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Accuracy, complexity and interpretability are very important in credit classification. However, most
approaches cannot perform well in all the three aspects simultaneously. The objective of this study is
to put forward a classification approach named C-TOPSIS that can balance the three aspects well. C-TOP-
SIS is based on the rationale of TOPSIS (Technique for Order Preference by Similarity to Ideal Solution).
TOPSIS is famous for reliable evaluation results and quick computing process and it is easy to understand
and use. However, it is a ranking approach and three challenges have to be faced for modifying TOPSIS
into a classification approach. C-TOPSIS works out three strategies to overcome the challenges and retains
the advantages of TOPSIS. So C-TOPSIS is deduced to have reliable classification results, high computa-
tional efficiency and ease of use and understanding. Our findings in the experiment verify the advantages
of C-TOPSIS. In comparison with 7 popular approaches on 2 widely used UCI credit datasets, C-TOPSIS
ranks 2nd in accuracy, 1st in complexity and is in 1st rank in interpretability. Only C-TOPSIS ranks among
the top 3 in all the three aspects, which verifies that C-TOPSIS can balance accuracy, complexity and
interpretability well.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Credit decision making has long attracted a great deal of atten-
tion from both academic researchers and practitioners [31]. More-
over, the rapid growth of the credit industry and the subprime
crisis in 2007 has pushed this issue to a new climax [44]. Credit
classification is one of the key analytical techniques in credit deci-
sion making. Credit classification approach is used to categorize
applicants as either approved or rejected, on the basis of appli-
cants’ information such as income, bank balance, profession, family
background and educational background.

Classification accuracy, computation complexity and results
interpretability are generally accepted as the three main aspects
in the evaluation of a credit classification approach [12]. Firstly,
acceptable classification accuracy is the basic and crucial require-
ment since even a little improvement in accuracy may translate
into significant savings [43]. Many approaches have been studied
to improve the accuracy of credit classification [19,40]. Next, low
computational complexity is also a very important requirement
in practice [14]. The objective of a credit classification approach
is reduction of the cost of credit decision making. Excessive time
consumption is unworthy and can affect the profit of the firm sig-
nificantly. Approaches that involve less computing time are more
efficient and thus generate more profit for the banks or firms
[13]. Lastly, good interpretability is another requirement that
cannot be ignored. Inadequate interpretability of an approach can
be a major drawback and causes a reluctance to use the approach.
It goes even further: when credit has been denied to a customer,
the Equal Credit Opportunity Act of the US requires that the
financial institution provide specific reasons why the application
is rejected. Indefinite and vague reasons for denial are illegal
[23]. Therefore, only the approach that performs well in all the
three aspects simultaneously is a satisfactory credit classification
approach.

All kinds of mathematical approaches such as discriminant
analysis, logistic regression, k-nearest neighbor classifier, decision
tree, neural network and support vector machine (SVM) have been
employed to credit classification up to now [7]. Most of the credit
classification approaches can be categorized into two techniques.
The former is traditional statistical technique which includes
discriminant analysis, logistic regression, k-nearest neighbor
classifier, decision tree and so on. The latter is artificial intelligence
(AI) technique which includes neural network, support vector
machine and so on [5,41].
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Statistical techniques are firstly employed to credit decision
making. Linear discriminant analysis is the first approach that is
applied to credit classification by Durand [9] who shows that the
approach can produce good predictions of credit repayment. After-
wards, researches on proposing mathematic credit scoring
approaches spring up, which demonstrate that discriminant analy-
sis is a mediocre credit scoring approach, always performing nei-
ther outstandingly nor poorly among numerous approaches in
many ways [21,22,27,35]. Decision tree is initially applied to credit
scoring by Mehta [24]. The classification process of decision tree is
very clear and its computational efficiency is relatively high, never-
theless its accuracy is not satisfactory [35]. k-Nearest neighbor, a
nonparametric approach, is explored for credit scoring by Chatter-
jee and Barcun [4]. k-Nearest neighbor approach is characterized
by its intuitive simplicity. Despite this merit, it has not been widely
adopted in the credit scoring industry and one reason for this is its
perceived computational demand [12]. Logistic regression is firstly
employed to credit scoring by Wiginton [37] and is one of the most
commonly used approaches in developing scorecard [7,11]. It gives
superior results than discriminant analysis, however, neither ap-
proach is good enough [37]. Generally speaking, statistical ap-
proaches have the attractive feature of simplicity, but their
accuracies are not sufficiently good to be cost effective for credit
classification.

Later in the 1990s, with the development of information tech-
nology, the new era of AI approaches in credit decision making be-
gins. Neural network approach has been successfully tested in
many real-word data sets. Nevertheless, it is essentially black
box and cannot permit the reasons why this approach has reached
its decision. Besides, it takes much longer to train compared with
other statistical approaches [12]. SVM, proposed by [6], has at-
tracted wide attention because of its excellent accuracy perfor-
mance. However, its parameter selection is time-consuming and
its classification process is a black box that is not interpretable
[8,11]. After that some revised SVM, such as least square support
vector machine (LSSVM), is proposed [29] and introduced to credit
classification. As a revised SVM, LSSVM performs better in comput-
ing time, however, its interpretability is still a problem. Besides,
inductive learning, artificial neural networks, genetic algorithms,
artificial immune system and other AI approaches also come into
use [34]. Generally, the AI approach performs satisfactorily in accu-
racy, but it is time-consuming and its results are not interpretable
in terms of original input variables. Above literature review shows
that some approaches perform well in one or two aspects at most
while bad in the remaining aspects. All in all, nearly none of the ap-
proaches can balance accuracy, complexity and interpretability.

