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a b s t r a c t

In this paper, a new dynamic self-adaptive multi-objective particle swarm optimization (DSAMOPSO)

method is proposed to solve binary-state multi-objective reliability redundancy allocation problems

(MORAPs). A combination of penalty function and modification strategies is used to handle the

constraints in the MORAPs. A dynamic self-adaptive penalty function strategy is utilized to handle the

constraints. A heuristic cost-benefit ratio is also supplied to modify the structure of violated swarms. An

adaptive survey is conducted using several test problems to illustrate the performance of the proposed

DSAMOPSO method. An efficient version of the epsilon-constraint (AUGMECON) method, a modified

non-dominated sorting genetic algorithm (NSGA-II) method, and a customized time-variant multi-

objective particle swarm optimization (cTV-MOPSO) method are used to generate non-dominated

solutions for the test problems. Several properties of the DSAMOPSO method, such as fast-ranking,

evolutionary-based operators, elitism, crowding distance, dynamic parameter tuning, and tournament

global best selection, improved the best known solutions of the benchmark cases of the MORAP.

Moreover, different accuracy and diversity metrics illustrated the relative preference of the DSAMOPSO

method over the competing approaches in the literature.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The utilization of redundancy is one of the most important
attributes in meeting high-level reliability. The problem is to
select the feasible design configuration that optimizes the mea-
surement functions such as reliability, cost, weights, and risk [10].
This is called the reliability redundancy allocation problem (RAP)
which was first introduced by Misra and Ljubojevic [17]. A series-
parallel system is characterized through a predefined number of
sub-systems which are connected serially. Multiple component
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choices and redundancy levels are available to connect in parallel
for each sub-system [10]. A given component may have a binary-
state or a multi-state in the RAPs [13]. In binary-state RAP, the
problem of a proper structure can be handled by increasing the
reliability of components or supplying parallel redundant compo-
nents at some stages [10]. In some other cases, called multi-state
systems, the states of a given component may follow more than
two different levels, ranging from perfectly working to completely
failed [1].

The RAP is assumed to be a NP-hard (non-deterministic
polynomial-time hard) problem [3]. The application and the
development of the meta-heuristic procedures are assumed to
be useful to properly solve NP-hard problem. Different heuristic
and meta-heuristic methods such as Evolutionary Computation
methods, variable neighborhood search, ant colony optimization,
and particle swarm optimization (PSO) were proposed in this area
([4,7,10,14,15,19,21,25]). Gen and Yun [7] surveyed the Genetic
Algorithm-based (GA-based) approaches for various reliability
optimization problems. Konak et al. [11] presented an overview
and tutorial describing GA developed specifically for problems
with multiple objectives. Li et al., 2009 [15] proposed a two-stage
approach for solving multi-objective system reliability optimiza-
tion problems. In the first stage, a Multi-Objective Evolutionary
Algorithm (MOEA) generated non-dominated solutions. Then, a
Self-Organizing Map (SOM) was used to cluster similar solutions.
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Finally, a DEA method is presented to select the most efficient
solutions in each cluster.

We present an efficient dynamic self-adaptive multi-objective
particle swarm optimization (DSAMOPSO) method to solve the
binary-state multi-objective reliability redundancy allocation
problems (MORAPs). The proposed method serves different prop-
erties which improve the process of re-generating the original
Pareto front of the MORAP with minimum error and maximum
diversity. The proposed procedure utilizes dynamic parameter-
tuning, self-adaptive penalty functions, heuristic-based modifica-
tion, and evolutionary-based re-production operators to search
the solution space of the MORAPs efficiently.

An adaptive survey is conducted to find out the performance of
the DSAMOPSO method in comparison with other well-known
approaches in the literature. First, different sets of test problems
and a well-known benchmark case of the MORAP are selected.
Then, three different procedures as well as the DSAMOPSO
method are customized and supplied to re-generate the Pareto
front of the considered cases under controlled conditions. The
proposed procedures are a modified version of the epsilon-
constraint (AUGMECON) method, a well-known MOEA method
called the non-dominated sorting genetic algorithm-II (NSGA-II),
and a customized time-variant multi-objective particle swarm
Optimization (cTV-MOPSO) method.

The properties of the DSAMOPSO method such as fast-ranking,
elitism, crowding distance, and a global best selection procedure
makes it competitive among the other procedures. Moreover, a
dynamic self-adaptive penalty function, which considers the
iteration of the algorithm and swarm situation, respectively,
results in the relative preference of the DSAMOPSO method over
the competing approaches in the literature. The experimental
results and statistical analysis reveal that the DSAMOPSO method
outperforms the competing methods.

The rest of the paper is arranged as follows. A brief literature of
the multi-objective decision making (MODM) concepts, the
epsilon-constraint method, the NSGA-II method, the particle
swarm optimization (PSO) method, and its multi-objective ver-
sion are presented in Section 2. The MORAP definition, the main
customization of the AUGMECON method, the NSGA-II method,
the cTV-MOPSO method and the DSAMOPSO method are pre-
sented in Section 3. In Section 4, different test problems and a
well-known benchmark case of the MORAP, parameter-tuning,
software implementation, and comparison metrics are intro-
duced. The results from the experimental results and statistical
analysis are presented in Section 5. In Section 6, we present our
conclusions and future research directions.
2. Literature review

Formally, a multi-objective decision making (MODM) model
considers a vector of decision variables, objective functions, and
constraints. Decision makers (DMs) attempt to optimize the
objective functions. Since this problem rarely has a unique
solution, DMs are expected to choose a solution from a set of
efficient solutions. Generally, a MODM problem with minimum
objective functions can be formulated as follows:

ðMODMÞ
minf ðxÞ

s:t: xAS¼ xARn gðxÞrb,xZ0
�� ��

(
ð1Þ

where, f ðxÞ represents k conflicting objective functions, gðxÞrb

represents m constraints, S is the feasible solution space, and x is
the n-vector of decision variables, xARn [9].

During the decision-making process, some DM’s preference
articulation may be required. The type and the time of preference
articulation play a critical role in the actual decision-making
method. Under this consideration, the methods for solving MODM
problems have been systematically classified into four classes [9].
In one of the aforementioned classes, when there is a posterior
preference articulation of information on the priority of objective
functions, generating non-dominated solutions on the Pareto
front of the MODM problem is desirable. The methods in this
class strictly deal with the constraints and do not consider the
preferences of the DMs. These are also called non-dominated
solution generation methods. The e-constraints method proposed
by Chankong and Haimes [2] is a non-dominated solution gen-
eration method used to solve MODM problems.

2.1. Epsilon-constraint method

There are also methods that produce an entire efficient set for
a special kind of MODM problems including linear programming.
These methods can provide a representative subset of the Pareto
set which in most cases is adequate. In this method, DM chooses
one objective out of n to be optimized. The remaining objectives
are constraints to be less than or equal to given target values. In
mathematical terms, DM letting f jðxÞ,jA 1,:::,k

� �
be the objective

function chosen to be optimized, we have the following problem
P ej

� �
,jA 1,:::,k

� �
:

min f jðxÞ,jA 1,:::,k
� �

; f iðxÞrei,8iA 1,:::,k
� �

,ia j; xAS
n o

: ð2Þ

where, S is the feasible solution space.
One advantage of the e-constraints method is that it is able to

achieve efficient points in a non-convex Pareto curve. Therefore,
the DM can vary the upper bounds ei to obtain weak Pareto
optima. Clearly, this is also a drawback of this method (i.e., the
DM has to choose appropriate upper bounds for the eivalues).
Moreover, the method is not particularly efficient as the number
of the objective functions increases. Several research projects are
dedicated to improving the e-constraint method [16]. The tradi-
tional e-constraint method tries to obtain the efficient solutions in
a problem through parametrical variations in the RHS of the
constraints. More formally, the e-constraint method has three
points that need attention in its implementation: (a) the calcula-
tion of the range of the objective functions over the efficient set;
(b) the guarantee of efficiency of the obtained solution and (c) the
increased solution time for problems with several (more than
two) objective functions. Mavrotas [16] tried to address these
three issues with a novel version of the e-constraint method. The
aforementioned drawbacks of the classical MODM procedures
motivated us to develop the heuristic and the meta-heuristic
procedures proposed in this study.

2.2. Particle swarm optimization

In nature, birds seek food by considering their personal
experience and the knowledge of the other birds in the flock.
This idea motivated Kennedy and Eberhart [12] to propose the
PSO method. More formally, the PSO method is a population-
based search algorithm based on the simulation of the social
behavior of birds within a flock. The mechanism used to search
the solution space in the PSO differs from the evolutionary
computations. The simplicity and the applicability of the PSO
method have added to the popularity of this method for solving a
large number of engineering and management optimization
problems.

