;0:6667;0:6667Þ; ð0:4615;0:8182;1:0;1:0Þ

35
;1:0Þ; ð0:6;0:6;0:6;0:6Þ; ð0:4615;0:8182;1:0;1:0Þ
727;0:4444;0:8333Þ; ð1:0;1:0;1:0;1:0Þ; ð0:3333;0:5625;0:7333;1:0Þ
;0:8182;1:0;1:0Þ; ð0:6667;0:6667;0:6667;0:6667Þ; ð0:3;0:4737;0:6111;0:8125Þ

35
0Þ; ð0:6;0:6;0:6;0:6Þ; ð0:154;0:4545;0:7778;1:0Þ
737;0:6111;0:8125Þ; ð1:0;1:0;1:0;1:0Þ; ð0:1111;0:3125;0:4667;0:6667Þ
474;1:0;1:0Þ; ð0:6667;0:6667;0:6667;0:6667Þ; ð0:25;0:7143;1:0;1:0Þ

35
;1:0Þ; ð0:6;0:6;0:6;0:6Þ; ð0:0;0:7499;1:0;1:0Þ
;0:3125;0:4667;0:6667Þ; ð1:0;1:0;1:0;1:0Þ; ð0:0;0:1875;0:2667;0:4167Þ
;0:9375;1:0;1:0Þ; ð0:6667;0:6667;0:6667;0:6667Þ; ð0:0;0:2727;0:4444;0:8333Þ

35
0:6;0:6;0:6;0:6Þ; ð0:0;0:4286;0:8;1:0Þ
895;0:8889;1:0Þ; ð1:0;1:0;1:0;1:0Þ; ð0:0;0:7499;1:0;1:0Þ
895;0:8889;1:0Þ; ð0:6667;0:6667;0:6667;0:6667Þ; ð0:0;0:1875;0:2667;0:4167Þ

35



Fig. 5. An example of an individual AHP evaluation.
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6. Comparative study and discussions

This section firstly elaborates the essentials of some classic
MCDM methods, which are the prototypes of the related massive
extensions, modifications and (or) advancements for both aca-
demic research and applications. Then the important procedural
steps are compared with a number of recent approaches. Finally,
two categories of group decision making methods are analyzed.
6.1. Rationale

ELECTRE is based on the study of outranking relations and
exploitation notions of concordance by using pairwise comparisons
among alternatives under each criterion separately. Concordance,
discordance indexes and threshold values are used to analyze the
outranking relations among the alternatives [27]. PROMETHEE also
follows the outranking concept to rank the alternatives, combined
with the ease of use and decreased complexity. Two complete pre-
orders can be obtained by ranking the alternatives according to
their incoming flow and their outgoing flow. The intersection of
these two preorders yields the partial preorder of PROMETHEE I
where incomparabilities are allowed. The ranking of the alterna-
tives according to their net flow yields the complete preorder of
PROMETHEE II [28]. Both of the two classic families of approaches
intrinsically contain many outranking relations with heteroge-
neous expressions. Furthermore, the correlation between concor-
dance and discordance indexes, as well as the ambiguousness on
identifying the incoming flow and outgoing flow, complicates the
decision making process on preference selection for DMs. VIKOR
focuses on ranking and selecting from a set of alternatives in the
presence of conflicting criteria. It introduces the ranking index
based on the particular measure of ‘‘closeness’’ to the ‘‘ideal’’
solution [29]. Similarly, the basic principle of TOPSIS is that the
chosen alternative should have the shortest distance from the ideal
solution and the farthest distance from the negative-ideal solution.
TOPSIS has been proved to perform well even when the number of
alternatives and criteria is too many due to its simplicity in percep-
tion and use. However, this technique is often criticized because of
its inability to deal adequately with uncertainty and imprecision
inherent in the process of mapping the perceptions of decision-
makers [30–32]. Bellman and Zadeh [33] first introduced the
theory of fuzzy sets in problems of MCDM as an effective approach
to treat vagueness, lack of knowledge and ambiguity inherent in the
human decision making process. TOPSIS has been expanded to deal
MCDM with an uncertain decision matrix resulting in fuzzy TOPSIS,



Fig. 6. The pairwise comparison in AHP.

Fig. 7. The consistency check in AHP.
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which has successfully been applied to solve various MCDM
problems. Therefore, our model uniformly transforms the initial
data into trapezoidal fuzzy numbers so that it could perform in
the fuzzy environment. Meanwhile, it makes use of the generic
framework of TOPSIS, which needs to calculate of the ‘‘proximity’’
to the PIS and the ‘‘remoteness’’ to the NIS, in terms of the sound
logic that represents the rationale of human choice.