The technique for order preference by similarity to ideal solu-
tion (TOPSIS), firstly developed by Hwang and Yong in 1981 [16],
is a classical multi-criteria decision-making (MCDM) approach
widely used in evaluation studies [28]. The evaluation results of
TOPSIS are considered reliable. Besides, since only linear computa-
tion is involved, the computing process of TOPSIS is very time-sav-
ing. Last but not least, the evaluation results of TOPSIS are very
easy to understand and explain. Since TOPSIS has the above three
advantages, it is perceived that TOPSIS might be suitable for credit
classification. However, TOPSIS is a ranking approach rather than
classification approach, attributes of TOPSIS are distinguished intu-
itively and weights are always set subjectively by experts. The
three challenges make it difficult to modify TOPSIS into a classifica-
tion approach.

The objective of this paper is to propose a novel classification
approach based on TOPSIS by overcoming the above-mentioned
three challenges. The proposed approach retains the advantages
of TOPSIS and is deduced to perform well in terms of accuracy,
complexity and interpretability simultaneously. To the best of
our knowledge, this study is the first paper to propose a systematic
classification approach based on the rationale of TOPSIS. The pro-
posed approach is named C-TOPSIS and the capital letter C in C-
TOPSIS in the acronym for classification.

This paper is organized as follows. Section 2 presents a review
of TOPSIS in credit decision making. Section 3 introduces the
proposed C-TOPSIS approach. Section 4 compares the accuracy,
complexity and interpretability of C-TOPSIS with 7 popular
approaches on two UCI credit datasets. Section 5 provides the con-
clusion and possible future directions.
2. TOPSIS in credit decision making

The ranking process of TOPSIS is similar to the credit scoring
process. In TOPSIS, according to attributes, every alternative attains
a score called closeness coefficient. Alternatives are ranked accord-
ing to the closeness coefficient, the larger the closeness coefficient
is, the more preferred the alternative is. In credit scoring, according
to the attributes such as income, age and profession, the credit
scoring model can output a credit score for every applicant. The
larger the credit score is, the better the expected credit of the appli-
cant is [30]. Moreover, TOPSIS is known for reliable evaluation re-
sults, quick computing process, and ease of use and understanding.
So it is conceived that TOPSIS can probably be modified into a com-
petitive credit classification approach which can balance accuracy,
complexity and interpretability.

However, three features of TOPSIS make it difficult to modify it
into a classification approach, that is, attributes are distinguished
intuitively, weights are always set subjectively by experts and
TOPSIS is a ranking approach rather than classification approach.
Intuitive attribute distinguishing and subjective weight setting
are prone to be affected by experience, knowledge and so on, and
are not helpful for improving classification accuracy. In addition,
after attaining the credit score, threshold is needed to classify the
applicants. Therefore, three corresponding challenges are faced,
that is, how to distinguish attributes objectively, how to set
weights properly and how to determine the threshold reasonably.

Because of the existence of the three challenges, only a few
researchers have associated TOPSIS with credit evaluation or clas-
sification [3]. Wu and Olson [38] develop a TOPSIS classifier and
use it to evaluate financial performance of Canadian companies.
In this TOPSIS classifier, the attributes are distinguished subjec-
tively, weights are calculated by least square regression and
threshold is set according to the rank of the last good observation
in training data. In this research, threshold is set relatively reason-
ably, however, whether using the coefficients of least square
regression as attributes’ weights is reasonable is open to doubt.
iC and Yurdakul [17] use TOPSIS to evaluate the credibility of man-
ufacturing firms in Turkey. Fuzzy numbers are used to set weights
for attributes, and then TOPSIS is applied to evaluate the perfor-
mance of industries and firms. In this research, fuzzy numbers
are set by experts, so weights are also set subjectively. Attributes
distinguishing and threshold determination are not involved. Li
et al. [20] hybridize TOPSIS with case-based reasoning for business
failure prediction. Firms are classified according to their distances
from positive ideal observation and negative ideal observation. In
this research, attributes distinguishing and weight setting are not
discussed.

In summary, only if attributes distinguishing, weight setting
and threshold determination are all settled, can TOPSIS be success-
fully modified into a systematic classification approach. However,
none of the above research works can settle them simultaneously.
In this study, logistic regression is used to distinguish attributes, a
novel but effective method is proposed to set weights and a rea-
sonable way is employed to determine threshold for classification.
Details are presented in Section 3. To the best of our knowledge,
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this study is the first paper to propose a systematic classification
approach based on the rationale of TOPSIS.

3. The proposed C-TOPSIS approach

In this section, we present the novel C-TOPSIS classification ap-
proach. Fig. 1 shows how TOPSIS is modified into C-TOPSIS in this
study. In TOPSIS, attributes are distinguished intuitively, weights
are always set subjectively by experts and TOPSIS is a ranking ap-
proach rather than a classification approach. So three challenges
are faced in modifying TOPSIS into C-TOPSIS, i.e. how to distinguish
attributes objectively? How to set weights properly? How to set
threshold reasonably? In this study, three corresponding strategies
are worked out to overcome the three challenges. Logistic regres-
sion is used to distinguish attributes, a novel method is proposed
to set weights and a reasonable method is employed to determine
the threshold. After that, TOPSIS is modified into C-TOPSIS
systematically.

In order to introduce C-TOPSIS logically, first, TOPSIS is ex-
plained and then the challenges and the corresponding strategies
for modifying TOPSIS into C-TOPSIS are presented. Lastly, the con-
cept and detailed steps of C-TOPSIS are given.

