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Abstract

In this paper, from among multi-criteria models in making complex decisions and
multiple attribute models for the most preferable choice, technique for order preference
by similarity ideal solution (TOPSIS) approach has been dealt with. In some cases,
determining precisely the exact value of the attributes is difficult and that, as a result
of this, their values are considered as intervals. Therefore, the aim of this paper is to
extend the TOPSIS method for decision-making problems with interval data. By exten-
sion of TOPSIS method, an algorithm to determine the most preferable choice among
all possible choices, when data is interval, is presented. Finally, an example is shown to
highlight the procedure of the proposed algorithm at the end of this paper.
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1. Introduction

Decision-making problem is the process of finding the best option from all
of the feasible alternatives. In almost all such problems the multiplicity of cri-
teria for judging the alternatives is pervasive. That is, for many such problems,
the decision maker wants to solve a multiple criteria decision making (MCDM)
problem. Multiple criteria decision making may be considered as a complex
and dynamic process including one managerial level and one engineering level
[4]. The managerial level defines the goals, and chooses the final ‘‘optimal’’
alternative. The multi-criteria nature of decisions is emphasized at this mana-
gerial level, at which public officials called ‘‘decision makers’’ have the power to
accept or reject the solution proposed by the engineering level. These decision
makers, who provide the preference structure, are ‘‘off line’’ from the optimi-
zation procedure done at the engineering level. A MCDM problem can be con-
cisely expressed in matrix format as

W ¼ ½w1;w2; . . . ;wn�
where A1,A2, . . . ,Am are possible alternatives among which decision makers
have to choose, C1,C2, . . . ,Cn are criteria with which alternative performance
are measured, xij is the rating of alternative Ai with respect to criterion Cj,
wj is the weight of criterion Cj.

The main steps of multiple criteria decision making are the following:

(a) Establishing system evaluation criteria that relate system capabilities to
goals.

(b) Developing alternative systems for attaining the goals (generating
alternatives).

(c) Evaluating alternatives in terms of criteria(the values of the criterion
functions).

(d) Applying a normative multi-criteria analysis method.
(e) Accepting one alternative as ‘‘optimal’’(preferred).
(f) If the final solution is not accepted, gather new information and go into

the next iteration of multi-criteria optimization.

Steps (a) and (e) are performed at the upper level, where decision makers
have the central role, and the other steps are mostly engineering tasks. For step
(d), a decision maker should express his/her preferences in terms of the relative
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importance of criteria, and one approach is to introduce criteria weights. This
weights in MCDM do not have a clear economic significance, but their use pro-
vides the opportunity to model the actual aspects of decision making (the pref-
erence structure).

In classical MCDM methods, the ratings and the weights of the criteria are
known precisely [5,6]. A survey of the methods has been presented in Hwang
and Yoon [6]. Technique for order performance by similarity to ideal solution
(TOPSIS) [7], one of known classical MCDM method, was first developed by
Hwang and Yoon [6] for solving a MCDM problem. It based upon the concept
that the chosen alternative should have the shorter distance from the positive
ideal solution and the farthest from the negative ideal solution. A similar con-
cept has also been pointed out by Zeleny [8]. In the process of TOPSIS, the per-
formance ratings and the weights of the criteria are given as exact values.
Recently, Abo-sinna and Amer [1] extend TOPSIS approach to solve multi-
objective nonlinear programming problems. Chen [2] extends the concept of
TOPSIS to develop a methodology for solving multi-person multi-criteria deci-
sion-making problems in fuzzy environment.

Under many conditions, exact data are inadequate to model real-life situa-
tions. For example, human judgements including preferences are often vague
and cannot estimate his preference with an exact numerical data, there for
these data may be have some structures such as bounded data, ordinal data,
interval data, and fuzzy data. In this paper, by considering the fact that, in
some cases, determining precisely the exact value of the attributes is difficult
and that, as a result of this, their values are considered as intervals, therefore,
we extended the concept of TOPSIS to develop a methodology for solving
MCDM problems with interval data.