6.2. Normalization

Most of the classic models conduct the normalization in
three ways: (i) vector normalization; (ii) linear normalization
and its variants; (iii) non-monotonic normalization [34,35]. The
vector normalization in original TOPSIS has been censured that
the normalized value could be different for different evaluation
unit of a particular criterion. Therefore, VIKOR uses the linear
normalization and the normalized value does not depend on the
assessment unit of a criterion [15,29]. All the three modes of
normalization could be easily extended into the fuzzy scenario
upon all the elements of each tuple for each fuzzy number. The
specific linear normalization stated in Eqs. (7) and (8) is applied
to our model in order to ensure compatibility between evaluation
of objective criteria and linguistic ratings of subjective criteria
as well as facilitating the computational problems where the
different units of the attribute values present in the decision
matrix.



Fig. 8. The weight vectors.

Fig. 9. Relative closeness in VCST.
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6.3. Distance metric

Various distance metrics have been attempted in similarity
measurements between alternatives in MCDM [36–39]. Literature
[40] directly measured the distance between two trapezoidal fuzzy
numbers by a vertex method resulting in a crisp distance value and
used the ideal and anti-ideal solutions to define a crisp overall
score for each alternative. Several aggregation operators have been
proposed and utilized with high time complexity [41,42]. Thus, the
fuzzied values have been defuzzified before the calculation of dis-
tances in our model. Minkovski’s Lp metric is the most prevalent
one since it intuitively reflects the positional relations in n-dimen-
sional space, including Manhattan Distance (MD, when p = 1), ED
(when p = 2) and Chebyshev Distance (CD, when p =1) [43]. Gray
Theory (GT) [44,45] is introduced to express the variation of situa-
tion for data sequences, scaling the similarity of the shapes about



Fig. 10. Individual preference ranking.

Fig. 11. Final group decision result by WBF.

Table 6
Preference ranking affected by three distance metrics about D1.

Metric Alternative Distance
to PIS

Distance
to NIS

RC Preference
ranking

MD A1 0.0699 0.1348 0.6584 A3 � A1 � A2

A2 0.2037 0.0009 0.0048
A3 0.0177 0.1870 0.9132

ED A1 0.0342 0.0610 0.6404 A1 � A3 � A2

A2 0.0865 0.0001 0.0009
A3 0.0466 0.0726 0.6087

CD A1 0.0699 0.0769 0.5237 A3 � A1 � A2

A2 0.1468 0.0010 0.0066
A3 0.0080 0.1468 0.9482

GT A1 0.8780 0.6697 0.4327 A2 � A3 � A1

A2 0.6314 0.9992 0.6127
A3 0.8456 0.7806 0.48

VCST A1 0.8463 0.7233 0.4608 A3 � A1 � A2

A2 0.8684 0.7154 0.4516
A3 0.8405 0.7243 0.4628
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the corresponding curves. If the distances between candidates and
NIS/PIS are measured by MD, ED, CD GT and VCST respectively with
other unchanged constraints in our model, the decision made by D1

are exemplified in Table 6.
The result in Table 6 explicitly states that A1 with the highest

ranking (obtaining the maximum value of RC, 0.6404) in ED is
merely the closest to PIS (0.0342) but not the farthest from the
NIS (0.0610, lower than A3’s 0.0726) simultaneously. The phenom-
enon confirms the defect described in Section 4.2.2.

6.4. Determining of weight

In this section, ak
j and bk

j still indicate the subjective and the
objective weight vector of the kth DM respectively as discussed
earlier.

6.4.1. Subjective weight
In the Simple Multiple Attribute Rating Technique (SMART), partic-

ipants are required to prioritize the importance of the changes in
the criteria from the worst criteria levels to the best. Then 10
points are assigned to the least important criteria, and increasing
numbers of points (without explicit upper limit) are assigned to
the other criteria to address their relative importance to the least
important criteria. The weights are calculated by normalizing the
sum of the points to one. The idea of the improved version, that
is SMARTER, exploits the centroid method [46].

In the Pair-Wise Comparison (PWC) method, DMs are presented a
worksheet and are asked to score the relative importance of two



Table 7
Preference ranking affected by three objective weight determination methods about D1.

