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The fuzzy VIKOR method has been developed to solve fuzzy multicriteria problem with conflicting and
noncommensurable (different units) criteria. This method solves problem in a fuzzy environment where
both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to handle imprecise
numerical quantities. Fuzzy VIKOR is based on the aggregating fuzzy merit that represents distance of an
alternative to the ideal solution. The fuzzy operations and procedures for ranking fuzzy numbers are used
in developing the fuzzy VIKOR algorithm. VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resen-
je) focuses on ranking and selecting from a set of alternatives in the presence of conflicting criteria, and
on proposing compromise solution (one or more). It is extended with a trade-offs analysis. A numerical
example illustrates an application to water resources planning, utilizing the presented methodology to
study the development of a reservoir system for the storage of surface flows of the Mlava River and its
tributaries for regional water supply. A comparative analysis of results by fuzzy VIKOR and few different
approaches is presented.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

There are situations when the evaluation of alternatives must
handle the imprecision of established criteria, and the develop-
ment of a fuzzy multicriteria decision model is necessary to deal
with either ‘‘qualitative’’ (unquantifiable or linguistic) or incom-
plete information (Vanegas & Labib, 2001; Zadeh et al., 1987).
Imprecision in multicriteria decision making (MCDM) can be mod-
eled using fuzzy set theory to define criteria and the importance of
criteria. According to Bellman and Zadeh ‘‘much of the decision-
making in the real world takes place in an environment in which
the goals, the constraints, and consequences of possible actions
are not known precisely’’ (Bellman & Zadeh, 1970). Ribeiro pro-
vides an overview of the concepts and theories of decision making
in a fuzzy environment (Ribeiro, 1996). Von Altrock explains the
elements of fuzzy logic system design, presenting case studies of
real-world applications, of which the most visible applications
are in the realms of consumer products, intelligent control, and
industrial systems (Von Altrock, 1995). Less visible, but of growing
importance, are applications relating to decision support systems
(Zimmermann, 1991, 1987). Although fuzzy set theory has been
and still remains somewhat controversial, its successes are too
clear to be denied. However, Ribeiro warns that ‘‘too much fuzzifi-
cation does not imply better modeling of reality, it can be counter-
productive’’. Fuzzy ranking methods have been developed that can
be used to compare fuzzy numbers (Chen & Hwang, 1992), but this
is still an interesting research area.
ll rights reserved.
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There are two approaches to MCDM in a fuzzy environment,
‘‘conventional’’ and ‘‘fuzzy’’ (Perny & Roubens, 1998). The conven-
tional approach is based on a nonfuzzy decision model, whereas
the fuzziness dissolution (defuzzification) is performed at an early
stage (Chen & Hwang, 1992; Wu, Tzeng, & Chen, 2009). The fuzzy
approach is based on processing fuzzy data for decision making,
then dissolving the fuzziness at a later stage (Opricovic, 2007). In
both cases, defuzzification is necessary since MCDM results must
provide a crisp conclusion. Defuzzification is selection of a specific
crisp element based on the output fuzzy set, and it also includes
converting fuzzy numbers into crisp scores. There are several
defuzzification methods, although the operation defuzzification
cannot be defined uniquely (Chen & Cheng, 2005; Detyniecki &
Yager, 2000; Lee & Li, 1988; Opricovic & Tzeng, 2003; Yager & Filev,
1994).

The multicriteria decision making (MCDM) procedure consists
of generating alternatives, establishing criteria, evaluation of
alternatives, assessment of criteria weights, and application of a
ranking method (Vincke, 1992). The alternatives are evaluates
according to different criteria depending on the objectives of the
problem. The evaluation of alternatives should be performed
according to each criterion from the set of established criteria. A
comparative analysis of MCDM methods is presented in several
publications (Escobar & Moreno-Jimenez, 2002; Opricovic & Tzeng,
2007; Triantaphyllou, 2000).

The VIKOR method has been developed as an MCDM method to
solve a discrete multicritea problem with noncommensurable and
conflicting criteria (Opricovic, 1998). It focuses on ranking and
selecting from a set of alternatives, and determines compromise
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solutions for a problem with conflicting criteria, which can help the
decision makers to reach a final decision. The compromise solution
is a feasible solution which is the closest to the ideal (Opricovic &
Tzeng, 2004). VIKOR is based on old ideas of compromise program-
ming (Duckstein & Opricovic, 1980; Yu, 1973). An extension of VI-
KOR to determine fuzzy compromise solution for multicriteria is
presented in (Opricovic, 2007).

The fuzzy VIKOR method is developed as a fuzzy MCDM method
to solve a discrete fuzzy multicritea problem with noncommensu-
rable and conflicting criteria. It is presented in Section 2. The back-
ground for this method, including aggregation, normalization,
DM’s preference assessment, and operations on fuzzy numbers
are discussed, as a study of rationality that in someway justifies
the fuzzy VIKOR method and shows the position of its background
in the literature on MCDM. This new method provides a contribu-
tion to the practice of MCDM. In Section 3, a numerical example
illustrates an application of fuzzy VIKOR to water resources plan-
ning, aiming to numerical justification. Comparisons of the results
by different methods are presented in Section 4.