2.2.1. Mathematics of the PSO

Let us consider a swarm which includes m particles which are
seeking the optimum value of the objective function(s) in an
n-dimensional search space, each particle having a vector of
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position X
!

i ¼ xi1,xi2,:::,xinð Þ, i¼ 1,2,:::,m which is associated with
a solution, a vector of velocity V

!
i ¼ vi1,vi2,:::,vinð Þ, i¼ 1,2,:::,m

which determines the movement value of a particle in each
dimension to improve its current position, and a vector of particle
best position P

!
i ¼ pi1,pi2,:::,pin

� �
, i¼ 1,2,:::,m which is associated

with most fitted positions of a particle from the first step of the
algorithm. It is notable that the fitness of a position can easily be
calculated considering the objective function of the optimization
problem. A vector of the global best particle P

!
g ¼ pg1,pg2,:::,pgn

� �
is reserved for knowledge sharing among all particles of a swarm.
Using the aforementioned notations, each argument of the velo-
city and position vector for each particle in the swarm is updated
through the multiple iterations of the algorithm using the
following model:

V
!

i tþ1ð Þ ¼W � V
!

iðtÞþC1r1 P
!

i�X
,

iðt

	 

Þ

þC2r2 P
!

g�X
,

iðt

	 

Þ, i¼ 1,2,:::,m,

X
,

i tþ1ð Þ ¼ X
,

iðtÞþ V
!

i tþ1ð Þ, i¼ 1,2,:::,m ð3Þ

where, W is the inertia weight and determines the tendency of a
particle to maintain its previous exploration direction [20], C1 and
C2 are cognitive and social factors, respectively; r1,r2A ½0,1� are
the random numbers, and t represents the iteration number.

2.2.2. Multi-objective PSO

The multi-objective procedures, including the meta-heuristics,
should supply two main properties. The first one is generating
high quality non-dominated solutions on the Pareto front of the
MODM problem. The second one concerns a proper diversity for
the generated solutions on the Pareto front of MODM problem.
Simplicity and successfulness of the simple PSO among the other
meta-heuristic procedures resulted in developing its multi-
objective variants. The developed procedures in this area are
roughly categorized in five main classes of which are aggregating,
lexicographic, sub-population, Pareto-based, and Combined [18].

2.3. Non-dominated Sorting genetic algorithm (NSGA-II)method

The NSGA-II method, initially introduced by Deb et al. [6], is a
well-known MOEA. The NSGA-II method contains several char-
acteristics such as elitism, fast non-dominated sorting and diversity
maintenance along with the Pareto-optimal front. The NSGA-II
method has been successfully used in a wide range of engineer-
ing, management and combinatorial optimization problems. The
NSGA-II has also been used as a tool for validating comparison
reference for other new developed/extended meta-heuristics. In
this paper, the NSGA-II method is selected as a validated compar-
ison reference to assess the performance of the proposed DSA-
MOPSO method. A brief description of the customized NSGA-II
method is provided here.

Each chromosome in the population is sorted into each front
based on the non-domination. The first front contains only the
non-dominant chromosomes; the chromosomes in the second
front are dominated by the chromosomes in the first front and
this pattern is repeated. Each chromosome in a front is assigned a
ranking value in accordance with its front. The chromosomes in
the first front are given a fitness value of 1, the chromosomes in
the second front are assigned a fitness value of 2, and so forth.

A measure, called the crowding distance, is calculated for each
individual in the NSGA-II population. The crowding distance is a
measure of how close an individual is to its neighbors. The large
average crowding distance will result in a better diversity in the
population. Parents are selected from the population by using a
binary tournament selection procedure based on their rank and
crowding distance. The fitness of an individual, which belongs to a
given rank, is less than others in the same rank with a greater
crowding distance. The selected population generates offspring
through crossover and diversification operators. All individuals,
including current population and the off-springs, are sorted again
based on non-domination. Only the best N individuals are
selected, in which N is the population size. The selection is based
on the rank and crowding distance on the last front. The details of
the NSGA-II method and the modified NSGA-II method for the
fuzzy classifier design can be found in Ref. [6].
3. Problem definition and modeling the MORAP

Let us revisit the same model proposed by Khalili-Damghani
and Amiri [10]. In the binary-state MORAP, a set of objective
functions such as reliability, cost, weight, and volume, are to be
optimized considering a set of constraints like cost, weight, and
volume. The basic assumption for a binary-state MORAP are as
follows: (a) all components are assumed to be non-repairable;
(b) all components are assumed to have binary states (i.e. work-
ing/fail); and (c) the functioning and physical properties (i.e.
reliability, volume, weight, and cost) of all components are
assumed to be known, deterministic, and time-independent. The
following notations and parameters are used in the binary-state
MORAP:
m
 Number of sub-systems
i
 Index of sub-systems, i¼ 1,2,::,m
j
 Index of components in each sub-systems, j¼ 1,2,::,n
rij
 Reliabilityofcomponentj in sub-system i
cij
 Costofcomponentj in sub-system i
wij
 Weightofcomponentj in sub-system i
Rs
 Overall reliability of the series2parallel system

Cs
 Overallcostoftheseries - parallelsystem
Ws
 Overallweightoftheseries - parallelsystem

Co
 Allowedcostofsystem
Wo
 Allowedweightofsystem
ai
 Number of available component choices for sub-system i:
xij
 Quantityofcomponentj used in sub-system i
ni
 Total number of components used in sub-system i
nmax
 Maximumnumberofcomponentswhichcanbeinparallel

nmin
 Minimumnumberofcomponentswhichcanbeinparallel
Models (4)–(11) represent a binary-state MORAP in which
(4)–(6) are allocated to describe the reliability, cost, and weight
objective functions, respectively. The constraint (7) holds the
maximum allowed cost of the system while constraint (8) is
written for the weight of the system. Constraints (9) and (10)
guarantee the minimum and maximum allowed number of
components in each sub-system. The set of constraints (11)
guarantees that the decision variables are positive integers.

MaxRs ¼
Ym
i ¼ 1

1�
Yai

j ¼ 1

1�rij

� �xij

0
@

1
A ð4Þ

MinCs ¼
Xm
i ¼ 1

Xn

j ¼ 1

cijxij ð5Þ

MinWs ¼
Xm
i ¼ 1

Xn

j ¼ 1

wijxij ð6Þ

s:t:
Xm
i ¼ 1

Xn

j ¼ 1

cijxijrCo ð7Þ
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Xm

i ¼ 1

Xn

j ¼ 1

wijxijrWo ð8Þ

Xai

j ¼ 1

xijrnmax, i¼ 1,2,:::,m ð9Þ

Xai

j ¼ 1

xijZnmin, i¼ 1,2,:::,m ð10Þ

xijAZþ , i¼ 1,2,:::,m; j¼ 1,2,:::,n ð11Þ

As mentioned earlier, a series-parallel system is a compound
design that uses both series and parallel connections. Fig. 1,
presents the schematic view of a series-parallel system.where ni

is the number of components in each sub-system, and m is the
number of sub-systems.

3.1. Efficient epsilon-constraint (AUGMECON) method

The application of the AUGMECON method [16] on Models
(4)–(11) results in the following models:

Max Rsþb� S2=r2þS3=r3

� �
ð12Þ

s: t: CsþS2 ¼ e2, e2A ½C
�

s ,Cþs � ð13Þ

WsþS3 ¼ e3, e3A ½W
�
s ,W þ

s � ð14Þ

XAS ð15Þ

where ri,i¼ 2,3 represent the range of the objective i which has
been calculated from the lexicographic payoff table of the original
binary-state MORAP (i.e., using the Ideal and Nadir value of
Cþs ,C�s ,W þ

s ,W�
s ). XASis the feasible region of the original

binary-state MORAP (i.e., relations (7)–(11)) and b is a small
positive number (usually between 0.001 and 0.000001). In real-
world problems with k objectives, similar to ours which
has 3 conflicting objectives, Models (4)–(11) results in k-1
e-constraints.

3.2. Non-dominated sorting genetic algorithm II for the MORAP

optimization

In this section we briefly describe the customized NSGA-II
method for the MORAP. Since the MORAP models (4)–(11) are
concerned with the optimization of three objectives (i.e. relia-
bility, cost, and weight), the conventional NSGA-II method pro-
posed by Deb et al. [6] cannot be utilized. The NSGA-II method
should be customized to generate several non-dominated solu-
tions for the MORAP with three objective functions and several
constraints. The operating mechanism of the NSGA-II method in
reproduction, crossover, diversification, and selection has been
widely discussed [6]. Therefore, we illustrate the main customi-
zation of the modified NSGA-II method here.
…

1

2

…

1

2

…

1

2

…

Sub-System 1 Sub-System 2 Sub-System m

n1 n2 ni

Fig. 1. Series-parallel system.
3.2.1. Handling the constraints in the NSGA-II method

A combination of the modification and penalty strategies are
considered in the customized NSGA-II method to handle the
MORAP constraints. Constraints (7)–(8) in the MORAP are
handled using a penalty strategy. In this strategy, the violation
value of each candidate solution in the population is calculated as
follows:

oi1 ¼Max 0,
Xm

i ¼ 1

Xn

j ¼ 1

cijxij�Co

8<
:

9=
; ð16Þ

oi2 ¼Max 0,
Xm

i ¼ 1

Xn

j ¼ 1

wijxij�Wo

8<
:

9=
; ð17Þ

where cij, xij, wij, Co, and Wo have the same definition as the
MORAP (4)–(11), and oi1 and oi2 are violation values of the cost
and weight of chromosome i in the population, respectively. Then,
the cost and weight objectives for the violated chromosomes in
the population are penalized as follows:

C0si ¼ Csiþoi1 �M ð18Þ

W 0
si ¼Wsiþoi2 �M ð19Þ

where C 0si and W 0
si are penalized objectives for the violated

chromosome i in the population, and M is a very large positive
number.