3.1. TOPSIS

TOPSIS is always used to rank alternatives according to some
attributes and is known for the fewest rank reversals. It is based
on the concept that the most preferred alternative should have
the shortest distance from the positive ideal solution (PIS) and
the largest distance from the negative ideal solution (NIS). The
PIS presents the best solution that maximizes the benefit attributes
and minimizes the cost attributes, whereas the NIS presents the
opposite, i.e. worst solution that minimizes the benefit attributes
and maximizes the cost attributes. Alternatives are ranked accord-
ing to the closeness coefficient defined as the ratio of the distance
to NIS and the sum of distance to NIS and PIS. The closer an alter-
native is to PIS and farther to NIS, the larger the closeness coeffi-
cient is, and vice versa. The steps of TOPSIS are as follows [18].

Assume that there are n alternatives to be evaluated and each
alternative has m evaluation attributes. Let X = [xij]nxm denote the
decision matrix, where xij is the jth attribute value of the ith alter-
native. Let wj denote the weight of the jth attribute.

Step 1: Normalize the decision matrix

rij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1x2
ij

q ; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m ð1Þ

where rij represents the normalized value of jth attribute of the ith
alternative.
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Step 2: Weight the normalized decision matrix
v ij ¼ wjrij; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m ð2Þ

where vij represents the weighted normalized value of jth attribute
of the ith alternative. Weights are always set subjectively by
experts.

Step 3: Determine PIS and NIS

Aþ ¼ vþj ; j ¼ 1 . . . ;m
n o

ð3Þ

A� ¼ v�j ; j ¼ 1 . . . ;m
n o

ð4Þ

where A+ and A� represent the PIS and the NIS, respectively.
vþj ¼maxfv ij; i ¼ 1; . . . ;ng if the jth attribute is a benefit attribute,
otherwise vþj ¼minfv ij; i ¼ 1; . . . ; ng. v�j ¼minfv ij; i ¼ 1; . . . ;ng if
the jth attribute is a benefit attribute, otherwise
v�j ¼maxfv ij; i ¼ 1; . . . ;ng. PIS and NIS are the weighted normalized
best and worst alternatives.

Step 4: Calculate the distance from each alternative to PIS and
NIS

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
ðv ij � vþj Þ

2
r

; i ¼ 1; . . . ;n ð5Þ

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
ðv ij � v�j Þ

2
r

; i ¼ 1; . . . ;n ð6Þ

where Sþi and S�i represent the distance between the ith alternative
and the PIS and the distance between the ith alternative and the
NIS, respectively.

Step 5: Calculate the closeness coefficient

Ci ¼
S�i

S�i þ Sþi
; i ¼ 1; . . . ;n ð7Þ

where Ci is the closeness coefficient that denotes the degree of
closeness of the ith alternative to PIS and NIS.

The above are the whole steps of TOPSIS. Alternatives are
ranked by closeness coefficient. The larger the closeness coefficient
is, the more preferred the alternative is.

3.2. Strategies for modifying TOPSIS into C-TOPSIS

TOPSIS is a ranking approach. Nevertheless, the ranking process
of TOPSIS is similar to the credit scoring process and TOPSIS is well
known for reliable evaluation results, a quick computing process
and ease of use and understanding. So it may be a good idea to
modify TOPSIS into a credit classification approach as follows.
Firstly, according to the attributes such as income, debt and profes-
sion, TOPSIS can give every applicant a credit score. Then, a reason-
able threshold is determined to classify the applicants into two
classes. Applicants with high credit scores above the threshold
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to C-TOPSIS

distinguish 
 objectively?

set weights 
perly?

et threshold 
onably?

C-TOPSIS

Logistic regression is used 
to distinguish attributes

A novel method is 
proposed to set weights

A reasonable method is 
employed to set threshold

ng TOPSIS into C-TOPSIS.



X. Zhu et al. / Knowledge-Based Systems 52 (2013) 258–267 261
are classified as approved applicants while those with low credit
scores below the threshold are classified as the rejected applicants.

Generally speaking, if rational benefit and cost attributes distin-
guishing, objective weights setting and reasonable threshold deter-
mination problems are overcome, TOPSIS can be successfully
transformed into a classification approach. Moreover, the classifi-
cation approach will retain the advantages of TOPSIS and can bal-
ance accuracy, complexity and interpretability well.

For the sake of simplicity, applicants who attain high credit
scores and will be approved are called good applicants while those
who attain low credit scores and will be rejected are called bad
applicants in the following text.

3.2.1. Benefit and cost attributes distinguishing
Attributes need to be distinguished as benefit or cost attributes

in TOPSIS. Benefit attributes are those which have positive effects
on credit score, such as income. It is generally accepted that the
higher the income is, the better the repayment capability, so the
higher the credit score should be. On the contrary, cost attributes
are those which have negative effects on credit score, such as debt.
It is generally accepted that the more debt an applicant owes, the
worse the repayment capability is, so the lower the credit score of
the applicant should be. Proper attribute distinguishing is the
premise of using TOPSIS. In many other studies, attributes are dis-
tinguished easily by experts, however, in credit scoring, some attri-
butes cannot be distinguished subjectively. Besides, titles of the
attribute are always changed into meaningless symbols for the sake
of confidentiality of the data. So a proper objective attribute distin-
guishing approach is urgently needed in credit classification.

In this paper, logistic regression is used to select and distinguish
attributes. Specifically, class is set as dependent variable and the
other attributes are set as independent variables. After logistic
regression, attributes with non-significant coefficients are omitted
and attributes with significant positive or negative coefficients are
regarded as benefit attributes or cost attributes, respectively.