The rest of the paper is organized as follows: next section briefly introduces
the original TOPSIS method. In Section 3, first, we introduce MCDM prob-
lems with interval data, then, we present an algorithm to extend TOPSIS to
deal with interval data. In Section 4 we illustrate our proposed algorithmic
method with an example. The final section concludes.
2. TOPSIS method

TOPSIS (technique for order preference by similarity to an ideal solution)
method is presented in Chen and Hwang [3], with reference to Hwang and
Yoon [6]. TOPSIS is a multiple criteria method to identify solutions from a fi-
nite set of alternatives. The basic principle is that the chosen alternative should
have the shortest distance from the positive ideal solution and the farthest dis-
tance from the negative ideal solution. The procedure of TOPSIS can be ex-
pressed in a series of steps:
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(1) Calculate the normalized decision matrix. The normalized value nij is cal-
culated as

nij ¼ xij

ffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

x2
ij

vuut ; j ¼ 1

,
; . . . ;m; i ¼ 1; . . . ; n.

(2) Calculate the weighted normalized decision matrix. The weighted nor-
malized value vij is calculated as

vij ¼ winij; j ¼ 1; . . . ;m; i ¼ 1; . . . ; n;
where wi is the weight of the ith attribute or criterion, and
Pn

i¼1wi ¼ 1.

(3) Determine the positive ideal and negative ideal solution.

Aþ ¼ fvþ1 ; . . . ; vþn g ¼ max
j

vijji 2 I
� �

; min
j

vijji 2 J
� �� �

;

A� ¼ fv�1 ; . . . ; v�n g ¼ min
j

vijji 2 I
� �

; max
j

vijji 2 J
� �� �

;

where I is associated with benefit criteria, and J is associated with cost
criteria.
(4) Calculate the separation measures, using the n-dimensional Euclidean
distance. The separation of each alternative from the ideal solution is
given as

dþj ¼
Xn

i¼1

ðvij � vþi Þ
2

( )1
2

; j ¼ 1; . . . ;m.

Similarly, the separation from the negative ideal solution is given as

d�j ¼
Xn

i¼1

ðvij � v�i Þ
2

( )1
2

; j ¼ 1; . . . ;m.

(5) Calculate the relative closeness to the ideal solution. The relative close-
ness of the alternative Aj with respect to A+ is defined as

Rj ¼ d�j =ðdþj þ d�j Þ; j ¼ 1; . . . ;m.
Since d�j P 0 and dþj P 0, then, clearly, Rj 2 [0, 1].

(6) Rank the preference order. For ranking DMUs using this index, we can

rank DMUs in decreasing order.

The basic principle of the TOPSIS method is that the chosen alternative
should have the ‘‘shortest distance’’ from the positive ideal solution and the
‘‘farthest distance’’ from the negative ideal solution. The TOPSIS method
introduces two ‘‘reference’’ points, but it does not consider the relative impor-
tance of the distances from these points.
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3. TOPSIS method with interval data

Considering the fact that, in some cases, determining precisely the exact
value of the attributes is difficult and that, as a result of this, their values are
considered as intervals, therefore, now we try to extend TOPSIS for these inter-
val data. Suppose A1,A2, . . . ,Am are m possible alternatives among which deci-
sion makers have to choose, C1,C2, . . . ,Cn are criteria with which alternative
performance are measured, xij is the rating of alternative Ai with respect to
criterion Cj and is not known exactly and only we know xij 2 ½xL

ij; x
U
ij �. A

MCDM problem with interval data can be concisely expressed in matrix
format as

W ¼ ½w1;w2; . . . ;wn�
where wj is the weight of criterion Cj.

3.1. The proposed algorithmic method

A systematic approach to extend the TOPSIS to the interval data is pro-
posed in this section.

First we calculate the normalized decision matrix as follows:
The normalized values �nL

ij and �nU
ij are calculated as

�nL
ij ¼ xL

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ðxL
ijÞ

2 þ ðxU
ij Þ

2

vuut,
; j ¼ 1; . . . ;m; i ¼ 1; . . . ; n; ð1Þ

�nU
ij ¼ xU

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ðxL
ijÞ

2 þ ðxU
ij Þ

2

vuut
,

; j ¼ 1; . . . ;m; i ¼ 1; . . . ; n. ð2Þ

Now interval ½�nL
ij; �n

U
ij � is normalized of interval ½xL

ij; x
U
ij �. The normalization

method mentioned above is to preserve the property that the ranges of normal-
ized interval numbers belong to [0, 1].