Methods Weight Alternative Distance to PIS Distance to NIS RC Preference ranking

SD [0.0562, 0.4647, 0.3344, 0.1447] A1 0.7334 0.6381 0.4652 A3 � A1 � A2

A2 0.7776 0.6745 0.4645
A3 0.9275 0.8203 0.4693

CRITIC [0.0654, 0.528, 0.2846, 0.1221] A1 0.7531 0.6446 0.4612 A3 � A1 � A2

A2 0.7882 0.6697 0.4593
A3 0.9509 0.8289 0.4657

EW [0.0027, 0.6279, 0.3028, 0.0604] A1 0.8463 0.7233 0.4608 A3 � A1 � A2

A2 0.8684 0.7154 0.4516
A3 0.8405 0.7243 0.4628

Table 8
Preference ranking affected by three weight integration methods about D1.

Integration Weight Alternative Distance to PIS Distance to NIS RC Preference ranking

Multiplicative [0.0077, 0.7762, 0.1848, 0.0313] A1 1.1191 0.9246 0.4524 A3 � A1 � A2

A2 1.0980 0.8669 0.4411
A3 1.3527 1.1324 0.4556

Additive (q = 0.5) [0.1385, 0.5052, 0.2459, 0.1104] A1 0.7853 0.6652 0.4585 A3 � A1 � A2

A2 0.8133 0.6810 0.4557
A3 0.9870 0.8522 0.4633

Our method [0.0557, 0.5591, 0.2728, 0.1124] A1 0.8463 0.7233 0.4608 A3 � A1 � A2

A2 0.8684 0.7154 0.4516
A3 0.8405 0.7243 0.4628
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criteria at a time. The scales can be various, for example, a scale of 0
(equal importance) to 3 (absolutely more important) is commonly
adopted. The results are consolidated by adding up the scores
obtained by each criterion when preferred to the criteria it is
compared with. The results are then normalized to a total of 1. This
weighting method provides a framework for comparing each
criterion against all others, and helps to reveal the difference in
importance between criteria. However, the consistency of partici-
pants’ preferences, especially, their transitivity is not allowed to
be checked [47].

Nevertheless, in the context, AHP is preferred, because the IS
selection problem could be dissociated as criteria and alternatives
and the effect of each subject is demanded for measuring. The hier-
archical strategy with an improved version of ‘‘the 1-to-9 scale
strategy’’ provides DMs more information to make more subtle
and reasonable decisions rather than the normal methods based
on exact numbers of points and scores.

6.4.2. Objective weight
The principle of weight determination by the Standard Deviation

(SD) is that the criterion obtaining the larger value of SD weights
more significantly due to the higher degree of data variation and
more information revealed [17,48]. The weight is characterized as

bk
j ¼ dk

j

Xn

j¼1

dk
j

,
ð16Þ

where dk
j is the SD of the jth criterion for kth DM.

In CRiteria Importance Through Inter-criteria Correlation (CRITIC)
method, the weights derived incorporate both contrast intensity
and conflict which are contained in the structure of the decision
problem. The developed method is based on the analytical investi-
gation of the evaluation matrix for extracting all information con-
tained in the criteria. The amount of the information that the jth
criterion is calculated by [48]

Ck
j ¼ dk

j

Xn

t¼1;t–j

ð1� rtjÞ ð17Þ
where rtj is the relation coefficient between the tth and jth criterion.
And the weight formula is given as

bk
j ¼ Ck

j

Xn

j¼1

Ck
j

,
ð18Þ

Table 7 demonstrates how different methods of objective
weight assignments impact the preference rating for D1 without
any other changed conditions in our model.

The result of Table 7 seems to suggest that objective weights
derived by the EW are more significantly different to each other.
This reflects the capability of the EW in providing the average
intrinsic information generated by the performance of ISs. This
would help the DM discriminate the most important criterion.

6.4.3. Weighting integration methods
Weighting integration methods have been applied to the evalu-

ation and comparison of complex systems. These methods could
roughly be classified into two groups of operations: multiplicative
integration and additive integration [47].

The multiplicative synthesis is expressed as

wk
j ¼ ak

j b
k
j

Xn

j¼1

ak
j b

k
j

,
; j ¼ 1;2; . . . ;n ð19Þ

While the additive synthesis is expressed as

wk
j ¼ qak

j þ ð1� qÞbk
j ; j ¼ 1;2; . . . ;n; 0 6 q 6 1 ð20Þ

where q is the additive integration coefficient.
Then both of the patterns of integration are comparably illus-

trated with our method about D1’s preference order, for example,
in Table 8.