3.2.2. Weights setting
In TOPSIS, attributes weights are always set subjectively by ex-

perts. The weights can reveal the importance of the attributes and
what is more, serve the goal of classification. Subjective weights
are prone to be affected by human experience, knowledge and so
on. More importantly, sometimes they are not conducive for clas-
sification. Therefore, proper objective weights helpful for improv-
ing classification accuracy are needed.

A novel but effective weight setting method aimed at helping
classification as accurate as possible is put forward in this paper.
Based on the rationale of TOPSIS, we assume that if good applicants
are as close to the best applicant as possible and bad applicants are
as close to the worst applicant as possible, the classification will be
as accurate as possible. By transforming the concept into a mathe-
matical function, the goal is to minimize the sum of the average
distance between weighted good applicants and the best applicant
and the average distance between weighted bad applicants and the
worst applicant. By solving this goal function, reasonable weights
can be obtained.

Fig. 2 shows the possible effect of weighting under a two
dimensional space. The boxes denote the bad applicants and circles
denote good applicants. The two solid black boxes represent the
best and the worst applicant. At first, as the left figure shows, the
boundary between good applicants and bad applicants is not so
clear. Then, the data is weighted by the proposed method. After
weighting, as the right figure shows, good applicants are much clo-
ser to the best applicant and bad applicants are much closer to the
worst applicant. It is much easier to separate good applicants and
bad applicants now. So the proposed weight setting method here is
not only objective, but also helpful for classification.
3.2.3. Threshold determination
After credit scores are assigned, a threshold needs to be set to

classify the applicants into two groups. Applicants with credit
scores higher than the threshold are approved and lower than
the threshold are rejected. How to set a reasonable threshold is a
problem.

In this paper, an easily intelligible and rational threshold is
determined to solve this problem. The better credit the applicant
has, the higher the credit score is, so good applicants are assumed
to attain higher credit score than bad applicants. Assume there are
ng good applicants and nb bad applicants in the training data. The
ng th highest credit score is set as the reasonable threshold. After
credit scores of testing data are calculated, applicants with credit
scores higher than the threshold are classified as good applicants
while those with credit scores lower than the threshold are classi-
fied as bad applicants.

As per the above description, this study tries to overcome the
three challenges so that TOPSIS can be successfully modified into
a classification approach named C-TOPSIS.

3.3. C-TOPSIS

3.3.1. Concept of C-TOPSIS
C-TOPSIS is a classification approach based on the rationale of

the ranking approach TOPSIS. In credit classification, PIS stands
for the best credit applicant characterized by the best attributes
value, such as the highest income, the best credit record and the
lowest debt. NIS stands for the worst credit applicant characterized
by the worst attributes value, such as the lowest income, the worst
credit record and the highest debt.

Fig. 3 shows the rationale of C-TOPSIS in a two dimensional
space. The solid black boxes represent the best and the worst appli-
cants. The hollow boxes denoted applicants to be evaluated. The
best applicant and the worst applicant are the benchmarks for
evaluating applicants’ credit. The closeness coefficient is called
the credit score here, defined as the ratio of the distance to the
worst applicant and the sum of distance to the best applicant
and the worst applicant. So the closer the applicant is to the best
applicant and farther from the worst applicant, the higher the cred-
it score is and vice versa. Then, if the credit score of an applicant is
larger than the threshold, it would be predicted as a good appli-
cant. On the contrary, if the credit score is smaller than the thresh-
old, it would be predicted as bad applicant. The rationale of C-
TOPSIS in higher dimensional space can be analogized.

3.3.2. Steps of C-TOPSIS
In this section, the specific steps of C-TOPSIS are given. As Fig. 4

shows, the whole process of C-TOPSIS consists of 3 stages and 8
steps in total. In Stage 1 the whole credit data is preprocessed. In
Stage 2, the training data is used to calculate attributes weights
and threshold. In Stage 3, the testing data is classified as per credit
score and threshold.

Give a set of credit data containing n applicants with m evalua-
tion attributes. Let xij denotes the jth attribute value of the ith
applicant. Let yi e {1, �1} denotes the class of the ith applicant.
Let wj denotes the weight of the jth attribute. The credit data is ran-
domly split into ntrain training data, containing ng good applicants
and nb bad applicants, and ntest testing data. The whole process of
C-TOPSIS for credit classification is as follows.

3.3.2.1. Stage 1: Data preprocess.
Step 1: Distinguish benefit and cost attributes
By setting Y = [yi]n�1 as dependent variable and X = [xij]n�m as

independent variables, logistic regression is used to select and dis-
tinguish attributes. Attributes with non-significant coefficients are
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omitted and attributes with significant positive or negative coeffi-
cients are regarded as benefit or cost attributes, respectively.

Step 2: Scale data

For benefit attribute
rij ¼
xij � xmin

j

xmax
j � xmin

j

; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m ð8Þ

For cost attribute

rij ¼
xmax

j � xij

xmax
j � xmin

j

; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m ð9Þ

where xmax
j ¼maxfxijji ¼ 1; . . . ; ng represents the maximum value of

attribute j; xmin
j ¼minfxijji ¼ 1; . . . ; ng represents the minimum va-

lue of attribute j and rij represents the scaled data. It is noteworthy
that cost attributes are transformed into benefit attributes by Eq.
(9). All attributes are beneficial and scaled to [0,1] after this step.
Linear normalization rather than vector normalization is employed
here so that the normalized value does not depend on the evalua-
tion unit of a criterion function [25].