Considering the different importance of each criterion, we can construct the
weighted normalized interval decision matrix as

�vL
ij ¼ wi�nL

ij; j ¼ 1; . . . ;m; i ¼ 1; . . . ; n; ð3Þ
�vU

ij ¼ wi�nU
ij ; j ¼ 1; . . . ;m; i ¼ 1; . . . ; n; ð4Þ
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where wi is the weight of the ith attribute or criterion, and
Pn

i¼1wi ¼ 1.
Then, we can identify positive ideal solution and negative ideal solution as

A
þ ¼ f�vþ1 ; . . . ;�vþn g ¼ max

j
�vU

ij ji 2 I
� �

; min
j

�vL
ijji 2 J

� �� �
; ð5Þ

A
� ¼ f�v�1 ; . . . ;�v�n g ¼ min

j
�vL

ijji 2 I
� �

; max
j

�vU
ij ji 2 J

� �� �
; ð6Þ

where I is associated with benefit criteria, and J is associated with cost criteria.
The separation of each alternative from the positive ideal solution, using the

n-dimensional Euclidean distance, can be currently calculated as

�d
þ
j ¼

X
i2I

�vL
ij � �vþi

� �2

þ
X
i2J

�vU
ij � �vþi

� �2
( )1

2

; j ¼ 1; . . . ;m. ð7Þ

Similarly, the separation from the negative ideal solution can be calculated
as

�d
�
j ¼

X
i2I

�vU
ij � �v�i

� �2

þ
X
i2J

�vL
ij � �v�i

� �2
( )1

2

; j ¼ 1; . . . ;m. ð8Þ

A closeness coefficient is defined to determine the ranking order of all alter-
natives once the �d

þ
j and �d

�
j of each alternative Aj has been calculated. The rel-

ative closeness of the alternative Aj with respect to A
þ

is defined as

Rj ¼ �d
�
j =ð�d

þ
j þ �d

�
j Þ; j ¼ 1; . . . ;m. ð9Þ

Obviously, an alternative Aj is closer to the A
þ

and farther from A
�

as Rj

approaches to 1. Therefore, according to the closeness coefficient, we can deter-
mine the ranking order of all alternatives and select the best one from among a
set of feasible alternatives.

3.2. The presented algorithm

In sum, an algorithm to determine the most preferable choice among all pos-
sible choices, when data is interval, with extended TOPSIS approach is given in
the following:

Step 1: Establishing system evaluation criteria that relate system capabilities
to goals (identification the evaluation criteria).

Step 2: Developing alternative systems for attaining the goals (generating
alternatives).

Step 3: Evaluating alternatives in terms of criteria (the values of the criterion
functions which are intervals).
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Step 4: Identifying the weight of criteria.
Step 5: Construct the interval decision matrix and the interval normalized

decision matrix (using the formulas (1) and (2)).
Step 6: Construct the interval weighted normalized decision matrix (using the

formulas (3) and (4)).
Step 7: Determine positive ideal solution and negative ideal solution(identifi-

cation of A
þ

and A
�

, using the formulas (5) and (6)).
Step 8: Calculate the separation of each alternative from positive ideal solu-

tion and negative ideal solution, respectively (identification of �d
þ
j and

�d
�
j , using the formulas (7) and (8)).

Step 9: Calculate the relative closeness of each alternative to positive ideal
solution (identification of Rj, using the formula (9)).