2. The fuzzy VIKOR method

The fuzzy VIKOR method has been developed to determine the
compromise solution of the fuzzy multicriteria problem

mco
j
ð~f ijðAjÞ; j ¼ 1; . . . ; JÞ; i ¼ 1; . . . ;n
n o

where: J is the number of feasible alternatives; Aj = {x1,x2 , . . .} is the
jth alternative obtained (generated) with certain values of system
variables x; fij is the value of the ith criterion function for the alter-
native Aj; n is the number of criteria; mco denotes the operator of a
multicriteria decision making procedure for selecting the best
(compromise) alternative in multicriteria sense. Alternatives can
be generated and their feasibility can be tested by mathematical
models (determining variables x), physical models, and/or by exper-
iments on the existing system or other similar systems. Constraints
are seen as high-priority objectives, which must be satisfied in the
alternatives generating process. In this paper we assume the alter-
natives are evaluated by the triangular fuzzy numbers
~f ij ¼ ðlij;mij; rijÞ; i ¼ 1; . . . ;n; j ¼ 1; . . . ; J. The set of criteria repre-
senting benefits (good effects) is denoted by Ib, and a set Ic for costs.
Here jIb [ Icj = n, where j�j denotes a cardinal number.

The ranking algorithm VIKOR has the following steps:

(i) Determine the ideal ~f �i ¼ ðl
�
i ;m

�
i ; r
�
i Þ and the nadir ~f �i ¼

ðl�i ;m�i ; r�i Þ values of all criterion functions, i = 1,2, . . . ,n.
~f �i ¼ MAX
j

~f ij;
~f �i ¼ MIN

j

~f ij; for i 2 Ib;

~f �i ¼ MIN
j

~f ij;
~f �i ¼ MAX

j

~f ij; for i 2 Ic:

(ii) Compute normalized fuzzy difference ~dij; j ¼ 1; . . . ; J;
i ¼ 1; . . . ;n:

~dij ¼ ð~f �i � ~f ijÞ=ðr�i � l�i Þ for i 2 Ib;

~dij ¼ ð~f ij � ~f �i Þ=ðr�i � l�i Þ for i 2 Ic ð1Þ

(iii) Compute eSj ¼ ðSl
j; S

m
j ; S

r
j Þ and eRj ¼ ðRl

j;R
m
j ;R

r
j Þ; j ¼ 1;2; . . . ; J,

by the relations

eSj ¼
Xn

i¼1
� ~wi � ~dij

� �
ð2Þ

eRj ¼ MAX
i

~wi � ~dij

� �
ð3Þ
where eS is a fuzzy weighted sum, eR is a fuzzy operator MAX (see
Appendix B), ~wi are the weights of criteria, expressing the DM’s
preference as the relative importance of the criteria.
(iv) Compute the values eQ j ¼ ðQl

j;Q
m
j ;Q

r
j Þ; j ¼ 1;2; . . . ; J, by the

relationeQ j ¼ v eSj � eS�� �
=ðS�r � S�lÞ � ð1� vÞ eRj � eR�� �

=ðR�r � R�lÞ

ð4Þ
where: eS� ¼ MIN

j

eSj, S�r ¼maxjS
r
j ;
eR� ¼ MIN

j
eRj; R�r ¼ maxjR

r
j , and

v is introduced as a weight for the strategy of ‘‘the majority of
criteria’’ (or ‘‘the maximum group utility’’), whereas 1 � v is
the weight of the individual regret. These strategies could be
compromised by v = 0.5, and here v is modified as v = (n + 1)/
2n (from v + 0.5(n � 1)/n = 1) since the criterion (1 of n) related
to R is included in S, too. The best values of S and R are denoted
by eS� and eR�, respectively.
(v) ‘‘Core’’ ranking
Rank the alternatives by sorting the core values Qm

j ; j ¼
1;2; . . . ; J, in decreasing order. The obtained ordering is denoted
by fAgQm .
(vi) Fuzzy ranking
The jth ranking position in fAgQm of an alternative A(j), j = 1, . . . , J,

is confirmed if MIN
k2Jj

eQ ðkÞ ¼ eQ ðjÞ, where Jj = {j, j + 1, . . . , J} and eQ ðkÞ
is the fuzzy merit for the alternative A(k) at the kth position in
fAgQm (see Appendix A). Confirmed ordering represents ‘‘exact’’
fuzzy ranking fAgeQ , although the set fAgeQ could not be com-

plete ordering (it may be partially ranking).
(vii) Defuzzification of eSj; eRj; eQ j; j ¼ 1;2; . . . ; J, by the relations