6.5. Group decision methods

In extending TOPSIS to a group decision environment, the meth-
ods can be categorized into two varieties: mathematical methods
and voting methods.
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6.5.1. Mathematical methods
Most of the mathematical works aggregate the importance of

the criteria and/or the rating of alternatives with respect to each
criterion from individuals of the group via some specific operators
[40–42,47]. Literature [49] endeavored to design a global TOPSIS
after a number of individual fuzzy TOPSIS procedure, while others
compared the effects of external aggregation and internal aggrega-
tion of group preferences [30].

6.5.2. Voting methods
Social preference functions are commonly based on voting rules.

According to Copeland rule, the option with the largest number (i.e.
with the highest ranking) in exhaustive pairwise comparison is the
most recommended. The Borda rule is to select the option that on
average stands highest in the voters’ rankings [50]. Under most
scenarios, the diverse knowledge or comprehensibility of each
group member cause different levels of professional decisions. Thus
the personal authority needs to be considered, so that the Borda
function with the assigned weights which is described in Section 3.2
actually reflects the rationale of committee choice.

7. Future work

As the decision making is a dynamic process, further studies
should focus on users’ feedbacks and their influence on the next
turn of decision, that is, how to develop a suitable strategy to man-
age the variable weights or voting power. Moreover, the difficulties
of incomplete information resulting from various reasons, such as
the inadequate knowledge or unintentional ignorance, are needed
to consolidate the current research.

8. Conclusion

This paper primarily analyzes the characteristics of IS selection
and points out the drawbacks of the current researches. To prop-
erly deal with these problems, a MCGDM model is elaborated. This
new model relies on the chi-square test metric in a fuzzy TOPSIS
fashion. It is composed of a committee-decision process with
appropriate resolutions in linguistic terms, quantitative informa-
tion, weight determination and RC computation using trapezoidal
fuzzy numbers, and additive amalgamation of weight assignments
respectively. In addition, the problem caused by the relative
importance of distances to ideal/anti-ideal solutions in the original
TOPSIS has been mathematically eliminated via VCST metric. After
the illustrative example and comparative studies, it finally demon-
strates that the model could provide an effective framework for
ranking competing alternatives of IS. And it could be easily adapt-
able and extended to other applications.

Acknowledgements

This work is supported by Project of the State Key Laboratory of
Software Development Environment (SKLSDE-2011ZX-09) and Na-
tional Natural Science Foundation of China (61003016).

The helpful and constructive comments from the editor and the
reviewers are gratefully acknowledged.

References

[1] J.W. Huang, Combining entropy weight and TOPSIS method for information
system selection, in: Proceedings of the IEEE International Conference on
Automation and Logistics, 2008, pp. 1965–1968.

[2] S.Y. Chou, Y.H. Chang, C.Y. Shen, A fuzzy simple additive weighting system
under group decision-making for facility location selection with objective/
subjective attributes, European Journal of Operational Search 189 (2008) 132–
145.
[3] M. Behzadian, R.B. Kazemzadeh, A. Albadvi, M. Aghdasi, PROMETHEE: a
comprehensive literature review on methodologies and applications, European
Journal of Operational Search 200 (2010) 198–215.

[4] M.C. Wu, T.Y. Chen, The ELECTRE multicriteria analysis approach based on
Atanassov’s intuitionistic fuzzy sets, Expert Systems with Applications 38
(2011) 12318–12327.

[5] C.L. Hwang, K.S. Yoon, Multiple Attribute Decision Making: Methods and
Applications, Springer-Verlag, Berlin, 1981.

[6] S. Rouhani, M. Ghazanfari, M. Jafari, Evaluation model of business intelligence
for enterprise systems using fuzzy TOPSIS, Expert Systems with Applications
39 (2012) 3764–3771.

[7] D.L. Olson, Comparison of weights in TOPSIS models, Mathematical and
Computer Modelling 40 (2004) 721–727.

[8] F. Torfi, R.Z. Farahani, S. Rezapour, Fuzzy AHP to determine the relative weights
of evaluation criteria and fuzzy TOPSIS to rank the alternatives, Applied Soft
Computing 10 (2010) 520–528.

[9] G. Yang, W.J. Huang, L.L. Lei, Using AHP and TOPSIS approaches in nuclear
power plant equipment supplier selection, Key Engineering Materials 419–420
(2010) 761–764.

[10] D. Melin, Y. Serkan, K. Nevzat, Weapon selection using the AHP and TOPSIS
methods under fuzzy environment, Expert Systems with Applications 36
(2009) 8143–8151.