Step 10: Rank the preference order of all alternatives according to the close-
ness coefficient.
4. Numerical example

In this section, we work out a numerical example to illustrate the TOPSIS
method for decision-making problems with interval data. A case study of com-
paring 15 bank branches (A1,A2, . . . ,A15) in Iran was conducted to examine the
applicability of this TOPSIS method with interval data. Four financial ratios
Table 1
The Interval decision matrix of 15 alternatives

C1 C2 C3 C4

xL
1j xU

1j xL
2j xU

2j xL
3j xU

3j xL
4j xU

4j

A1 500.37 961.37 2696995 3126798 26364 38254 965.97 6957.33
A2 873.7 1775.5 1027546 1061260 3791 50308 2285.03 3174
A3 95.93 196.39 1145235 1213541 22964 26846 207.98 510.93
A4 848.07 1752.66 390902 395241 492 1213 63.32 92.3
A5 58.69 120.47 144906 165818 18053 18061 176.58 370.81
A6 464.39 955.61 408163 416416 40539 48643 4654.71 5882.53
A7 155.29 342.89 335070 410427 33797 44933 560.26 2506.67
A8 1752.31 3629.54 700842 768593 1437 1519 58.89 86.86
A9 244.34 495.78 641680 696338 11418 24108 1070.81 2283.08
A10 730.27 1417.11 453170 481943 2719 2955 375.07 559.85
A11 454.75 931.24 309670 342598 2016 2617 936.62 1468.45
A12 303.58 630.01 286149 317186 14918 27070 1203.79 4335.24
A13 658.81 1345.58 321435 347848 6616 8045 200.36 399.8
A14 420.18 860.79 618105 835839 24425 40457 2781.24 4555.42
A15 144.68 292.15 119948 120208 1494 1749 282.73 471.22



Table 2
The Interval normalized decision matrix

C1 C2 C3 C4

�nL
1j �nU

1j �nL
2j �nU

2j �nL
3j �nU

3j �nL
4j �nU

4j

A1 0.0856 0.1645 0.5176 0.6001 0.1974 0.2865 0.0706 0.5086
A2 0.1495 0.3038 0.1972 0.2037 0.0283 0.3768 0.1670 0.2320
A3 0.0164 0.0336 0.2198 0.2329 0.1720 0.2010 0.0152 0.0373
A4 0.1451 0.2999 0.0750 0.0758 0.0036 0.0090 0.0046 0.0067
A5 0.0100 0.0206 0.0278 0.0318 0.1352 0.1352 0.0129 0.0271
A6 0.0794 0.1635 0.0783 0.0799 0.3036 0.3643 0.3403 0.4300
A7 0.0265 0.0586 0.0643 0.0787 0.2531 0.3365 0.0409 0.1832
A8 0.2999 0.6211 0.1345 0.1475 0.0107 0.0113 0.0043 0.0063
A9 0.0418 0.0848 0.1231 0.1336 0.0855 0.1805 0.0782 0.1669
A10 0.1249 0.2425 0.0869 0.0925 0.0203 0.0221 0.0274 0.0409
A11 0.0778 0.1593 0.0594 0.0657 0.0151 0.0196 0.0684 0.1073
A12 0.0519 0.1078 0.0549 0.0608 0.1117 0.2027 0.0880 0.3169
A13 0.1127 0.2302 0.0616 0.0667 0.0495 0.0602 0.0146 0.0292
A14 0.0719 0.1473 0.1186 0.1604 0.1829 0.3030 0.2033 0.3330
A15 0.0247 0.0500 0.0230 0.0230 0.0111 0.0131 0.0206 0.0344