Constraints (9)–(10) in the MORAP are handled using the
modification strategy. The designs, in which the upper bound
nmaxð Þ and the lower bound nminð Þ of the allowed component in

each sub-system are not met, are modified. If the number of
components in a sub-system is larger than nmax , the surplus
components will be randomly deleted in order to meet the
constraints. If the number of components in a sub-system is
smaller than nmin , the shortage components will be randomly
added in order to meet the constraints. In the latter case, the
violation procedure (i.e., (16)–(19)) is immediately run in order to
check whether the chromosome violates the cost and the weight
objectives. The modification strategy should be held during the
population initialization, crossover, and diversification.

3.3. Customized time-variant multi-objective particle swarm

optimization method

In this section, we customize the approach proposed by
Tripathi et al. [22] and propose the cTV-MOPSO method. The
main properties of the proposed method by Tripathi et al. [22] are
as follows:
�
 The TV-MOPSO is made adaptive in nature by allowing its vital
parameters (viz., inertia weight and acceleration coefficients)
to change with iterations. This adaption helps the algorithm to
explore the search space more efficiently.

�
 A new diversity parameter is used to ensure sufficient diver-

sity amongst the solutions of the non-dominated fronts,
while retaining the convergence to the Pareto-optimal front
concurrently.

The details of the algorithm can be found in Tripathi et al. [22].
Unfortunately, the proposed method by Tripathi et al. [22] cannot
handle constraints. Therfore, it is incapable of solving real-world
optimization problems. We revisited this algorithm and imple-
mented it according to several constraints in the MORAP models
(4)–(11). The main properties of the cTV-MOPSO method includ-
ing constraint handling were not considered in the original
TV-MOPSO method proposed by Tripathi et al. [22].
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3.3.1. Handling the constraints in the cTV-MOPSO method

The constraint handling procedure defined for the NSGA-II
method in Section 3.2.1 is also used in the cTV-MOPSO method.

3.4. Dynamic self-adaptive multi-objective particle swarm

optimization method

In this section we discuss the fundamental principles of the
proposed DSAMOPSO method. The DSAMOPSO method is
designed to efficiently handle different constraints in the MORAP
(i.e., model (4)–(11)). The main properties of the DSAMOPSO
method are dynamic and self-adaptive constraint handling,
dynamic parameter tuning, heuristic cost-benefit ratio, diversifi-
cation, and global best selection procedure.

Dynamic penalty function. A dynamic constraint handling meth-
odology is considered in the DSAMOPSO method. The penalty
values are calculated dynamically considering the iteration num-
ber of the algorithm in a way that the penalty values will increase
as the iteration of the algorithm continues.
Self-adaptive penalty values. The penalty values are calculated in
a self-adaptive manner, considering both the violation value of
each particle and the minimum violation value of the swarm.
Dynamic parameter tuning. The inertia weight, cognitive factor,
and the social factor are determined using the linear functions
of the iteration of the algorithm.
Heuristic cost-benefit ratio. Constraints (9) and (10) of the
MORAP are handled using the modification strategy. A heur-
istic ratio is supplied to modify the structure of the violated
swarms. The component which has a smaller cost-benefit ratio
has a higher priority to be pruned.
Diversification. The PSO method suffers from the problem of
premature convergence [22]. In order to overcome this pro-
blem, the DSAMOPSO method makes use of a diversification
operator to maintain the level of diversity in the swarm
population, thereby maintaining a good balance between the
exploration and exploitation phenomena and preventing pre-
mature convergence. Diversification operators (also known as
‘mutation operator’ in genetic algorithms) are used in the PSO
methods to boost the exploration capability [5], to maintain
the diversity of the swarm [24], and to prevent premature
convergence [8].
Global best selection procedure. The global best selection is
based on a binary tournament using a fast non-dominated
sorting and crowding distance. Each particle of the swarm is
assigned a rank based on its front, and then the global best
particle is selected based on a binary tournament and using
the crowding distance from top ranked fronts. The main
advantages of the DSAMOPSO method in comparison with
the cTV-MOPSO method and the NSGA-II method are summar-
ized as follows:

�
 The DSAMOPSO method uses a dynamic self-adaptive penalty

function which results in a better performance.

�
 A cost-benefit ratio is supplied in the DSAMOPSO method in

order to modify the violated solutions in an effective manner

�
 The proposed DSAMOPSO method uses a modified genetic-

based operator in order to search the complicated solution
space of the MORAP more effectively.
Sub-System 1 Sub-Syste

Type 1 Type 2 … Type j Type 1 Type 2

n11 n12 … n1j n21 n22

Fig. 2. Structure of a p
3.4.1. Structure of a particle in the DSAMOPSO method for the

MORAP

An integer-coded structure is supplied to depict a particle in
the proposed DSAMOPSO method. The structure is presented in
Fig. 2.where, each allele nij is the number of component type j in
sub-system i, and nminr

P9J9
j ¼ 1 nijrnmax, i¼ 1,2,:::, Ij jis pre-

served for all sub-systems. It is also notable that nij has the same
definition as xij in the mathematical formulation of the MORAP in
models (4)–(11).

3.4.2. Position and velocity vector of the DSAMOPSO method

Re-considering (3), the position and the velocity vector of a
particle are respectively defined as follows:

V
!

i tþ1ð Þ ¼WðtÞ � V
!

iðtÞþC1ðtÞr1 P
!

i�X
,

iðt

	 

Þ

þC2ðtÞr2 P
!

g�X
,

iðt

	 

Þ, i¼ 1,2,:::,m,

X
,

i tþ1ð Þ ¼ X
,

iðtÞþ V
!

i tþ1ð Þ, i¼ 1,2,:::,m ð20Þ

where, the parameters of (20) have the same definition as the
parameters in Eq. (3). WðtÞ, C1ðtÞ, and C2ðtÞ are determined using
an iteration function. The random numbers r1 and r2 in Eq. (3) are
generated independently for each particle.

3.4.3. Dynamic inertia weight, cognitive and social factors

The value of the inertia weight is determined dynamically by
considering the algorithm iteration numbers between W1 and
W2oW1 as follows [22]:

W tð Þ ¼ W1�W2ð Þ
Max t�t

Max t
þW2 ð21Þ

where, W1 and W2 are two parameters, Max t is the maximum
allowed number of iterations and t is the current iteration
number. The best values for W1 and W2 are experimentally
determined as suggested by Tripathi et al. [22]. In order to
improve the compromise between the exploration and exploita-
tion phases in the PSO, time variant acceleration coefficients are
supplied. The values of the cognitive and the social factors are
also determined dynamically by considering the algorithm itera-
tion number as follows [22]:

C1 tð Þ ¼ C1f�C1i

� � t

Max t
þC1i ð22Þ

C2 tð Þ ¼ C2f�C2i

� � t

Max t
þC2i ð23Þ

C1 is allowed to decrease from an initial value, called C1i, to a final
value, called C1f. C2 is increased from an initial value, called C2i, to a
final value, called C2f. The best values of C1i, C1f, C2i, and C2f are
experimentally determined similar to Tripathi et al. [22]. We should
note thatMax t and t have the same definition as in Eq. (21).

3.4.4. Handling the constraints in the proposed DSAMOPSO method

A combination of the modification and penalty strategies are
considered in the DSAMOPSO method to handle the constraints.

Penalty function strategy. The constraints (7) and (8) in the
MORAP are handled using a dynamic self-adaptive penalty func-
tion. In this strategy, the iteration of the algorithm and the overall
situation of the swarm are concurrently considered. The violation
m 2 … Sub-System i

… Type j … Type 1 Type 2 … Type j

… n2j … ni1 ni2 … nij

article in swarm.



Table 1
Comparison between the mechanisms in the proposed meta-heuristics.

Method Random
initial
Pop/
Swarm

Non-dominate
ranking

Constraint handling Fast
sorting

Mutation Tournament
selection

Dynamic
parameter
tuning

Self-adaptive
penalty

Global
best
selectionPenalty Modification

Random Heuristic

DSA-MOPSO &

NSGA-II & & & &

cTV-MOPSO & & & & &

Table 2
Test problems.

Case Component
type

Number
of sub-
systems

Component Dimension Number of
Non-

dominated
solutionsReliability Cost Weight

Small-

size
U[2, 5] U[2, 4] U[0.5, 1]

U[2,

10]
U[2, 8] U[3, 8]

Large-

size
U[5, 15] U[5, 10] U[0.5, 1]

U[2,

10]
U[2, 8] U[10, 18]

Table 3
Data for the benchmark case.