3.3.2.2. Stage 2: Training process
Step 3: Calculate weights and weight the data
As the description in Section 3.2.2, the weights setting is based

on the concept that good applicants should be as close to the best
applicant as possible while bad applicants should be as close to the
worst applicant as possible so that they can be separated as accu-
rately as possible. This concept can be implemented by minimizing
the goal function (10), which represents the sum of the average
distance between good applicants and the best applicant and the
average distance between bad applicants and the worst applicant.
The distance here is the 2-norm of Euclidean distance for
simplification.

min
1
ng

Xng

i¼1

Xm

j¼1

ðwjrij � rmax
j Þ2

 !
þ 1

nb

Xnb

i¼1

Xm

j¼1

ðwjrij � rmin
j Þ

2

 !
ð10Þ



Table 1
Basic information of the two UCI credit data sets.

Data sets ACD GCD

No. of total applicants 690 1000
No. of good applicants 307 700
No. of bad applicants 383 300
No. of attributes 14 24
No. of classes 2 2
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where rmax
j ¼maxfrijji ¼ 1; . . . ;ntraing and rmin

j ¼minfrijji ¼ 1; . . . ;

ntraing. Goal function (10) is an unconstrained convex quadratic pro-
gramming problem. Take the derivative of goal function (10) with
respect to wj, and then the weights can be solved as Eq. (11).

wj ¼
1

ng

Png

i¼1

Pm
j¼1rijrmax

j þ 1
nb

Pnb
i¼1

Pm
j¼1rijrmin

j

1
ng

Png

i¼1

Pm
j¼1r2

ij þ 1
nb

Pnb
i¼1

Pm
j¼1r2

ij

; j ¼ 1; . . . ;m ð11Þ

We can see that Eq. (11) is linear and has very low computation
complexity. Then we can weight the whole credit data by Eq. (12).

v ij ¼ wjrij; i ¼ 1; . . . ;n; j ¼ 1; . . . ;m ð12Þ

where vij represents the jth weighted scaled attribute value of the
ith applicant.

Step 4: Determine the best applicant and the worst applicant

vmax ¼ vmax
j ; j ¼ 1; . . . ;m

n o
ð13Þ

vmin ¼ vmin
j ; j ¼ 1; . . . ;m

n o
ð14Þ

where vmin
j ¼minfv ijji ¼ 1; . . . ;ntraing and vmax

j ¼maxfv ijji ¼ 1; . . . ;

ntraing. vmax represents the best applicant and vmin represents the
worst applicant.

Step 5: Calculate credit score of training data

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
ðv ij � vmax

j Þ2
r

; i ¼ 1; . . . ;ntrain ð15Þ

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
ðv ij � vmin

j Þ
2

r
; i ¼ 1; . . . ;ntrain ð16Þ

where Sþi and S�i represent the distance between the ith training
applicant and the best applicant and the distance between the ith
training applicant and the worst applicant, respectively.

Ci ¼
S�i

S�i þ Sþi
; i ¼ 1; . . . ; ntrain ð17Þ

where Ci is credit score of the ith training applicant.

Step 6: Determine threshold
Sort the credit score from high to low, the ng th highest score is

set as the threshold score C0.

3.3.2.3. Stage 3: Testing process
Step 7: Calculate credit score of testing data

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
ðv ij � vmax

j Þ2
r

; i ¼ 1; . . . ;ntest ð18Þ

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
ðv ij � vmin

j Þ
2

r
; i ¼ 1; . . . ;ntest ð19Þ

where Sþi and S�i represent the distance between the ith testing
applicant and the best applicant and the distance between the ith
testing applicant and the worst applicant, respectively.

Ci ¼
S�i

S�i þ Sþi
; i ¼ 1; . . . ; ntest ð20Þ

where Ci is the credit score of the ith testing applicant.

Step 8: Classify the testing data
The classification rule is:
If Ci > C0, the ith testing applicant is predicted as good, other-

wise if Ci < C0, the ith testing applicant is predicted as bad.
Steps 1–8 are the whole credit classification steps of C-TOPSIS.
4. Experiment

4.1. Experiment design

In this experiment, C-TOPSIS is used to classify two real world
UCI data sets. In order to test the effectiveness of C-TOPSIS, results
of C-TOPSIS and 7 popular approaches are compared in three as-
pects: accuracy, complexity and interpretability. The 7 popular ap-
proaches are linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), decision tree (DT), logistic regression
(LogR), k-nearest neighbor classifier (k-NN), support vector ma-
chine (SVM) and least square support vector machine (LSSVM).

In line with previous researches [22,32,39], both data sets are
split into training data (80%) and testing data (20%). SVM and
LSSVM used in this experiment are non-linear SVM and LSSVM
with RBF kernel. Detailed model description and procedures can
be seen in [6,15,29]. Grid search and 5-fold validation [36] is used
to optimize the two parameters, i.e. penalty parameter C and ker-
nel parameter r ({C, r} e [2�5, 2�4, . . . ,215]). The parameter value of
k might affect the results of k-NN to some degree. A study by Enas
and Choi [10] leads to the suggestion that k � n2/8 or k � n3/8 is rea-
sonable, where n is the size of training data. According to the size
of the data sets in the experiment, k is set as the odds from 3 to 15
(k e [3, 5, . . . ,15]) and the k with the highest total accuracy is
chosen.

All computations in this experiment are performed by MATLAB
2012a on a computer with Intel(R) Core(TM) i5-2400 CPU @
3.10 GHz and 4 GB of main memory in Windows 7 environment.

4.2. Data description

Two widely used real world data sets, Australian Credit Ap-
proval Data Set (ACD) and German Credit Data Set (GCD), from
UCI Repository of Machine Learning Databases [33] are used to
check the performance of our approach. The basic information of
the two data sets is shown in Table 1. The ACD consists of 307 in-
stances of good applicants and 383 instances of bad applicants.
Each applicant has 6 categorical attributes, 8 quantitative attri-
butes and 1 class attribute (good or bad). To protect the confiden-
tiality of the data, the attributes names and values have been
changed into meaningless symbolic data. The GCD is more unbal-
anced and consists of 700 instances of good applicants and 300 in-
stances of bad applicants. Total 24 attributes are used to describe
the credit history, account balance, loan purpose, loan amount,
employment status, personal information, age, housing, job title
and class of the applicants.