Table 3
The Interval weighted normalized decision matrix

C1 C2 C3 C4

�vL
1j �vU

1j �vL
2j �vU

2j �vL
3j �vU

3j �vL
4j �vU

4j

A1 0.0107 0.0205 0.06471 0.07502 0.0246 0.0358 0.0088 0.0635
A2 0.0186 0.0379 0.0246 0.0254 0.0035 0.0471 0.0208 0.0290
A3 0.0020 0.0042 0.0274 0.0291 0.0215 0.0251 0.0019 0.0046
A4 0.0181 0.0374 0.0093 0.0094 0.0004 0.0011 0.0005 0.0008
A5 0.0012 0.0025 0.0034 0.0039 0.0169 0.0169 0.0016 0.0033
A6 0.0099 0.0204 0.0097 0.0099 0.0379 0.0455 0.0425 0.0537
A7 0.0033 0.0073 0.0080 0.0098 0.0316 0.0420 0.0051 0.0229
A8 0.0374 0.07766 0.0168 0.0184 0.0013 0.0014 0.0005 0.0007
A9 0.0052 0.0106 0.0153 0.0167 0.0106 0.0225 0.0097 0.0208
A10 0.0156 0.0303 0.0108 0.0115 0.0025 0.0027 0.0034 0.0051
A11 0.0097 0.0199 0.0074 0.0082 0.0018 0.0024 0.0085 0.0134
A12 0.0064 0.0134 0.0068 0.0076 0.0139 0.0253 0.0110 0.0396
A13 0.0140 0.0287 0.0077 0.0083 0.0061 0.0075 0.0018 0.0036
A14 0.0089 0.0184 0.0148 0.0200 0.0228 0.0378 0.0254 0.0416
A15 0.0030 0.0062 0.0028 0.0028 0.0013 0.0016 0.0025 0.0043

Table 4
Distance of each alternative from the positive ideal solution

�dþ1 �dþ2 �dþ3 �dþ4 �dþ5 �dþ6 �dþ7 �dþ8 �dþ9 �dþ10
�dþ11

�dþ12
�dþ13

�dþ14
�dþ15

0.063 0.087 0.082 0.108 0.099 0.071 0.090 0.123 0.088 0.102 0.099 0.093 0.103 0.077 0.105
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Table 5
Distance of each alternative from the negative ideal solution

�d
þ
1

�d
�
2

�d
�
3

�d
�
4

�d
�
5

�d
�
6

�d
�
7

�d
�
8

�d
�
9

�d
�
10

�d
�
11

�d
�
12

�d
�
13

�d
�
14

�d
�
15

0.122 0.083 0.083 0.059 0.078 0.097 0.088 0.043 0.079 0.062 0.069 0.085 0.064 0.089 0.074

Table 6
Closeness coefficient and ranking

Alternatives Rj Rank

A1 0.659352269 1
A2 0.48911912 6
A3 0.505445965 4
A4 0.355647462 14
A5 0.440416214 9
A6 0.57596554 2
A7 0.494120485 5
A8 0.258369495 15
A9 0.473078522 8
A10 0.379417215 13
A11 0.409684296 11
A12 0.477519948 7
A13 0.38233013 12
A14 0.538211999 3
A15 0.415388351 10
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(C1,C2, . . . ,C4) were identified as the evaluation criteria for these banks. (Note
that Steps 1, Step 2 and Step 3 are done).

Step 4: Suppose that the vector of corresponding weight of each criteria is as
follows:
W ¼ ½0:125; 0:125; 0:125; 0:125�.

Step 5: The interval decision matrix and interval normalized decision matrix

are shown in Tables 1 and 2, respectively.
Step 6: The interval Weighted normalized decision matrix is as Table 3.
Step 7: The positive ideal solution and the negative ideal solution are then

determined as:
A
þ ¼ ½0:001255569; 0:075023386; 0:047105492; 0:063583238�;

A
� ¼ ½0:077647586; 0:002877994; 0:00046068; 0:000538197�.
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Step 8: A comparison between the normalized performance ratings of each
alternative Ai and A

þ
by Eq. (7) (that is shown in Table 4), and

between that of Ai and A
�

by Eq. (8) (that is shown in Table 5) would
indicate how the bank is performing as compared with the best per-
formance and the worst performance of all the bank branches with
respect to each criterion.

Step 9: Calculate the relative closeness of each alternative to positive ideal
solution as Table 6.

Step 10: According to the closeness coefficient, ranking the preference order of
all alternatives is as Table 6.
5. Conclusion

Considering the fact that, in some cases, determining precisely the exact
value of the attributes is difficult and that, their values are considered as inter-
vals, therefore, in this paper TOPSIS for interval data has been extended. Also,
an algorithm to determine the most preferable choice among all possible
choices, when data is interval, is presented. In this algorithmic method, as well
as considering the distance of a DMU from the positive ideal solution, its dis-
tance from the negative ideal solution is also considered. That is to say, the less
the distance of the DMU under evaluation from the positive ideal solution and
the more its distance from the negative ideal solution, the better its ranking.
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