Component type j Sub-system i

1 2 3

R C W R C W R C W

1 0.94 9 9 0.97 12 5 0.96 10 6

2 0.91 6 6 0.86 3 7 0.89 6 8

3 0.89 6 4 0.7 2 3 0.72 4 2

4 0.75 3 7 0.66 2 4 0.71 3 4

5 0.72 2 8 – – – 0.67 2 4

Table 4
Fitted parameters and user defined values of the algorithms for 50 non-dominated

solutions in the archive.

AUGMECON cTV-MOPSO

Parameters: Parameters:

Archive size 50 Particle no. 20

Step size of cost 0.01 Archive size 50

Step size of weight 0.01 Maximum ieration no. 200

User defined values: Initial C1 2.5

Upper bound of cost 284 Final C1 0.5

Upper bound of weight 192 Initial C2 0.5

Lower bound of reliability 0.99 Final C2 2.5

W1 0.7

W2 0.4

Mutation rate 0.05

User defined values:

Lower bound of reliability 0.9999

Upper bound of reliability 1

Upper bound of cost 284

Upper bound of weight 192

NSGA-II parameters DSA-MOPSO parameters

Parameters: Parameters:

Chromosome no. 20 Particle no. 20

Archive size 50 Archive size 50

Maximum ieration no. 200 Maximum ieration no. 200

Cross rate 0.7 Initial C1 2.5

Mutation rate 0.05 Final C1 0.5

Alpha 1 Initial C2 0.5

Beta 5 Final C2 2.5

User defined values: W1 0.7

Lower bound of reliability 0.9999 W2 0.4

Upper bound of reliability 1 Mutation rate 0.05

Upper bound of cost 284 Alpha 1

Upper bound of weight 192 Beta 5

User defined values:

Lower bound of reliability 0.9999

Upper bound of reliability 1

Upper bound of cost 284

Upper bound of weight 192
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value of each particle in the swarm is calculated using Eqs. (16)
and (17). Then, the dynamic self-adaptive penalty functions for
the cost and the weight objectives are supplied as follows:

C0si ¼ Csiþ
oi1

omin
i1

 !a

� tb
" #

ð24Þ

W 0
si ¼Wsiþ

oi2

omin
i2

 !a

� tb

" #
ð25Þ

where, C0si and W 0
si are the modified values of the cost and the

weight objectives for the violated particle i in the swarm;oi1

and oi2 have the same definition of Eqs. (16) and (17);
omin

i1 ¼min
i

eþoi1f g, and omin
i2 ¼min

i
eþoi2f gare the minimum viola-

tion values for each particle in the swarm; eis a small positive
value used to avoid division by zero; t is the iteration number;
and a,bare the control parameters which are experimentally
determined.

This type of dynamic self-adaptive penalty function allows for
a more efficient search of the solution space and guarantees that
the violations in the final steps of the algorithm are punished
harder. Moreover, the penalty value has been calculated using the
minimum violation of the swarm. The latter property allows for
considering the best particles in the swarm.

Modification strategy. Constraints (9)–(10) in the MORAP are also
handled using the modification strategy in the DSAMOPSO method.

The designs in which nminr
P Jj j

j ¼ 1 nijrnmax, i¼ 1,2,:::, Ij j are not

met, are modified as follows:

XJj j

j ¼ 1

nij ¼

nmin, if
XJj j

j ¼ 1

nijrnmin, i¼ 1,2,:::, Ij j

XJj j

j ¼ 1

nij if nmino
XJj j

j ¼ 1

nijonmax, i¼ 1,2,:::, Ij j

nmax if
XJj j

j ¼ 1

nijZnmax, i¼ 1,2,:::, Ij j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð26Þ

These modifications should be in place during the swarm
initialization, the swarm position updating, and the diversification
of the swarm. The following may arise when
P Jj j

j ¼ 1 nij is not in
allowed an interval value: which component of the violated sub-
systems should be pruned? In order to determine the proper
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candidates for pruning, a cost-benefit heuristic is utilized in the
DSAMOPSO method. A cost-benefit ratio is calculated for each
component of the MORAP case. The reliability of the component is
divided by the sum of the cost and the weight of the component.
The ratio is calculated as follows:

Ratioij ¼
rij

cijþwij
ð27Þ

where,rij, cij, andwij are the reliability, the cost, and the weight of the
component j in the sub-system i, respectively. The components with
a lower Ratioij have a higher pruning priority. Therefore, the values
for the Ratioij are ordered in an ascending order. The redundant
components are pruned from the top of the sorted list. The shortage
of the components is also supplied from the bottom of the sorted
list. Table 1 compares the supplied mechanisms in the proposed
meta-heuristic approaches.
3.4.5. Procedural algorithmic for the DSAMOPSO method

The proposed algorithm involves 21 steps grouped into three
distinct processes as follows:

Initialization:

Step1. Set the parameters of the DSAMOPSO method for the

MORAP case.

Step2. Randomly generate an initial swarm considering constraints

(9) and (10).
Step3. Modify the initial swarm usingEqs. (26) and (27).
Step4. Initialize the position, velocity, and the personal best values.
Table 5
Computational results of the accuracy metrics for the small-size test problems.

Problem NNS ER

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON DSA-MOPSO NSGA-II T

1 3 1 2 3 0.00 0.67 0

2 4 3 2 4 0.00 0.25 0

3 4 2 3 5 0.20 0.60 0

4 3 1 2 2 0.00 0.67 0

5 4 2 5 5 0.20 0.60 0

6 6 4 6 6 0.00 0.33 0

7 6 4 3 4 0.14 0.43 0

8 3 2 4 3 0.25 0.50 0

9 3 2 2 2 0.00 0.33 0

10 4 4 3 4 0.20 0.20 0

Ave. 4.00 2.50 3.20 3.80 0.10 0.46 0

Std. Dev. 1.15 1.18 1.40 1.32 0.11 0.17 0

Table 6
Computational results of the diversity metrics for the small-size test problems.

Problem SM

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

1 0.06 0.28 0.13 0.65

2 0.04 0.76 0.46 0.28

3 0.19 0.55 0.04 0.70

4 0.02 0.32 0.64 0.26

5 0.16 0.65 0.87 0.34

6 0.33 0.54 0.11 0.47

7 0.06 0.52 0.32 0.40

8 0.32 0.53 0.54 0.64

9 0.47 1.05 0.88 0.59

10 0.09 0.19 0.69 0.22

Ave. 0.17 0.54 0.47 0.45

Std. Dev. 0.15 0.25 0.31 0.18
Step5. Calculate the violation values for each particle in the

swarm using Eqs. (16) and (17).
Step6. Calculate the objective functions of each particle in the

swarm using Eqs. (4)–(6).
Step7. Modify the objective functions using Eqs. (24) and (25).
Step8. Select the non-dominated solutions for the initial swarm

and put them in the archive.

Step9. Select P
!

g from the current archive using a tournament

selection procedure based on the crowding distance measure.

Main Loop:

Step10. Adjust the values of the parameters inertia coefficient, the

local acceleration coefficient, and the global acceleration coeffi-

cient using Eqs. (21)–(23), respectively.

Step11. Update the position of each particle in the swarm using

(20) and constraints (9) and (10).
Step12. Modify the swarm using Eqs. (26) and (27).
Step13. Calculate a violation value for each particle in the swarm

using Eqs. (16) and (17).
Step14. Calculate the objective functions of each particle in the

swarm using Eqs. (4)–(6).
Step15. Modify the objective functions using Eqs. (24) and (25).
Step16. Update the personal best for the i-th particle in the

swarm.

Step17. Select P
!

g from the current archive and swarm using a

tournament selection procedure based on a non-dominated rank

and crowding distance measure.

Step18. Update the velocity vector of each particle in the swarm

using the personal best and global best values.

Step19. Mutate some particles of the new born swarm.
GD

V-MOPSO AUGMECON DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

.33 0.00 0.01 0.32 0.39 0.42

.50 0.00 0.08 0.30 0.32 0.36

.40 0.00 0.10 0.40 0.26 0.45

.33 0.33 0.01 0.22 0.19 0.26

.00 0.00 0.13 0.29 0.10 0.56

.00 0.00 0.04 0.20 0.37 0.25

.57 0.43 0.01 0.27 0.25 0.25

.00 0.25 0.10 0.35 0.04 0.41

.33 0.33 0.10 0.31 0.04 0.48

.40 0.20 0.01 0.25 0.33 0.26

.29 0.15 0.06 0.29 0.23 0.37

.21 0.17 0.05 0.06 0.13 0.11

DM

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

1.19 9.76 77.90 4.83

1.35 4.91 61.41 6.05

2.21 2.87 0.61 7.77

2.62 2.78 42.62 3.44

4.13 6.94 57.93 2.06

4.23 6.61 58.12 7.76

4.21 8.21 39.13 3.17

4.33 6.03 25.68 5.24

0.42 3.92 2.56 3.72

1.68 6.74 62.07 6.00

2.64 5.88 42.80 5.00

1.49 2.27 26.07 1.93
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Step20. If the termination conditions are not met go to step 10,

otherwise go to Step 21.