[11] J. Lu, G. Zhang, D. Ruan, F. Wu, Multi-objective Group Decision Making:
Methods, Software and Applications with Fuzzy Set Techniques, Imperial
College Press, London, 2007.

[12] Y. Yu, Y.Q. Bai, Application of interval-valued AHP and fuzzy TOPSIS in the
quality classification of the heaters, in: Proceedings of 2010 Second
International Conference on Computational Intelligence, Modelling and
Simulation, 2010, pp. 273–278.

[13] T.C. Wang, H.D. Lee, Developing a fuzzy TOPSIS approach based on subjective
weights and objective weights, Expert Systems with Applications 36 (2009)
8980–8985.

[14] W. Li, W. Cui, Y. Chen, Y. Fu, A group decision-making model for multi-criteria
supplier selection in the presence of ordinal data, in: Proceedings of IEEE
International Conference on Service Operations and Logistics and Informatics
(SOLI), 2008, pp. 1686–1690.

[15] S. Opricovic, G.H. Tzeng, Compromise solution by MCDM methods: a
comparative analysis of VIKOR and TOPSIS, European Journal of Operational
Research 156 (2004) 445–455.

[16] Y.J. Lai, T.Y. Liu, C.L. Hwang, TOPSIS for MODM, European Journal of
Operational Research 76 (1994) 486–500.

[17] H. Deng, C.H. Yeh, R.J. Willis, Inter-company comparison using modified
TOPSIS with objective weights, Computers & Operations Research 27 (2000)
963–973.

[18] J. Lu, J. Ma, G. Zhang, X. Zeng, L. Koehl, Theme-based comprehensive evaluation
in new product development using fuzzy hierarchical criteria group decision-
making method, IEEE Transactions on Industrial Electronics 58 (6) (2011)
2236–2246.

[19] P. Dheena, G. Mohanraj, Multicriteria decision-making combining fuzzy set
theory, ideal and anti-ideal points for location site selection, Expert Systems
with Applications 38 (2011) 13260–13265.

[20] M. Ma, A. Kandel, M. Friedman, A new approach for defuzzification, Fuzzy Sets
and Systems 111 (2000) 351–356.

[21] X. Wang, L.P. Huang, Y. Zhang, X.H. Xu, J.Q. Chen, A solution of data
inconsistencies in data integration-designed for pervasive computing
environment, Journal of Computer Science and Technology 25 (2010) 499–
508.

[22] C. Carlsson, R. Fullér, Fuzzy multiple criteria decision making: recent
developments, Fuzzy Sets and Systems 78 (1996) 139–153.

[23] C.E. Shannon, W. Weaver, The Mathematical Theory of Communication, The
University of Illinois Press, Urbana, 1947.

[24] X.F. Li, Z.X. Liu, Q.E. Peng, Improved algorithm of TOPSIS model and its
application in river health assessment, Journal of Sichuan University
(Engineering Science Edition) 43 (2011) 14–21.

[25] J. Neyman, Contribution to the theory of v2test, in: Proceedings of [First]
Berkeley Symp. on Math. Statist. and Prob. (Univ. of Calif. Press), 1949, pp.
239–273.

[26] C. Geoff, The Analytic Hierarchy Process (AHP), Pearson Education Limited,
2004.

[27] B. Roy, The outranking approach and the foundations of ELECTRE methods,
Theory and Decision 31 (1991) 49–73.

[28] O.I. Larichev, R.V. Brown, Numerical and verbal decision analysis: comparison
on practical cases, Multi-Criteria Decision Analysis 9 (6) (2000) 263–273.

[29] S. Opricovic, Fuzzy VIKOR with an application to water resources planning,
Expert Systems with Applications 38 (10) (2011) 12983–12990.

[30] H.S. Shih, H.J. Shyur, E.S. Lee, An extension of TOPSIS for group decision
making, Mathematical and Computer Modelling 45 (2007) 801–813.

[31] H.S. Byun, K.H. Lee, A decision support system for the selection of a rapid
prototyping process using the modified TOPSIS method, International Journal
of Advanced Manufacturing Technology 26 (11–12) (2005) 1338–1347.

[32] M. Behzadian, S.K. Otaghsara, M. Yazdani, J. Ignatius, A state-of the-art survey
of TOPSIS applications, Expert Systems with Applications 39 (2012) 13051–
13069.

[33] R.E. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment,
Management Science 17 (1970) 141–164.