Both ACD and GCD are consumer credit application data sets. A
major feature of consumer credit data sets is that there exist many
categorical attributes, such as present employment status, credit
history and loan purpose, which cannot be dealt with by some ap-
proaches. In this paper, categorical attributes in ACD are trans-
formed into quantitative attributes as follows. Originally, for each
categorical attribute, the categories are denoted by meaningless
symbols and need to be assigned proper values serving for classifi-
cation. In general, the more good applicants and less bad applicants
are in a category, the larger the value of the category should be. To



Table 2
Accuracy results of C-TOPSIS and some popular approaches.

Approaches ACD GCD

T1
(%)

T2
(%)

T (%) Rank T1
(%)

T2
(%)

T (%) Rank

LDA 92.28 80.64 85.79 5 72.37 71.38 72.08 3
QDA 65.70 91.37 80.02 7 66.82 69.57 67.64 8
DT 80.39 85.39 83.18 6 78.54 49.56 69.85 7
LogR 86.91 85.73 86.25 3 88.31 49.34 76.62 1
k-NN 56.01 79.84 69.31 8 92.78 19.17 70.70 6
SVM 88.54 83.99 86.00 4 75.00 64.26 71.78 5
LSSVM 89.03 85.01 86.78 1 76.36 61.78 71.99 4
C-TOPSIS 84.68 88.00 86.52 2 82.55 58.94 75.47 2

Note: (1) Accuracy is the average of 100 runs. (2) Approaches are ranked by total
accuracy. (3) Parameter k of k-NN approach is set as 5 for ACD and 13 for GCD.

Table 3
Computing time results of C-TOPSIS and some popular approaches on ACD.

Approaches Time (s) Rank

Average SD Max Min

LDA 9.80 � 10�4 3.99 � 10�5 1.32 � 10�3 9.51 � 10�4 2
QDA 1.21 � 10�3 3.94 � 10�5 1.74 � 10�3 1.17 � 10�3 3
DT 2.80 � 10�2 1.53 � 10�3 3.25 � 10�2 2.35 � 10�2 6
LogR 6.51 � 10�3 1.55 � 10�4 7.94 � 10�3 6.01 � 10�3 5
k-NN 2.97 � 10�3 7.17 � 10�5 3.64 � 10�3 2.88 � 10�3 4
SVM 1.84 � 103 7.05 � 101 2.03 � 103 1.71 � 103 8
LSSVM 5.23 � 101 4.41 � 10�1 5.44 � 101 5.19 � 101 7
C-TOPSIS 5.98 � 10�4 4.27 � 10�5 1.11 � 10�3 5.64 � 10�4 1

Note: (1) Average is the average computing time of 100 runs in seconds. (2)
Approaches are ranked by average computing time. (3) Parameter k of k-NN
approach is set as 5 for ACD. (4) SD is the abbreviation of standard deviation.
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take the categorical attribute with two categories as an example,
some applicants are in category 1 and the others are in category
2. Among the applicants in category 1, some of them are good
and the others are bad, so the value of category 1 is defined as
the ratio of number of good applicants and number of total appli-
cants in category 1. Likewise, the value of category 2 is defined as
the ratio of number of good applicants and number of total appli-
cants in category 2. The categorical attribute with more than two
categories can also be transformed like this. The above transforma-
tion method can quantify the categorical attributes easily and
meaningfully. GCD does not need transformation because it has
already been quantified.

4.3. Evaluation criteria

4.3.1. Accuracy evaluation
The accuracy performance is typically measured by Type 1

accuracy (T1), Type 2 accuracy (T2) and Total accuracy (T), ex-
pressed as percent of correctly classified good applicants, percent
of correctly classified bad applicants and the percent of correctly
classified in total, respectively [26,42]. More specifically,

Total Accuracy ðTÞ ¼ TN þ TP
TN þ FP þ TP þ FN

Type 1 Accuracy ðT1Þ ¼ TN
TN þ FP

Type 2 Accuracy ðT2Þ ¼ TP
TP þ FN

where TN is the number of good credit applicants correctly classi-
fied; TP is the number of bad applicants correctly classified; FP is
the number of good credit applicants misclassified and FN is the
number of misclassified bad applicants.

4.3.2. Complexity evaluation
Under the same computer hardware configuration, computa-

tional efficiency is mainly decided by the complexity of an ap-
proach, so in this experiment computing time is used for
complexity evaluation. The more computing time an approach
consumes, the more complex the approach is.

4.3.3. Interpretability evaluation
Interpretability decides whether the classification results of an

approach can be explained clearly to the customers. Therefore, in
this experiment, when an applicant is classified as bad by an ap-
proach, if we can explain which attributes cause the failure of
the application, then the approach is considered as an interpretable
approach. On the contrary, if we cannot explain, then the approach
is a black-box and believed to be an approach with bad
interpretability.

4.4. Accuracy comparison

Classification accuracy is the basic and decisive aspect in choos-
ing the credit classification approach because a classification ap-
proach with low accuracy is useless. In order to check the
accuracy performance of C-TOPSIS, we compare C-TOPSIS with 7
other major popular credit classification models on the two UCI
data sets. Accuracy is the average of 100 runs. Table 2 shows the
accuracy and rank of C-TOPSIS and 7 popular approaches. Ap-
proaches are ranked by total accuracy.