Finalization:

Step21. Print the last Pareto front using the archived non-

dominated solutions.
4. Test problems, parameter tuning, software implementation
and comparison metrics

Two different sets of problems and a well-known benchmark
case are considered to test and compare the performance of the
DSAMOPSO, AUGMECON, cTV-MOPSO, and NSGA-II methods.
le 7
Times (seconds) of different approaches for the small-size test problems.

roblem DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

1.45 0.77 1.06 811.44

1.27 0.75 1.10 786.35

1.24 0.76 0.97 792.99

1.41 0.76 1.18 738.38

1.30 0.77 1.10 761.62

1.20 0.76 1.08 754.24

1.34 0.74 0.93 783.03

1.37 0.77 1.06 810.70

1.37 0.77 1.06 787.45

0 1.55 0.79 1.12 781.92

ve. 1.35 0.76 1.07 780.81

d. Dev. 0.10 0.01 0.07 23.42

le 8
putational results of the accuracy metrics for large-size test problems.

roblem NNS ER

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON DSA-MOPSO NSGA-I

8 6 5 10 0.20 0.40

11 8 9 8 0.08 0.33

14 11 12 15 0.18 0.35

10 8 8 8 0.00 0.20

12 13 13 10 0.14 0.07

9 6 8 7 0.10 0.40

14 9 11 9 0.07 0.40

11 9 11 11 0.15 0.31

9 8 8 7 0.25 0.33

0 9 9 6 7 0.10 0.10

ve. 10.70 8.70 9.10 9.20 0.13 0.29

d. Dev. 2.11 2.11 2.60 2.49 0.07 0.12

le 9
putational results of the diversity metrics for the large-size test problems.

roblem SM

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECO

0.02 17.38 2.64 7.62

7.88 9.76 17.32 9.70

9.76 13.56 14.22 8.02

8.80 6.24 7.00 8.02

8.22 20.22 9.12 7.06

0.66 3.70 6.34 8.60

8.68 9.22 6.78 14.18

5.82 18.86 6.24 7.30

5.38 18.84 6.12 13.02

0 3.88 16.52 14.06 7.90

ve. 5.91 13.43 8.98 9.14

d. Dev. 3.44 5.85 4.65 2.47
4.1. Test problems

A number of test problem sets each with 20 simulated cases
are used here. The dimensions of these sets are presented in
Table 2.

The properties of the test problems were simulated using uni-
form probability density functions. It is notable that U a, b

� �
in

Table 2 represent a uniform distribution function between a and b.

4.2. Well-known benchmark case

Next, a well-known benchmark case was selected from the
literature [10,15,21]. This case consists of 3 subsystems with 5,
4 and 5 components in each subsystem. The problem requires
GD

I TV-MOPSO AUGMECON DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

0.50 0.00 0.43 1.51 0.97 0.80

0.25 0.33 0.32 1.56 0.30 1.84

0.29 0.12 0.51 0.92 0.68 0.96

0.20 0.20 0.24 1.22 0.26 1.78

0.07 0.29 0.54 1.20 0.55 1.46

0.20 0.30 0.19 0.72 1.58 1.50

0.27 0.40 0.33 1.20 0.02 2.13

0.15 0.15 0.57 1.58 1.47 1.88

0.33 0.42 0.55 0.81 1.49 2.27

0.40 0.30 0.00 0.73 0.24 1.22

0.27 0.25 0.37 1.15 0.76 1.58

0.12 0.13 0.19 0.34 0.58 0.49

DM

N DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

10.40 131.80 1460.20 90.80

14.40 122.20 1792.80 105.80

47.80 76.80 39.20 60.00

35.20 73.20 1332.20 106.00

67.60 74.80 392.20 46.60

83.00 140.80 66.60 37.60

90.40 89.80 958.00 93.80

56.40 131.20 1250.60 56.60

13.00 58.00 1502.00 62.80

89.20 117.80 1211.40 55.40

50.74 101.64 1000.52 71.54

31.68 30.17 621.44 25.15

Table 10
CPU Times (seconds) of different approaches for the large-size test problems.

Problem DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

1 78.42 41.40 56.91 43,765.62

2 68.46 40.40 59.40 42,412.25

3 66.87 41.00 52.56 42,770.50

4 75.83 41.00 63.44 39,824.92

5 70.06 41.60 59.40 41,078.78

6 64.68 41.00 58.15 40,680.73

7 72.45 39.81 50.38 42,233.13

8 74.04 41.40 57.22 43,725.82

9 74.04 41.40 57.22 42,471.96

10 83.39 42.39 60.33 42,173.42

Ave. 72.82 41.14 57.50 42,113.71

Std. Dev. 5.61 0.70 3.75 1263.04
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determining the optimum number of selected component types
in each sub-system. The maximum number of components is 8 in
each sub-system. Table 3 presents the information concerning the
benchmark case [10,15,21].

4.3. Software-hardware implementation

The proposed AUGMECON method was coded using LINGO 12.0
and VBA for MS-Excel 12.0.The customized NSGA-II, cTV-MOPSO,
and DSAMOPSO methods were coded using VBA for MS-Excel 12.0.
All codes were run on a PIV Pentium portable PC with MS-Windows
XP Professional, 1 GB of RAM, and 2.0 GHz Core 2 Due CPU.

4.4. Parameter tuning and estimation of the Pareto front

Although the implementation of the aforementioned approaches
on the MORAP’s cases revealed their ability to generate non-
dominated solutions, generating a part of the Pareto front of the
MORAP requires additional knowledge for comparing their per-
formance. Therefore, experimental analysis was conducted to find
the most fitted parameters in the algorithms. The parameters and
the user defined values are presented in Table 4.

Considering the best known solution of the benchmark case,
which was represented in Table 3, motivated us to set a lower
bound of 0.9999 for reliability to illustrate the performance of the
proposed approach in identifying the best known solutions.

4.5. Comparison metrics

We use several metrics proposed by Yu and Gen [23] to study
the accuracy and the diversity of different procedures in re-
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Fig. 3. Re-generated 3-D Pareto f
generating the Pareto front of the MORAP. Since the real Pareto
front of different test problems and benchmark cases cannot be
achieved through an enumeration procedure, the Reference Set
(RS) is retrieved in all runs. The RS contains the non-dominated
solutions for all methods in all runs.
4.5.1. Accuracy measures
�

C
os

t
C

os
t

ront
Number of non-dominated solutions (NNS). This metric represents
the NNS found by each method. Since the real Pareto front of the
MORAP case is not attainable, a fast sorting procedure is used to
determine whether a candidate solution for a given method is
non-dominated. On the other hand, the fast sorting procedure
checks each non-dominated solution for a given method with the
RS. A non-dominated solution for a given algorithm may be
dominated by a solution in the RS. The higher this metric, the
more the method has converged towards the real Pareto front.

�
 Error Ratio (ER). The ER measures the non-convergence of the

methods towards the real Pareto front of the MORAP case. The
definition of the ER is as follows:

ER¼

PN
i ¼ 1 ei

N
ð28Þ

where, N is the number of non-dominated solutions found, and

ei ¼
0 if the solution i belongs to Pareto front

1 otherwise




The closer this metric is to 1, the less the solution has
converged towards the Pareto front.
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Fig. 4. Generated objective values in different methods for 50 non-dominated solutions in the archive. (a) Reliability Objective, (b) Cost Objective and (c) Weight Objective.
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Generational distance (GD). This metric calculates the distance
between the Pareto front/RS and the solution set. The definition of
this metric as follows:

GD¼

PN
i ¼ 1 di

N
ð29Þ

where di ¼min
pAPF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k ¼ 1 zi

k�zp
k

� �2
q
 �

is the minimum Euclidean

distance between the i-th solution and the Pareto front/RS, for
which mj j is the number of objective functions.
4.5.2. Diversity measures

Spacing metric (SM). The SM measures the uniformity of the
spread of the points in the solution set. In order to calculate SM, d,
the mean value of all di, should be calculated first using the
following equation:

d¼

PN
i ¼ 1 di

N
ð30Þ

Then, the SP which is the standard deviation of the closest
distances is calculated using the following equation:

SP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i ¼ 1

d�di

� �2

N�1
Þ

0
B@

vuuuut ð31Þ

Diversification metric (DiM). The DiM measures the spread of
the solution set and is calculated as follows:

DM¼
XN

i ¼ 1

max :xi�yi:
� �" #1

2

ð32Þ
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where, :xi�yi: is the Euclidean distance between of the non-
dominated solution xi and the non-dominated solution yi.
Table 11
Upper and lower bounds of the generated non-dominated solutions.