Crisp eN� �
¼ ð2mþ lþ rÞ=4 ð5Þ

Here the defuzzification method ‘‘2nd weighted mean’’ is
applied to convert a fuzzy number into crisp score (see
Appendix A).
(viii) Rank the alternatives, sorting by the crisp values S, R and Q
in decreasing order. The results are three ranking lists {A}S, {A}R,
{A}Q.
(ix) Propose as a compromise solution the alternative (A(1))
which is the best ranked by the measure Q (in {A}Q) if the fol-
lowing two conditions are satisfied:

C1. ‘‘Acceptable Advantage’’: Adv P DQ
where: Adv = [Q(A(2)) � Q(A(1))]/[Q(A(J)) � Q(A(1))] is the
advantage rate of the alternative A(1) ranked first, A(2) is
the alternative with second position in {A}Q, and the thresh-
old DQ = 1/(J � 1).
C2. ‘‘Acceptable Stability in decision making’’:
The alternative A(1) must also be the best ranked by S
or/and R.
If one of the conditions is not satisfied, then a set of compromise
solutions is proposed, which consists of:
– Alternatives A(1) and A(2) if only the condition C2 is not sat-
isfied, or
– Alternatives A(1),A(2), . . . ,A(M) if the condition C1 is not sat-
isfied; A(M) is determined by the relation Q(A(M)) �
Q(A(1)) < DQ for maximum M (the positions of these alterna-
tives are ‘‘in closeness’’).
(x) Determine crisp trade-offs, trik = (Diwk)/(Dkwi), k – i,
k = 1, . . . ,n, where trik is the number of units of the ith criterion
evaluated the same as one unit of the kth criterion; Di ¼ r�i � l�i
for i 2 Ib; Di ¼ r�i � l�i for i 2 Ic, and w ¼ Crispð~wÞ obtained by
defuzzification used in step (vii). The index i is given by the
VIKOR user. The VIKOR method introduces these trade-offs as
a result of normalization used in Eq. (1) for operations in (2)
and (3).
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(xi) The decision maker may give a new value of trik, k – i,
k = 1, . . . ,n if he or she does not agree with computed values
in step (x). The new values of weights are computed wk = j(Dkwi-

trik)/Dij, k – i, k = 1, . . . ,n; wi is the previous value from the step
(x). Then, VIKOR performs a new ranking from step (iii) using
~wk ¼ ðwk;wk;wkÞ; k ¼ 1; . . . ;n. The trade-offs determined in
step (x) could help the decision maker to assess new values,
although that task is very difficult.
(xii) The VIKOR algorithm ends if the new values are not given
in step (xi).

The ranking algorithm VIKOR uses fuzzy operations presented
in Appendix B.

This method focuses on ranking and selecting from a set of
alternatives in the presence of conflicting criteria, and on propos-
ing compromise solution (one or more). It is assumed that compro-
mising is acceptable for conflict resolution, the decision maker
(DM) is willing to approve solution that is the closest to the ideal,
and the alternatives are evaluated (fuzzy or crisp) according to all
established criteria.

The VIKOR method is an effective tool in multicriteria decision
making. The obtained compromise solution could be accepted by
the decision makers because it provides a maximum group utility
of the ‘‘majority’’ (represented by min S, Eq. (2)), and a minimum
individual regret of the ‘‘opponent’’ (represented by min R,
Eq. (3)). The VIKOR algorithm can be performed without interac-
tive participation of DM, but the DM is in charge of approving the
final solution and his/her preference must be included. The com-
promise solutions could be the base for negotiation, involving the
decision makers’ preference by criteria weights. The VIKOR meth-
od may be incorporated within a DSS for MCDM (Liu & Stewart,
2004).

The fundamental issues of the VIKOR method are discussed in
the previous articles, studying aggregation and normalization
(Opricovic & Tzeng, 2004), DM’s preference assessment (Opricovic
& Tzeng, 2004; Opricovic, 2009), and operations on fuzzy numbers
(Opricovic, 2007), that in someway justifies the VIKOR method and
its rationality, and shows the position of its background in the lit-
erature on MCDM. Several papers presented application of the VI-
KOR method (Chang & Hsu, 2009; Ou Yang, Shieh, & Tzeng, 2009;
Sanayei, Farid Mousavi, & Yazdankhah, 2010; Tong, Chen, & Wang,
2007). In Section 3, a numerical example illustrates an application
of fuzzy VIKOR method aiming to numerical justification.
3. Fuzzy VIKOR application to water resources planning

Previous studies of the Mlava water resources system, in Serbia,
have selected potential dam sites for reservoirs to provide water. In
addition, comprehensive analysis was required to resolve conflict-
ing technical, social and environmental features. Even if the topo-
graphic surveys confirm that the required reservoir capacity is
available, a hydrological solution may conflict with environmental,
social, and cultural features.

The VIKOR method was applied to evaluate alternative systems
on the Mlava River. The alternatives were generated by varying
two system parameters, dam site and dam height. The following
six alternatives were selected for multicriteria optimization.