Table 2 shows that the ranks of the some approaches are not
consistent on the two data sets. Some approaches rank high on
one data set while low on the other data set. Furthermore, none
of the approaches performs best on both data sets. Specifically,
total accuracy of LSSVM is 86.78% on ACD and it ranks 1st and
yet its accuracy on GCD is 71.99% and it ranks 4th. On the contrary,
total accuracy of LogR on GCD is 76.62% and it ranks 1st, however,
its accuracy on ACD is 86.25% and it ranks 3rd.

Besides, k-NN QDA and DT have relatively poor performance on
both data sets, ranking the last, second last and third last, respec-
tively. Specifically, total accuracy of k-NN is 69.31% on ACD and
70.70% on GCD. Total accuracy of QDA is 80.02% on ACD and
67.64% on GCD. Total accuracy of DT is 83.18% on ACD and
69.85% on GCD.

Total accuracy of C-TOPSIS is 86.52% on ACD and 75.47% on
GCD, which ranks 2nd on both data sets. The accuracy performance
of C-TOPSIS is comparatively outstanding for it ranks the top on
both data sets simultaneously.
4.5. Complexity comparison

Computational efficiency is very important in application be-
cause a time-consuming approach entails higher hardware as well
as time cost. In order to check the complexity performance of C-
TOPSIS, the computing time of 100 runs for C-TOPSIS and the 7
popular approaches on ACD and GCD are recorded respectively.
The average, standard deviation, maximum and minimum of com-
puting time in seconds are shown in Tables 3 and 4. Approaches
are ranked by average computing time.

Tables 3 and 4 show that only the ranks of LDA and QDA are
inconsistent on the two data sets. LDA takes 9.80 � 10�4 s on
ACD, 2.62 � 10�3 s on GCD and ranks 2nd and 3rd. QDA ranks
3rd and 2nd. SVM and LSSVM need the longest computing time
and rank last and second last, respectively. Specifically, SVM con-
sumes 1.84 � 103 s on ACD and 3.69 � 103 s on GCD while LSSVM
consumes 5.23 � 101 s on ACD and 9.32 � 101 s on GCD.



Table 4
Computing time results of C-TOPSIS and some popular approaches on GCD.

Approaches Time (s) Rank

Average SD Max Min

LDA 2.62 � 10�3 1.91 � 10�3 1.48 � 10�2 1.53 � 10�3 3
QDA 1.79 � 10�3 2.40 � 10�4 6.00 � 10�3 1.73 � 10�3 2
DT 8.30 � 10�2 3.06 � 10�3 9.29 � 10�2 7.52 � 10�2 6
LogR 9.02 � 10�3 5.66 � 10�4 1.87 � 10�2 8.31 � 10�3 5
k-NN 6.40 � 10�3 1.18 � 10�4 7.29 � 10�3 6.19 � 10�3 4
SVM 3.69 � 103 1.75 � 102 4.05 � 103 3.26 � 103 8
LSSVM 9.32 � 101 7.96 � 10�1 9.63 � 101 9.16 � 101 7
C-TOPSIS 6.70 � 10�4 3.97 � 10�5 1.06 � 10�3 6.30 � 10�4 1

Note: (1) Average is the average computing time of 100 runs in seconds. (2)
Approaches are ranked by average computing time. (3) Parameter k of k-NN
approach is set as 13 for GCD. (4) SD is the abbreviation of standard deviation.
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Besides, LDA, QDA, DT, LogR, k-NN and C-TOPSIS consume
observably less time than SVM and LSSVM. The computing time
of SVM is almost 1 � 106 times of LDA, QDA, DT, LogR, k-NN and
C-TOPSIS. Furthermore, compared with SVM, LSSVM is much
time-saving.

C-TOPSIS ranks 1st on both data sets, specifically, consuming
5.98 � 10�4 s on ACD and 6.70 � 10�4 s on GCD. As expected, the
results show that C-TOPSIS has high computational efficiency be-
cause the whole process of C-TOPSIS just involves linear
computation.
4.6. Interpretability comparison

Besides accuracy and complexity, interpretability is always ta-
ken into consideration in classification of loan applicants since
they have the rights to know why they are rejected. According to
the interpretability evaluation criterion (Section 4.3), we grade C-
TOPSIS and the other 7 approaches with 1 and 0. Approaches that
meet the evaluation criterion are graded 1 while approaches that
do not meet the criterion are graded 0. On the basis of the score,
approaches are categorized into 2 ranks; rank 1 contains the inter-
pretable approaches with score 1 while rank 2 contains the ap-
proaches with score 0. The interpretability score and rank of
every approach are shown in Table 5.

From Table 5 we can see that DT and C-TOPSIS meet the inter-
pretability evaluation criterion and are graded 1, LDA, QDA, LogR,
k-NN, SVM and LSSVM do not meet it and are graded 0. DT can
clearly show a lucid and visualized classification tree. According
to the classification tree, applicants can easily get to know which
attributes affect the classification results, which attributes make
little contribution to the results and which attributes fail to meet
the requirement and cause rejection. So DT meets the interpret-
ability evaluation criterion and is graded 1. C-TOPSIS is easy to
understand, explain and use. If an applicant is classified as bad,
Table 5
Interpretability score of C-TOPSIS and some popular approaches.

Approaches Interpretability score Rank

LDA 0 2
QDA 0 2
DT 1 1
LogR 0 2
k-NN 0 2
SVM 0 2
LSSVM 0 2
C-TOPSIS 1 1

Note: (1) Score 1 is for approaches which meet the interpretability evaluation cri-
terion while score 0 is for approaches which do not meet the criterion. (2) Rank 1
contains approaches with score 1 while rank 2 contains approaches with score 0.
we can compare attributes to the best applicant, figure out which
attributes are too far from the best and need improvement. So C-
TOPSIS is also graded 1.