Epsilon constraint method
Reliability Cost Weight

Upper bound 0.99999999 136 127

Lower bound 0.99995736 94 71

NSGA-II algorithm
Reliability Cost Weight

Upper bound 0.999999837753451 159 170

Lower bound 0.999947513898008 29 33

TV-MOPSO algorithm
Reliability Cost Weight

Upper bound 0.999999948164303 166 135

Lower bound 0.999938781193722 79 117

DSA-MOPSO algorithm
Reliability Cost Weight

Upper bound 0.999999999999211 276 160

Lower bound 0.999999968973551 172 101
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Fig. 5. Reference set for different approaches.
5. Experimental results

In this section the results from the implementation of the
aforementioned methods on the test problems and benchmark
case are discussed.

5.1. Result of the small-size test problems

The accuracy measures for the small-size test problems are
depicted in Table 5.

It can be concluded from Table 5 that the average NNS in the
proposed DSAMOPSO method is higher compared with the
other competing methods. This means that the DSAMOSPO
method can generate more non-dominated solutions on aver-
age. The average of the ER metric in the proposed DSAMOPSO
method is smaller in comparison with the other competing
methods. This means that the DSAMOPSO method has fewer
non-convergences towards the RS of the MORAP test problems.
The average value of the GD measurement in the proposed
DSAMOPSO method is smaller than the other methods. This
means that the distance between the RS and the generated
solution set in the DSAMOPSO method is low. The diversity
measures obtained by the algorithms for small-size test pro-
blems are depicted in Table 6.

It can be concluded form Table 6 that the DSAMOPSO method
provides non-dominated solutions that have lower average values
for the SM measurement. Therefore, the non-dominated solutions
obtained by the DSAMOPSO method are more uniformly distrib-
uted in comparison to those obtained by the other methods. The
average of the DiM metric in the proposed DSAMOPSO method
has a smaller value in comparison with the other methods. This
means that the DSAMOPSO method has a narrower spread.
Table 7 presents the computational time for all methods for the
small-size test problems.

The average CPU time for the DSAMOPSO method obtained
the third rank among the other competing methods. It is
notable that the average CPU time for the NSGA-II and the
cTV-MOPSO methods takes the first and second rank with a
distance less than 1 s in comparison with the DSAMOPSO
method. This can be neglected with respect to the several
aforementioned possibilities of the DSAMOPSO method. It can
be concluded from Table 7 that the AUGMECON method cannot
be compared with the other methods. The AUGMECON method
seeks local optimum solutions for a long time in each of the
iteration of the algorithm.

5.2. Result of large-size test problems

The accuracy measures for the large-size test problems are
depicted in Table 8.

Similar to the small-size test problems, it can be concluded
from Table 8 that the average of NNS in the proposed DSA-
MOPSO method is higher than the other methods. This means
that the number of non-dominated solutions for the DSA-
MOSPO method, which belongs to the RS, is higher than the
other competing methods. The average of the ER metric in the
proposed DSAMOPSO method has a smaller value in compar-
ison with the other methods. This means that the DSAMOPSO
method has fewer non-convergences towards the RS of the
MORAP small-size test problems. The average value of the GD
measurement in the proposed DSAMOPSO method is smaller
than other methods. This means that the distance between the
RS and the generated solution set in the DSAMOPSO method is
short. The diversity measures obtained by the algorithms for
large-size test problems are depicted in Table 9.

Similarly, it can be concluded form Table 9 that the DSA-
MOPSO method provides non-dominated solutions that have
lower average values for the SM measurement. Therefore, the
non-dominated solutions obtained by the DSAMOPSO method are
more uniformly distributed in comparison with those obtained by
the other competing methods. The average for the DiM metric in
the proposed DSAMOPSO method has a smaller value in compar-
ison with the other competing methods. This means that the
DSAMOPSO method has a narrower spread.

Table 10 presents the computational time of all approaches for
large-size test problems

Again, the average CPU time for the DSAMOPSO method was
ranked 3rd among the other methods. It is notable that the
average CPU time of the NSGA-II and the cTV-MOPSO methods
took the first and second rank with a distance less than 1 s in
comparison with the DSAMOPSO method. This can be neglected
with respect to several aforementioned possibilities of the DSA-
MOPSO method. It can be concluded from Table 10 that the
AUGMECON method represents a very long CPU time in compar-
ison with the other competing methods. As the size of the test
problem increases the computational time of the AUGMECON
method grows increasingly.



Fig. 6. Comparison of the RS with different approaches in each dimension. (a) Reliability Objective, (a-1) Epsilon-Constraint vs. RS, (a-2) Modified TV-MOPSO vs. RS,

(a-3) Modified NSGA-II vs. RS and (a-4) Proposed DSA-MOPSO vs. RS, (b) Cost Objective, (b-1) Epsilon-Constraint vs. RS, (b-2) Modified TV-MOPSO vs. RS, (b-3) Modified

NSGA-II vs. RS and (b-4) Proposed DSA-MOPSO vs. RS and (c) Weight Objective, (c-1) Epsilon Constraint VS RS, (c-2) Modified TV-MOPSO VS RS, (c-3) Modified-NSGA-IIVS

RS and (c-4) Proposed DSA-MOPSO VS RS.
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5.3. Result of well-known benchmark case

A more robust procedure is considered for the benchmark
case. All algorithms are run 20 times to estimate the real Pareto
front of benchmark case. This can acquire a proper infrastructure to
compare their performances. The non-dominated solutions of each
run formed regenerated Pareto fronts of each algorithm. The re-
generated Pareto front of all procedures is presented in Fig. 3.

It can be concluded from Fig. 3 that all procedures are capable
to re-generate some parts of the Pareto front. Moreover, it can be
included that the re-generated Pareto fronts of the DSAMOPSO
and the NSGA-II methods have better diversity. The latter case
should be analyzed using statistical measures.
Table 12
Computational results of the accuracy metrics for the benchmark case MORAP.

Run NNS ER

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON DSA-MOPSO NSGA-II

1 46 17 37 41 0.06 0.65

2 45 19 33 41 0.08 0.61

3 45 18 28 41 0.08 0.63

4 43 30 28 41 0.12 0.39

5 41 30 27 40 0.16 0.39

6 44 19 41 41 0.10 0.61

7 45 24 13 40 0.08 0.51

8 47 22 36 40 0.04 0.55

9 47 22 36 40 0.04 0.55

10 46 14 24 40 0.06 0.71

11 48 18 33 41 0.02 0.63

12 48 16 35 41 0.02 0.67

13 43 13 13 41 0.12 0.73

14 47 17 33 41 0.04 0.65

15 48 11 6 41 0.02 0.78

16 48 12 8 41 0.02 0.76

17 47 13 28 41 0.04 0.73

18 48 9 31 41 0.02 0.82

19 46 24 39 41 0.06 0.51

20 44 27 32 41 0.10 0.45

Ave. 45.8 18.8 28.1 40.8 0.07 0.62

Std. Dev. 2.02 6.08 10.3 0.44 0.04 0.12

Table 13
Computational results of the diversity metrics for the benchmark case of MORAP.

Run SM

DSA-MOPSO NSGA-II cTV-MOPSO AUGMECO

1 5.92 4.29 3.06 4.29

2 2.84 5.36 3.12 5.36

3 6.61 5.07 1425 5.07

4 4.58 4.77 1426 4.77

5 2.17 5.08 4.92 5.08

6 3.09 9.36 1.53 9.36

7 2.4 4.24 9.27 4.24

8 1.8 3.07 1.68 3.07

9 1.8 3.07 1.68 3.07

10 1.75 7.62 3.95 7.62

11 2.63 9.02 2.23 9.02

12 1.18 6.16 2.55 6.16

13 1.4 10.1 9.48 10.1

14 2.85 3.66 2.53 3.66

15 1.86 2.82 9.79 2.82

16 5.03 4.88 9.05 4.88

17 0.91 4.59 4.06 4.59

18 0.86 4.58 3.4 4.58

19 2.85 2.48 1.26 2.48

20 2.23 5.59 2.44 5.59

Ave. 2.74 5.29 146 5.29

Std. Dev. 1.61 2.18 438 2.18
The performance metrics were selected and calculated for each
algorithm. Fig. 4 represents the values of objective functions of
different approaches.

Section (a) of Fig. 4 illustrates the reliability objective. It can be
concluded that the achieved reliability values of the DSAMOPSO
method outperform the other approaches.

Section (b) of Fig. 4 illustrates the cost objective. It can be
concluded that the achieved cost values of the NSGA-II method
are smaller than the other approaches.