A1. The alternative A1 is the reservoir Vukan with normal level
of 215 m.a.s.l. and useful storage of 86 	 106 m3 could pro-
vide 4.08 m3/s (average) for planed regional water supply.
The dam site is 1.5 km downstream of the monastery
Gornjak, and the implementation would require the removal
of the monastery. There will be a loss of agricultural land of
120 ha. A section (1.5 km) of the regional road and parts of
local roads will be flooded by the reservoir.
A2. Reservoir Vukan with normal level of 205 m.a.s.l. and useful
storage of 40 	 106 m3 would have less social and environ-
mental impacts on local areas and could provide 2.87 m3/s
for water supply. It requires the removal of the monastery
Gornjak. The loss of agricultural land is less than alternative
A1.

A3. Reservoir Vitman I with normal level of 215 m.a.s.l. could
provide 2.97 m3/s. The dam site is 3 km upstream of the
monastery Gornjak, but there will be a loss of agricultural
land (120 ha).

A4. Reservoir Gradac with normal level of 275 m.a.s.l. could pro-
vide 2.73 m3/s. The dam site is in the gorge Ribarska,
upstream of the Gornjak gorge. There will be an impact on
agricultural area in the region of Zagubica (a loss of
300 ha). The area of several households in two villages will
be flooded and they have to be removed.

A5. System of three reservoirs, Vitman II (205) and Gradac (251)
on Mlava, and Dubocica (255) on the tributary, could provide
2.5 m3/s. All three dam sites are upstream of the monastery
Gornjak. The loss of agricultural is relatively small since nor-
mal levels are lower.

A6. System similar to the alternative A5, Vitman III (203), Gradac
(251) and Dubocica (255), which could provide 2.74 m3/s.
The Vitman III dam site is shortly downstream of Vitman
II.

The designed reservoir systems are evaluated according to the
following criteria:

f1. Investment costs (in 106 US$) including dam construction,
expropriation of the area occupied by the reservoir, con-
struction of new buildings for the households which have
to move, and building new roads that will substitute flooded
sections.

f2. Water supply discharge – yield (m3/s) is the average annual
value of discharge from the reservoir system available for
regional water supply. The required reservoir capacity has
been determined by the ’’sequent peak’’ algorithm for
required total water demands. Water supply discharge has
been determined by simulation of reservoir system with
required capacity using historical hydrological series. Beside
this discharge each reservoir has to realize downstream a
biological minimum flow.

f3. Social impact (%) on urban and agricultural area expressing
local regret as percentage of the regret in the alternative
with maximum social impact.

f4. Impact on the monastery Gornjak is graded by the experts.
The worst grade has the alternative that required the
removal of monastery. The construction of a dam could have
impact on ambient beauty of the Gornjak gorge.

The multicriteria task is to minimize the criterion functions f1,
f3, and f4, and to maximize function f2. The four criterion functions
are expressed in different units and they are noncommensurable.
The values of criterion functions are obtained by a comprehensive
study of this reservoir system on Mlava river system, and the re-
sults are presented in Table 1.

The criteria weights ~Wi ¼ ð1;1;1Þ; i ¼ 1;2;3;4 express equal
importance (no preference), and v = 0.625 (see step (iv) in
Section 2).

The results obtained by the fuzzy VIKOR algorithm are pre-
sented in Tables 2 and 3. Preliminary ranking (‘‘core’’) of alterna-
tives by the values Qm is A3, A6, A5, A2, A4, A1. ‘‘Exact’’ fuzzy
ranking by fuzzy VIKOR is not complete ordering in this example,
since the position of A3 is confirmed (see step (vi) in Section 2,
and Fig. 1).



Table 1
Performance matrix.

Criteria Alternatives

Name extr. A1 A2 A3 A4 A5 A6

~f 1 Investment costs (106 $) l 38.00 20.00 24.58 44.54 33.33 33.86
Min m 40.01 21.06 25.87 46.89 33.33 33.86

r 48.00 24.00 29.75 56.27 43.33 42.32

~f 2 Water supply (m3/s) l 3.26 2.57 2.82 2.46 2.25 2.47
Max m 4.08 2.87 2.97 2.73 2.50 2.74

r 4.08 2.87 2.97 2.73 2.62 2.85

~f 3 Social impact (%) l 43 6 38 60 6 6
Min m 47 6 42 62 6 6

r 48 6 50 68 6 6

~f 4 Impact on monastery (grade) Min l m r 10 10 1 0 2 3

Table 2
Results by fuzzy VIKOR.