In LogR, the logarithm of odds (probability of being good/prob-
ability of being bad) is the dependent variable of the regression
while the independent variables are the attributes. If the regression
coefficient is positive, then the higher the attribute is, the more are
the chances that the applicant would be classified as good, and vice
versa. Nevertheless, if an applicant is rejected, we cannot clearly
point out the exact causative attributes. The rationale of k-NN is
easy to explain and understand. The applicant is rejected or ap-
proved according to the class of the k most similar applicant. If
more than half of the k applicants are bad applicants, the applicant
is classified as bad applicant, and vice versa. However, if an appli-
cant is classified as bad, it is not easy to figure out which attributes
are responsible for it. LDA classifies the applicants by projecting
the data set into a lower dimension space. The rationale of LDA
is relatively easy to understand and yet we cannot distinguish
which attributes cause rejection of the application. QDA is more
complicated than LDA. Therefore, LDA and QDA are graded 0.
SVM and LSSVM are well known as the black-box model [1,2,13].
We cannot distinguish which attributes lead to the applicant’s fail-
ure, so SVM and LSSVM are graded 0.

Therefore, only DT and C-TOPSIS are in the 1st rank and the
remaining 6 approaches are in the 2nd rank. C-TOPSIS is very com-
petitive here. This result is reasonable and not surprising for C-
TOPSIS is easy to understand and explain based on the rationale
of TOPSIS.
4.7. Comprehensive comparison

In order to check whether C-TOPSIS can balance accuracy, com-
plexity and interpretability, we discuss the comprehensive perfor-
mance of C-TOPSIS in this section. Table 6 shows the accuracy,
complexity and interpretability ranks of C-TOPSIS and the 7 other
approaches.

From Table 6 we can see that some approaches perform well in
accuracy, such as LogR and LSSVM. Some approaches have advan-
tages in complexity, such as LDA and QDA. Some approaches excel
in interpretability, such as DT. Only C-TOPSIS ranks among the top
3 in all the three aspects.

LDA ranks 2nd and 3rd in complexity, however, it ranks 5th and
3rd in accuracy and is in 2nd rank interpretability. QDA is just like
LDA, which has advantages of low complexity while accuracy and
interpretability are weak. DT is in 1st rank in interpretability, how-
ever, it ranks 6th and 7th in accuracy and 6th in complexity. LogR
ranks 1st and 3rd in accuracy, but 5th in complexity and is in 2nd
rank in interpretability. k-NN ranks 8th and 6th in accuracy, 4th
in complexity and in 2nd rank in interpretability which means its
performance in all three aspects is poor. SVM ranks 4th and 5th
in accuracy, 8th in complexity and is in 2nd rank in interpretability.
Table 6
Accuracy, complexity and interpretability rank of C-TOPSIS and some popular
approaches.

Approaches Rank

Accuracy Complexity Interpretability

ACD GCD ACD GCD

LDA 5 3 2 3 2
QDA 7 8 3 2 2
DT 6 7 6 6 1
LogR 3 1 5 5 2
k-NN 8 6 4 4 2
SVM 4 5 8 8 2
LSSVM 1 4 7 7 2
C-TOPSIS 2 2 1 1 1
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As expected, SVM performs relatively well in accuracy, but
performs poor in complexity and interpretability because of its
time-consuming parameter optimization and opaque classification
process. LSSVM ranks 1st and 4rd in accuracy, 7th in complexity
and is in 2nd rank in interpretability. As a modified SVM, LSSVM
performs better in accuracy and complexity, however, the
interpretability has not been improved.

Finally, C-TOPSIS ranks 2nd in accuracy, 1rd in complexity and
is in 1st rank in interpretability. Only C-TOPSIS ranks among the
top 3 in all three aspects. Therefore, from the above analysis, it
can be concluded that compared with the 7 popular approaches,
C-TOPSIS is the most balanced approach and performs very com-
petitively in all the three aspects. This paper may offer a novel
competitive alternative approach for credit classification.

5. Conclusion and future research

This study is, to the best of our knowledge, the first paper to
propose a systematic classification approach based on the rationale
of TOPSIS. The proposed approach named C-TOPSIS can balance
accuracy, complexity and interpretability well and is found to be
a competitive approach for credit classification. Our findings in
the experiment provide compelling evidence of the advantages of
C-TOPSIS.

In the experiment, by using two widely-used UCI credit data
sets, C-TOPSIS and 7 popular approaches are compared in terms
of accuracy, complexity and interpretability. LDA and QDA perform
well in complexity but accuracy and interpretability are their weak
points. DT wins out in interpretability but its accuracy and com-
plexity are unacceptable. LogR performs well in accuracy but its
complexity and interpretability are not competitive. k-NN per-
forms poor in all the three aspects. SVM performs the worst in
complexity while its accuracy and interpretability are also not so
satisfactory. LSSVM is competitive in accuracy, yet its complexity
and interpretability are also very poor. Only C-TOPSIS ranks among
the top 3 in all the three aspects, which verifies that C-TOPSIS can
balance accuracy, complexity and interpretability well.

However, since the data sets used in this study are limited and
this study is the first paper that attempts to propose a systematic
classification approach based on the rationale of TOPSIS, some
questions still remain unresolved. For example, more data sets
need to be tested in the future to further verify the effectiveness
of C-TOPSIS. Since weights and threshold can significantly affect
the classification result, the weight setting and threshold determi-
nation in this paper may be reconsidered. The results of these
ongoing research works will be reported in the near future.
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