It is clear that there is a trade-off between reliability and cost
objectives. As the reliability of the designed system goes higher its
cost becomes higher too. For example, the proposed design of the
DSAMOPSO method has the highest reliability and cost values and
GD

cTV-MOPSO AUGMECON DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

0.24 0.16 1.03 3.08 1.35 3.08

0.33 0.16 0.79 3.69 1.7 3.69

0.43 0.16 1.34 2.8 208 2.8

0.43 0.16 1.25 1.87 206 1.87

0.45 0.18 0.75 2.59 2.6 2.59

0.16 0.16 0.72 4.87 0.55 4.87

0.73 0.18 0.48 2.59 9.62 2.59

0.27 0.18 0.35 2.22 0.85 2.22

0.27 0.18 0.35 2.22 0.85 2.22

0.51 0.18 0.41 4.11 2.49 4.11

0.33 0.16 0.38 4.38 1.06 4.38

0.29 0.16 0.17 3.12 1.34 3.12

0.73 0.16 0.48 6.38 10.1 6.38

0.33 0.16 0.46 2.61 1.29 2.61

0.88 0.16 0.27 2.84 12.8 2.84

0.84 0.16 0.72 3.8 10.5 3.8

0.43 0.16 0.18 3.45 2.42 3.45

0.37 0.16 0.12 3.23 1.65 3.23

0.20 0.16 0.66 1.64 0.57 1.64

0.35 0.16 0.47 2.58 1.44 2.58

0.43 0.17 0.57 3.2 23.9 3.2

0.21 0.01 0.34 1.12 62.8 1.12

DM

N DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

54.1 84.9 8944 62.3

54.1 86.2 8944 62.3

54.2 86.2 10,000 62.3

54.7 86.2 10,205 62.3

55.1 86.2 19,343 62.3

55.2 86.2 19,343 62.3

55.4 86.5 19,343 62.3

55.5 86.5 19,343 62.3

55.5 86.5 19,343 62.3

55.6 86.5 19,343 62.3

55.6 86.5 19,343 62.3

56 86.6 19,343 62.3

56 86.6 19,343 62.3

57.1 86.6 19,343 62.3

57.1 86.6 19,343 62.3

57.4 86.6 19,343 62.3

57.4 86.6 19,343 62.3

57.4 86.6 19,343 62.3

57.4 86.8 19,343 62.3

57.4 86.8 19,343 62.3

55.9 86.4 17,379 62.3

1.19 0.4 4039 0



Table 14
CPU times (seconds) of different approaches.

Run DSA-MOPSO NSGA-II cTV-MOPSO AUGMECON

1 3.94 2.08 2.85938 2199

2 3.44 2.03 2.98438 2131

3 3.36 2.06 2.64063 2149

4 3.81 2.06 3.1875 2001

5 3.52 2.09 2.98438 2064

6 3.25 2.06 2.92188 2044

7 3.64 2 2.53125 2122

8 3.72 2.08 2.875 2197

9 3.72 2.08 2.875 2134

10 4.19 2.13 3.03125 2119

11 3.48 2.13 2.75 2096

12 3.75 2.13 3 2186

13 4.09 2.09 2.42188 2188

14 3.66 2.13 2.73438 2013

15 3.48 2.08 2.40625 2174

16 3.17 1.98 2.45313 2001

17 3.73 2.11 2.85938 2061

18 3.75 2.14 2.84375 2141

19 3.14 2.16 2.82813 2135

20 4.14 2.14 2.95313 2027

Ave. 3.65 2.09 2.80703 2109

Std. Dev. 0.3 0.05 0.21676 66.8
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the proposed design of the NSGA-II method has the lowest
reliability and cost values.

Section (c) of Fig. 4 illustrates the weight objective. The same
comparison can be made between the weight objective and the
reliability, or the cost objective.

Table 11 shows the upper bound and lower bound of gener-
ated solutions for all the algorithms.

It can be concluded form Table 10 that the theoretical bounds
of the well-known benchmark case [10,15,21] was improved by
the proposed DSAMOPSO method.

As mentioned, all approaches were run 20 times. As the
archive size of the approaches was set equal to 50, so 200
solutions were approximately generated (except for infeasibility
conditions or situations that the archive was not fulfilled com-
pletely) in each run. Approximately, 4000 solutions were gener-
ated. These included dominated and similar solutions. The sum of
all dissimilar and non-dominated solution in all 20 runs was
equal to 2096. These 2096 solutions were sorted according to
non-domination to form the RS which contained 460 final solu-
tions. Fig. 5 represents the RS of aforementioned approaches for
all runs.

The ranges of reliability, cost, and weight in the RS are
[0.57415680, 0.999999999900315], [15, 234], and [11, 186],
respectively. The range and the number of solutions in the RS
are acceptable. Therefore, the RS can be used as a proper
infrastructure in order to compare the performance of a single
run of each algorithm on a relative basis.

Fig. 6 distinctively plots fifty non-dominated solutions of the
RS in comparison with non-dominated solutions of a single run of
each approach. This gives us a better sense of the closeness of
each approach to the RS in different dimensions.

Section (a) of Fig. 6 plots the reliability objective of non-
dominated solutions of each approach in comparison with relia-
bility objective of solutions in the RS. Section (b) of Fig. 6 plots the
cost objective of non-dominated solutions of each approach in
comparison with the cost objective of solutions in the RS. Section
(c) of Fig. 6 plots the weight objective of non-dominated solutions
of each approach in comparison with weight objective of solu-
tions in the RS.

It can be concluded that the generated non-dominated solu-
tions of the proposed DSAMOPSO method are relatively close to
the non-dominated solutions of the RS using the other
approaches. This is an empirical proof of the relative preference
of the proposed DSAMOPSO method.

In Fig. 6, each point on the RS curve should be compared
vertically with its associated point on the DSAMOPSO curve. A
horizontal comparison of the curves in this figure is meaningless
since such a comparison shows that the DSAMOPSO method
produces objective function values that are one lag ahead of the
values provided by the RS. Therefore, we can conclude from Fig. 6
that the DSAMOPSO method can produce non-dominated solu-
tions which are closer to the solutions produced with the RS in
comparison with the other methods. The reason for the similarity
of the solutions between the DSAMOPSO method and the RS is as
follows. The RS has been established from the generated non-
dominated solutions for all methods in 20 independent runs. The
procedure for establishing the RS is as follows. All methods were
run 20 times. As the archive size of the methods was set to
50, 200 solutions were generated (except for the infeasibility
conditions or situations that the archive was not fulfilled com-
pletely) in each run. Approximately, 4000 solutions were gener-
ated. These included dominated and similar solutions. The sum of
all dissimilar solutions for all 20 runs was equal to 2096. These
2096 solutions were sorted based on non-domination to form the
RS which contained 460 final solutions. Fig. 5 represents the RS
for the aforementioned methods for all runs.
Using the aforementioned procedure, since the RS contains the
best solutions from several runs for all algorithms, it will contain
more qualified solutions in comparison with a single run for each of
the methods. Therefore, the RS has been formed during several runs
for all methods among 4000 generated solutions. The generated
solution for each method in Fig. 6 is the performance and the ability
of a method in a single run. Naturally, the result from a single run of
a method has less quality than the RS. Furthermore, the DSAMOPSO
method produces solutions that are very close to the solutions
provided by the RS in a single run among all other methods. This
observation shows the relative dominance of the proposed DSA-
MOPSO method in regenerating non-dominated solutions which are
closer to the RS in a single run.

The aforementioned accuracy and diversity metrics were
calculated for all proposed methods in 20 different runs. The
accuracy measures for the benchmark case are depicted in
Table 12.

It can be concluded form Table 12 that the average of NNS in
the proposed DSAMOPSO method is higher than the other algo-
rithms. This means that the number of non-dominated solutions
of DSAMOSPO which belongs to the RS is higher than the other
approaches. The average of the ER metric in the proposed
DSAMOPSO method has a smaller value in comparison with other
approaches. This means that the DSAMOPSO method has fewer
non-convergences towards the RS of the MORAP small-size test
problems. The average value of GD measurement in the proposed
DSAMOPSO method is smaller than other approaches. This means
that the distance between the RS and the generated solution set in
the DSAMOPSO method is low.

The diversity measures obtained by the algorithms for large-
size test problems are depicted in Table 13.

Similarly, it can be concluded form Table 13 that the
DSAMOPSO method provides non-dominated solutions
that have lower average values for the SM measurement.
Therefore, the non-dominated solutions obtained by the DSA-
MOPSO method are more uniformly distributed in comparison
with those obtained by the other algorithms. The average of
the DiM metric in the proposed DSAMOPSO method has a
smaller value in comparison with the other methods. This means that
the DSAMOPSO method has a narrower spread in comparison with
the other competing methods. Table 14 presents the computational
time of these methods for benchmark case.
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Again, the average CPU time for the DSAMOPSO method
obtained the third rank among the other competing methods. It
is notable that the average CPU time of the NSGA-II and the cTV-
MOPSO methods take the first and second rank with a distance
less than 1 s in comparison with the DSAMOPSO method. This can
be neglected with respect to several possibilities of the DSA-
MOPSO method. It can be concluded from Table 14 that the
AUGMECON method represents a very long CPU time in compar-
ison with the other methods. As the size of the test problem
increases the computational time of the AUGMECON method
increases steadily.
Fig. 7. Results of the Kolmogorov–Smirnov
5.4. Computational time of the algorithms

It can be concluded from Tables 7, 10, and 14 that there are
significant differences between the computational times of the
AUGMECON method and the other methods.