A1 A2 A3 A4 A5 A6

eS Sl 1.535 1.103 0.791 1.727 0.807 0.796
Sm 2.184 1.661 1.420 2.353 1.402 1.385
Sr 2.897 1.935 1.767 2.885 1.843 1.795
Crisp S 2.200 1.590 1.349 2.330 1.363 1.340

eR Rl 1.0 1.0 0.516 0.871 0.350 0.300
Rm 1.0 1.0 0.607 0.903 0.863 0.732
Rr 1.0 1.0 0.710 1.0 1.0 0.880
Crisp R 1.0 1.0 0.610 0.919 0.769 0.661

eQ Ql 0.087 �0.041 �0.393 0.075 �0.478 �0.508
Qm 0.448 0.293 0.010 0.446 0.142 0.067
Qr 1.0 0.715 0.509 0.996 0.687 0.609
Crisp Q 0.495 0.315 0.034 0.491 0.124 0.059
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Crisp values (by defuzzification) of eSj; eRj; eQ j; j ¼ 1;2; . . . ; J, are
presented in Table 2. Ranking by crisp values are {A}S = A6, A3, A5,
A2, A1, A4, {A}R = A3, A6, A5, A4, A1, A2, {A}Q = A3, A6, A5, A2, A4,
A1. The compromise solution for final decision is the set {A3, A6,
A5} (see step (ix) in Section 2).

A 3. Vitman I (215) (advantage 5.4%).
A 6. Vitman III (203), Gradac (251), Dubocica (255).
A 5. Vitman II (205), Gradac (251), Dubocica (255).
Table 3
Ranking by fuzzy VIKOR.

Ordering

1 2 3 4 5 6

‘‘Core’’ ranking fAgQm A3 A6 A5 A2 A4 A1
‘‘Exact’’ fuzzy ranking fAgeQ A6 A5 A2 A4 A1

Defuzzification Q A3 A6 A5 A2 A4 A1
S A6 A3 A5 A2 A1 A4
R A3 A6 A5 A4 A1 A2

0

0.2

0.4

0.6

0.8

1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A1 A2 A3 A4 A5 A6

Fig. 1. Fuzzy merit eQ ðAjÞ and crisp Qj, j = 1,2, . . . , J.
The trade-offs values determined by VIKOR (the step x) are pre-
sented in Table 4, showing how many 106$ are evaluated as one
unit of kth criterion. The determined tradeoffs are: 19.82 	 106$/
(m3/s), 0.58 	 106$/% and 3.63 106$/mark-unit, for example,
1 m3/s of water supply discharge worth as 19.82 	 106$ of invest-
ment costs, and removing monastery Gornjak worth as
25.41 	 106$. This values seem too high in economic sense,
although assessing trade-offs between economic and qualitative
criteria is a very difficult task. The trade-offs determined by VIKOR
are the result of normalizing noncommensurable criteria. The new
trade-offs are given in Table 4. New weights are determined and
ranking by VIKOR has been repeated.

The results obtained by the fuzzy VIKOR algorithm with given
tradeoffs in Table 4 are presented in Tables 5 and 6. New weights
in Table 4 are determined by the procedure presented in step
(xi) in Section 2. For example, w5 = j(D5w2tr25)/D2j = ((4.08 �
2.25) � 1 � 15)/(56.27 � 20.0) = 0.757, w2 is the previous value from
the step (x).

Preliminary ranking (‘‘core’’) of alternatives by the values Qm is
A3, A2, A6, A5, A1, A4. ‘‘Exact’’ fuzzy ranking by fuzzy VIKOR is not
complete ordering in this example, although the positions of five
alternatives are confirmed (see step (vi) in Section 2). The position
of A2 is not confirmed since Ql(A2) = �0.171 is greater then
Ql(A5) = �0.290 (Fig. 2).
Table 4
Trade-offs by VIKOR.

~1 ~2 ~3 ~4

tr1k; k ¼ 1; . . . ;n ð106$=~kÞ 1.0 19.82 0.58 3.63

New given trade-offs tr1k, k = 1, . . . ,n 1 15 0.2 2
New weights 1.0 0.757 0.342 0.551



Table 5
Results by fuzzy VIKOR with given trade-offs.

A1 A2 A3 A4 A5 A6

eS Sl 0.802 0.602 0.368 1.083 0.632 0.607
Sm 1.300 1.052 0.845 1.579 1.102 1.073
Sr 1.894 1.286 1.088 2.012 1.510 1.447
Crisp S 1.324 0.998 0.786 1.563 1.087 1.050

eR Rl 0.551 0.551 0.176 0.566 0.265 0.272
Rm 0.551 0.551 0.459 0.712 0.653 0.554
Rr 0.772 0.624 0.521 1.000 0.757 0.666
Crisp R 0.607 0.570 0.404 0.748 0.582 0.512

eQ Ql �0.095 �0.171 �0.431 0.019 �0.290 �0.296
Qm 0.215 0.121 0.0 0.394 0.186 0.130
Qr 0.851 0.553 0.431 1.000 0.699 0.633
Crisp Q 0.297 0.156 0.0 0.452 0.195 0.149

Table 6
Ranking by fuzzy VIKOR with given trade-offs.