J. Tian et al. / Knowledge-Based Systems 37 (2013) 515–527 527
[34] A.S. Milani, A. Shanian, R. Madoliat, The effect of normalization norms in
multiple attribute decision making models: a case study in gear material
selection, Structural Multidisciplinary Optimization 29 (4) (2005) 312–318.

[35] K.P. Yoon, C.L. Hwang, Multiple Attribute Decision Making: An Introduction,
Sage Pub., Thousand Oaks, CA, 1995.

[36] K. Anagnostopoulos, H. Doukas, J. Psarras, A linguistic multicriteria analysis
system combining fuzzy sets theory, ideal and anti-ideal points for location
site selection, Expert Systems with Applications 35 (2008) 2041–2048.

[37] Y.-M. Wang, Y. Luo, Z.-S. Hua, A note on group-decision making based on
concepts of ideal and anti-ideal points in a fuzzy environment, Mathematical
and Computer Modeling 46 (2007) 1256–1264.

[38] Z. Xu, S. Shang, W. Qjan, W. Shu, A method for fuzzy risk analysis based on the
new similarity of trapezoidal fuzzy numbers, Experts System with
Applications 37 (2010) 1920–1927.

[39] Zhi-Ping Fan, Yang Liu, A method for group decision-making based on multi-
granularity uncertain linguistic information, Experts System with Applications
37 (2010) 4000–4008.

[40] C.T. Chen, A fuzzy approach to select the location of the distribution center,
Fuzzy Sets and Systems 118 (2001) 65–73.

[41] Y. Huang Fu, J.Y. Wu, R.Z. Wang, X.H. Huang, Study on comprehensive
evaluation model for combined cooling heating and power system (CCHP),
Journal of Engineering Thermophysics 26 (2005) 13–16.

[42] J.-J. Wang, C.-F. Zhang, Y.-Y. Jing, G.-Z. Zheng, Using the fuzzy multi-criteria
model to select the optimal cool storage system for air conditioning, Energy
and Buildings 40 (2008) 2059–2066.
[43] D.F. Jones, S.J. Mardle, A distance-metric methodology for the derivation of
weights from a pairwise comparison matrix, Journal of the Operational
Research Society 55 (2004) 869–875.

[44] Y. Kuo, T. Yang, G. Huang, The use of grey relational analysis in solving multi
attribute decision-making problems, Computers and Industrial Engineering 55
(2008) 80–93.

[45] G.D. Li, D. Yamaguchi, M. Nagai, A grey-based approach to suppliers selection
problem, in: Proceedings of International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA2006), vol. 2,
2006, pp. 818–824.

[46] W. Edwards, F.H. Barron, Smarts and smarter: improved simple methods for
multiattribute utility measurement, Organizational Behavior and Human
Decision Processes 60 (1994) 306–325.

[47] J.-J. Wang, Y.-Y. Jing, C.-F. Zhang, J.-H. Zhao, Review on multi-criteria decision
analysis aid in sustainable energy decision-making, Renewable and
Sustainable Energy Reviews 13 (2009) 2263–2278.

[48] D. Diakoulaki, G. Mavrotas, L. Papayannakis, Determining objective weights in
multiple criteria problems: the CRITIC method, Computers and Operations
Research 22 (1995) 763–770.

[49] R.A. Krohling, V.C. Campanharo, Fuzzy TOPSIS for group decision making: a
case study for accidents with oil spill in the sea, Expert Systems with
Applications 38 (2011) 4190–4197.

[50] V. Conitzer, Computational Aspects of Preference Aggregation, Computer
Science Department, Carnegie Mellon University, Pittsburgh, 2006.


	A fuzzy TOPSIS model via chi-square test for information source selection
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Trapezoidal fuzzy numbers
	3.2 Social decision making

	4 Model proposed
	4.1 Initialization
	4.1.1 Initial conditions
	4.1.2 Normalization

	4.2 Individual decision making
	4.2.1 Weights determination
	4.2.2 Computing relative closeness

	4.3 Group decision making

	5 Experimental study
	6 Comparative study and discussions
	6.1 Rationale
	6.2 Normalization
	6.3 Distance metric
	6.4 Determining of weight
	6.4.1 Subjective weight
	6.4.2 Objective weight
	6.4.3 Weighting integration methods

	6.5 Group decision methods
	6.5.1 Mathematical methods
	6.5.2 Voting methods


	7 Future work
	8 Conclusion
	Acknowledgements
	References