The epsilon constraint algorithm was implemented with an
unlimited version of LINGO software. The MORAP is modeled as a
non-linear programming problem which is hard to solve opti-
mally. Moreover, the LINGO software uses non-linear solvers
based on gradient and partial-derivatives in order to solve such
mathematical programming problems.
test for each metric for all procedures.
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The main characteristics of the proposed DSAMOPSO method
(i.e., dynamic constraint handling, self-adaptive constraint hand-
ling, dynamic parameter tuning, heuristic cost-benefit ratio,
diversification or global best selection procedure) do not con-
strain the DSAMOPSO method but they impose simple computa-
tional efforts which can be easily are implemented using proper
coding, software development, and hardware capabilities.

The MORAP is modeled as a mixed-integer non-linear multi-
objective programming which is very hard to solve efficiently
using mathematical approaches. Hence, the AUGMECON method
should attempt to approach the neighborhood of a solution
several times. Therefore, the algorithm may stop in a local
optimum as the derivatives are close to zero.
5.5. Statistical analysis

Although the metrics in Tables 12 and 13 presented the relative
dominance of the DSAMOPSO method, a meaningful comparison of
the algorithms is discussed through statistical analysis. First, the
normality test has been accomplished in order to check whether the
normal distribution is fitted on the distribution of the aforementioned
metrics over the solution space. The results of the Kolmogorov–
Smirnov test are presented in Fig. 7.

It can be concluded from Fig. 7 that there is not enough
evidence to reject the normality of the population. Therefore, we
use parametric test to check the performance of the competing
methods.

Then, the analysis of variance (ANOVA), in which different runs
of the algorithms are assumed to be random samples, is applied to
check whether there is a significant difference between the perfor-
mances of different methods considering the aforementioned
metrics. The results of the ANOVA are presented in Table 15.
Table 15
Analysis of variance.

I. First metr

Source Degree of freedom Sum of square

Factor 3 9020.2

Error 76 2781.7

Total 79 11801.9

S¼6.050, R-Sq¼76.43%,

II. Second me
Source Degree of freedom Sum of square

Factor 3 3.7569

Error 76 1.1585

Total 79 4.9154

S¼0.1235, R-Sq¼76.43%

III. Third me
Source Degree of freedom Sum of square

Factor 3 7055

Error 76 74937

Total 79 81992

S¼31.40, R-Sq¼8.60%,

IV. Fourth Me
Source Degree of freedom Sum of square

Factor 3 302,323

Error 76 3,638,303

Total 79 3,940,626

S¼218.8, R-Sq¼7.67%,

V. Fifth Metr
Source Degree of freedom Sum of square

Factor 3 4,494,896,469

Error 76 309,896,727

Total 79 4,804,793,196

S¼2019, R-Sq¼93.55%,
Table 15 shows that there is enough evidence to reject the
hypothesis of equal means for NNS, ER and DiM metrics. There is
not enough evidence to reject the equal mean values for the GD

and SM metrics. Finally, the Confidence Intervals (CI) has been
calculated for the mean of the aforementioned metrics based on
the pooled Standard Deviation (Std. Dev.). The results are pre-
sented in Table 16.

The confidence levels for all experiments were set to 95%. The
tests have been accomplished using MINITAB 15.0 software. It can
be concluded that the achieved mean values of NNS, and ER, in the
DSAMOPSO method are more significant in comparison with the
competing methods. The values of GD and SM are less significant
compared with the competing methods.

The DSAMOPSO and the NSGA-II methods re-generate non-
dominated solutions which have smaller values for the spacing
metric. We can conclude that the generated solutions using the
DSAMOPSO and the NSGA-II methods are more uniformly distrib-
uted throughout the RS in comparison with the competing methods.
The average value of the diversification metric in the cTV-MOPSO is
promising among with the competing methods. More formally, the
NSGA-II method is able to find non-dominated solutions which are
scattered. It is also notable that the best known solution of the
MORAP has been improved using the DSAMOPSO method.
6. Conclusions and future research directions

In this paper, a DSAMOPSO method was proposed to solve the
binary-state MORAPs. Different properties of the proposed DSA-
MOPSO method made it robust and competitive among the other
existing methods in the literature. In order to supply a proper
infrastructure for comparison, three well-known multi-objective
procedures were also selected, modified, and customized.
ic: NNS

Mean square F P-value

3006.7 82.15 0.000

36.6 – –

– – –

R-Sq(adj.)¼75.50%

tric: ER
Mean square F P-value

1.2523 82.15 0.000

0.0152 – –

– – –

, R-Sq(adj.)¼75.50%

tric: GD
Mean square F P-value

2352 2.38 0.076

986 – –

– – –

R-Sq(adj.)¼5.00%

tric: SM
Mean square F P-value

100774 2.11 0.107

47872 – –

– – –

R-Sq(adj.)¼4.03%

ic: DiM
Mean square F P-value

1,498,298,823 367.45 0.000

4,077,589 – –

– – –

R-Sq(adj.)¼93.30%



Table 16
Calculated confidence interval for the accuracy and diversity metrics.

Individual 95% CIs for NNS mean based on pooled Std. Dev

Level N Mean Std. Dev. ����þ���������þ���������þ���������þ�����

DSA-MOPSO20 45.800 2.016 (��*�)
NSGA-II20 18.750 18.750 6.077 (��*�)

TV-MOPSO20 28.050 10.257 (��*��)

EPSILON20 40.750 0.444 (��*�)

����þ���������þ���������þ���������þ�����

20 30 40 50

Individual 95% CIs for ER mean based on pooled Std. Dev.

Level N mean N Mean Std. Dev. ���������þ���������þ���������þ���������þ

DSA-MOPSO20 0.0653 0.0411 (�*��)
NSGA-II20 0.6173 0.1240 (��*��)

TV-MOPSO20 0.4276 0.2093 (�*��)

EPSILON20 0.1684 0.0091 (�*��)

���������þ���������þ���������þ���������þ

0.20 0.40 0.60 0.80

Individual 95% CIs for GD mean based on pooled Std. Dev.

Level N Mean Std. Dev. ���������þ���������þ���������þ���������þ

DSA-MOPSO 20 0.57 0.34 (��������*���������)
NSGA-II 20 3.20 1.12 (��������*��������)

TV-MOPSO 23.87 62.78 (��������*��������)

EPSILON 20 20 3.20 1.12 (��������*��������)

���������þ����������þ���������þ���������þ

0 15 30 45

Individual 95% CIs for SM mean based on pooled Std. Dev.

Level N N Mean Std. Dev. ���������þ���������þ���������þ���������þ

DSA-MOPSO 20 2.7 1.6 (��������*���������)

NSGA-II 20 5.3 2.2 (���������*��������)

TV-MOPSO20 146.4 437.6 (���������*��������)
EPSILON 20 5.3 2.2 (���������*��������)

���������þ���������þ���������þ���������þ

0 100 200 300

Individual 95% CIs for DM mean based on pooled Std. Dev.

Level N N Mean Std. Dev. ��þ���������þ���������þ���������þ�������

DSA�MOPSO 20 56 1 (�*�)

NSGA-II 20 86 0 (�*�)

TV-MOPSO20 17379 4039 (�*�)
EPSILON 20 62 0 (�*�)

��þ���������þ���������þ���������þ�������

0 5000 10000 15000
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First an AUGMECON method for generating qualified Pareto
efficient solutions, in which the pitfalls of the conventional
epsilon constraint method were addressed, was proposed. The
efficient e-constraint method can handle four problems in the
conventional e-constraint method with regards to the commen-
surable slack-based objective function, the lexicographic pay-off
table, and the efficient searching procedure.

Second, a TV-MOPSO algorithm was customized, modified, and
improved using dynamic penalty functions.

Third, a well-known multi-objective evolutionary algorithm,
called the NSGA-II method, was also modified based on dynamic
parameter tuning.

Afterwards, a binary-state MORAP, which was modeled as an
NP-hard problem, was introduced. Different sets of test problems
and a well-known benchmark case were used through the
proposed procedures.

All the proposed algorithms were capable of solving small-size
test problems. Several experiments were conducted to compare
the performance of the proposed methods in re-generating the
Pareto front of the MORAP.

Statistical analysis was supplied to compare the performance of
the proposed algorithms. The proposed DSAMOPSO method showed
relative preference in comparison with the other competing methods.
The best known solutions of the MORAP were also improved using
the DSAMOPSO method. This is a direct result of the special proper-
ties of the DSAMOPSO method (i.e., self-adaptive penalty functions, a
heuristic cost-benefit ratio modification strategy, dynamic parameter
tuning, fast ranking, evolutionary based operators, elitism, crowding
distance, and rank-based tournament global best selection proce-
dure). The MORAP studied in this paper was an NP-Hard mixed-
integer nonlinear constrained multi-objective decision making
problem, so the proposed DSAMOPSO method can efficiently be
customized to solve other real life engineering and management
decision problems.

Finally, in order to increase the goodness-of-fit of the proposed
method, further analysis can be made through advanced statistical
analysis such as the design of experiments, factorial design, and the
Taguchi method on parameters tuning. Another improvement can
be the hybridization of the proposed algorithm with an initial
seeding procedure. The current algorithm initially uses random
solutions. Generating and using systematic initial solutions through
heuristic methods can improve the performance of the proposed
algorithm.
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