Ordering

1 2 3 4 5 6

‘‘Core’’ ranking fAgQm A3 A2 A6 A5 A1 A4
‘‘Exact’’ fuzzy ranking fAgeQ A3 A6 A5 A1 A4

Defuzzification Q A3 A6 A2 A5 A1 A4
S A3 A2 A6 A5 A1 A4
R A3 A6 A2 A5 A1 A4

0
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Fig. 2. New fuzzy merit eQ ðAjÞ; j ¼ 1;2; . . . ; J for given trade-offs.

Table 7
Defuzified performance matrix.

A1 A2 A3 A4 A5 A6

f1 41.50 21.53 26.52 48.65 35.83 35.97
f2 3.87 2.79 2.93 2.66 2.47 2.70
f3 46.25 6 43 63 6 6
f4 10 10 1 0 2 3
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Crisp values (by defuzzification) of eSj; eRj; eQ j; j ¼ 1;2; . . . ; J, are
presented in Table 5. Ranking by crisp values are is {A}Q = A3, A6,
A2, A5, A1, A4. The compromise solution for final decision is A3
Vitman I (215) with the advantage rate of 33%.

The alternative A3 is a single reservoir system (Vitman I (215)).
Second ranked is the alternative A6, a three-reservoir system
(Vitman III (203), Gradac (251), Dubocica (255)). The decision
makers for the Mlava project may adopt alternative A6, which
could be developed in three phases, building one reservoir in each
phase.

4. Some comparisons

Comparisons of the results by different methods are made in
this section. These comparisons could challenge the readers to
compare fuzzy VIKOR with particular methods.

4.1. Non-fuzzy model

Non-fuzzy MCDM methods are compared many times
(Triantaphyllou, 2000; Opricovic & Tzeng, 2007). Original (non-
fuzzy) VIKOR uses crisp input data. The input data for VIKOR are
core (m) values from Table 1. The result from (Opricovic, 2009) is
the ranking list: A3, A6, A5, A2, A1, A4, and the set of compromise
solutions consists of

A 3. Vitman I (215) (advantage 19%).
A 6. Vitman III (203), Gradac (251), Dubocica (255).
Preliminary ranking (‘‘core’’) of alternatives by the values Qm is
A3, A6, A5, A2, A4, A1 (Table 3), the set of compromise solutions is
{A3, A6}. Crisp values (by defuzzification) of eSj; eRj; eQ j; j ¼ 1;
2; . . . ; J, are presented in Table 2. Ranking by defuzzified values ofeQ j is {A}Q = A3, A6, A5, A2, A4, A1, and the set of compromise solu-
tions is

A 3. Vitman I (215) (advantage 5.4%).
A 6. Vitman III (203), Gradac (251), Dubocica (255) .
A 5. Vitman II (205), Gradac (251), Dubocica (255).

The results are similar because of small spread (support) of fuz-
zy numbers r � l in Table 1.
4.2. Predefuzzification

Two approaches to fuzzy multicriteria decision making are pre-
sented, ‘‘fuzzy’’ and ‘‘conventional’’. The fuzzy VIKOR method is a
fuzzy approach. The conventional approach is based on a nonfuzzy
decision model, here VIKOR method, whereas the fuzziness disso-
lution (defuzzification) is performed at an early stage (predefuzz-
ification). The predefuzzification approach is used in (Wu et al.,
2009), utilizing the COA (center of area) method to find ‘‘the Best
Nonfuzzy Performance value (BNP)’’. The ranking of the alterna-
tives then proceeds based on the value of the derived BNP for each
of the alternatives. Three MCDM analytical tools of SAW, TOPSIS,
and VIKOR were adopted to rank alternatives. The same approach
is used in (Wu, Chen, & Chen, 2010), adopting VIKOR to rank
alternatives.

The fuzzy numbers from Table 1 are defuzified by the procedure
used in step (vii), Section 2, and discussed in Appendix A. The
defuzzified performance matrix is presented in Table 7.

The results in Table 7 are used as input data for non-fuzzy VI-
KOR. The non-fuzzy VIKOR is published in Opricovic and Tzeng
(2007). The ranking result is A3, A6, A5, A2, A1, A4 and the compro-
mise solution is A3 (advantage 21.9%).

The non-fuzzy VIKOR results (Opricovic, 2009) with core (m)
values from Table 1 as input data are: ranking list: A3, A6, A5,
A2, A1, A4, and the set of compromise solutions consists of A3
(advantage 19%) and A6.
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These two results are very close, since the threshold for advan-
tage in this example is 20% (see step (ix) in Section 2). Main reason
is small spread (support) of fuzzy numbers r � l in Table 1.

4.3. Ranking fuzzy numbers

Ranking fuzzy numbers using a-weighted valuations is consid-
ered in (Detyniecki & Yager, 2000). Fuzzy numbers eN1 ¼ ð1;7;
9Þ; eN2 ¼ ð4;6;12Þ, and eN1 ¼ ð1;7;9Þ; eN3 ¼ ð2;4;10Þ are com-
pared. The result is eN1 < eN2 for ‘‘pro-support’’ (0 6 q < 2) andeN1 > eN2 for q > 2 (importance of high a–levels). Analogous result
is for eN1 and eN3.

Applying fuzzy VIKOR the result is as follows: ‘‘Core’’ rankingeN1; eN2; eN3; ‘‘Exact’’ ranking eN2 > eN3; Ranking by crisp values
(defuzzification) eN2ðQ ¼ 0:026Þ; eN1ðQ ¼ 079Þ; eN3ðQ ¼ 0:132Þ.
‘‘Exact’’ ranking provides consistent result. Ordering eN1 and eN2 is
an inconsistent result.

Crisp values by the center-of-gravity (k = 1, Appendix A) are
N1 = 5.667, N2 = 7.333, N3 = 5.333, and by the CFCS method
(Opricovic & Tzeng, 2003) N1 = 6.29, N2 = 6.71, N3 = 4.88.

An interesting example is ordering fuzzy numbers eN1 ¼ ð5;
6;13Þ; eN2 ¼ ð3;7;13Þ; eN3 ¼ ð5;8;9Þ; eN4 ¼ ð2;9;10Þ, (Detyniecki
& Yager, 2000). Applying fuzzy VIKOR there is no ordering by
‘‘exact’ fuzzy ranking; and ranking by crisp values (defuzzification)eN1 ¼ eN2 ¼ eN3 ¼ eN4.

Crisp values by the center-of-gravity are N1 = 8, N2 = 7.667,
N3 = 7.333, N4 = 7, and by the CFCS method (Opricovic & Tzeng,
2003) N1 = 7.128, N2 = 7.366, N3 = 7.574. N4 = 7.872.

These are examples of inconsistent ranking. The explanation of
an inconsistent result is that low a-levels are compensated with
the high a-levels (Detyniecki & Yager, 2000).

4.4. NFWA and fuzzy VIKOR

The NFWA method (new fuzzy-weighted average) is applied
and an example is presented in Vanegas and Labib (2001).
Fuzzy result by NFWA is eDðA1Þ ¼ ð0:15; 0:32;0:58Þ; eDðA2Þ ¼
ð0:37;0:61;0:85Þ; eDðA3Þ ¼ ð0:15;0:38;0:61Þ, and ranking result
(crisp) is A2(D = 0.61), A3(0.38), A1(0.35).

The same problem is solved by the fuzzy VIKOR algorithm and
the result is as follows: eQ ðA1Þ ¼ ð�0:54;0:28;0:98Þ; eQ ðA2Þ ¼
ð�0:75;0:0;0:75Þ; eQ ðA3Þ ¼ ð�0:64;0:15;0:93Þ, ‘‘Exact’’ fuzzy rank-
ing A2, A3, A1 (complete ranking); and ranking by crisp values
(defuzzification) A2(Q = 0.0), A3(0.15), A1(0.25). Ranking results by
these two methods are very close, and ordering is the same.

4.5. Fuzzy AHP and fuzzy VIKOR

An example of fuzzy multicriteria problem is presented in (Gu &
Zhu, 2006). Comparison results between the proposed algorithm
and other algorithms are presented. There is a conclusion ‘‘It is
apparent that the proposed improving fuzzy AHP algorithm based
on fuzzy eigenvector of fuzzy attribute evaluation space is more
efficient than others. It has good objectivity and resolution.’’ Fuzzy
result by the improved fuzzy AHP algorithm is fW ðA1Þ ¼
ð0:3375;0:8195;1Þ; fW ðA2Þ ¼ ð0:3164;0:6740;1Þ; fW ðA3Þ ¼ ð0:3770;
0:8941;1Þ; fW ðA4Þ ¼ ð0:3387;0:7491;1Þ, and ranking result (crisp)
is A3(W = 0.791), A1(0.744), A4(0.709), A2(0.666).

The same problem is solved by the fuzzy VIKOR algorithm and
the result is as follows. eQ ðA1Þ ¼ ð�0:455;0:051;0:669Þ; eQ ðA2Þ ¼
ð�0:396;0:193;1:0Þ; eQ ðA3Þ ¼ ð�0:491;0:0;0:5Þ; eQ ðA4Þ ¼ ð�0:474;
0:110;0:784Þ. ‘‘Exact’’ fuzzy ranking is A3, A4, A2; and ranking by
crisp values (defuzzification) A3(Q = 0.002), A1(0.079), A4(0.132),
A2(0.248). Ranking results by these two methods are very close,
and ordering is the same.
4.6. ‘‘Distance’’ method and fuzzy VIKOR

The procedure FMCGDSS (fuzzy multi-criteria group decision
support system) based on metric distance method is presented
and applied in (Chen & Cheng, 2005). The ranking results are the
following: A3(fuzzy mean = 3.662, fuzzy spread = 0.881), A2(3.577,
0.97), A1(3.477, 0.952).

The same problem is solved by the fuzzy VIKOR algorithm and
the result is as follows: eQ ðA1Þ ¼ ð�0:86;0:088;0:946Þ; eQ ðA2Þ ¼
ð�0:863;0:054;0:954Þ; eQ ðA3Þ ¼ ð�0:871; 0:0;0:877Þ, ‘‘Exact’’ fuzzy
ranking is A3, A1; and ranking by crisp values (defuzzification)
A3(Q = 0.002), A2(0.05), A1(0.065). Ordering by these two methods
is the same.
5. Conclusions

The fuzzy VIKOR method focuses on ranking and selecting from
a set of alternatives in a fuzzy environment. Imprecision in multi-
criteria decision making is modeled using fuzzy set theory to de-
fine criteria and the importance of criteria (weights). The
triangular fuzzy numbers are used to handle imprecise numerical
quantities. The VIKOR method is based on the aggregating fuzzy
merit eQ that represents distance of an alternative to the ideal solu-
tion. The fuzzy operations and procedures for ranking fuzzy num-
bers are used in developing VIKOR algorithm.

A numerical example illustrates an application of the fuzzy VI-
KOR method to water resources planning, aiming to numerical jus-
tification. It is an intention to illustrate the conceptual and
operational validation of the application of this method in real
world problem. The fuzzy VIKOR method background and compar-
isons of the results by different methods are presented in order to
show the position of this new method in the literature on fuzzy
MCDM.

Researchers are challenged to provide a guide for choosing the
method that is both theoretically well founded and practically
operational to solve actual problems.
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Appendix A

A.1. Ranking fuzzy numbers and defuzzification

MCDM in a fuzzy environment requires the comparison of fuzzy
numbers. The problem of comparing fuzzy numbers has been stud-
ied and appears to be an important and difficult problem. A fuzzy
number is characterized by its shape, spread, height, and relative
location on the x-axis. A good ranking method would be one that
takes into account all these factors. Since a fuzzy number repre-
sents many possible real numbers that have different membership
values, one will face a difficult problem of comparing two different
fuzzy numbers. Over 20 ranking methods for fuzzy numbers have
been proposed, but none of these existing methods is perfect (Chen
& Hwang, 1992; Detyniecki & Yager, 2000; Gu & Zhu, 2006; Lai &
Hwang, 1994; Lee & Li, 1988; Yager, 1981). In general, two ap-
proaches are used: (1) comparison of fuzzy numbers and (2) con-
verting fuzzy number into crisp score (deffuzzification).

The fuzzy VIKOR algorithm in step (vi) uses a ranking
procedure with consistent results providing complete ranking
only if fuzzy numbers have separated membership functions
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(no cross-overlapping). If there is cross-overlapping, this proce-
dure does not provide complete ordering. Fuzzy operator MIN
is used for ranking and to confirm ranking (domination). An
alternative Aj is better ranked than Ak if eQ j ¼ MIN eQ j; eQ k

� �
, or

Q l
j 6 Q l

k; Q m
j < Qm

k ; Q r
j 6 Q r

k.
The fuzzy VIKOR algorithm uses a defuzzification procedure in

step (vii) to convert fuzzy numbers into real (crisp) numbers. Then,
in step (viii), the ranking of fuzzy numbers is performed through
the comparison of the corresponding real numbers.

The kth weighted mean method has been developed to be used
as defuzzification procedure in this paper. It uses membership
function to the power of k as a weighted factor. The crisp value
CrispðeNÞ for the triangular fuzzy number eN ¼ ðl;m; rÞ is determined
by the following formula

CrispðeNÞ ¼ Z r

l
xlkðxÞdx

�Z r

l
lkðxÞdx

Integrating the integrals the following formula is obtained:

CrispðeNÞ ¼ ðkmþ lþ rÞ=ðkþ 2Þ

or

C ¼ mþ ðsr � slÞ=ðkþ 2Þ

and

lðCÞ ¼
kþ1
kþ2þ

sr
ðkþ2Þsl

; C 6 m
kþ1
kþ2þ

sl
ðkþ2Þsr

; C P m

(

where C ¼ Crisp eN� �
; sl ¼ m� l and sr = r �m are left and right sup-

port (spread), respectively.
The parameter (power) k has the impact on defuzzification re-

sult as follows:

k ¼ 1 : C ¼ ðmþ lþ rÞ=3 or C ¼ mþ ðsr � slÞ=3 and lðCÞP 2=3

Increasing k (k = 2,3, . . .): C moves toward m (core) and membership
l(C) increases; for example, for k = 4: C = (m + (sr � sl)/6); and,
limk?1C(k) = m, limk?1l(C,k) = 1. The Centroid (Center-of-gravity)
method, which provides a crisp value based on the center-of-gravity
of the fuzzy set could be considered as a special case for k = 1. With-
in multicriteria decision making, k P 4 could be preferred by a ‘‘risk
aversion’’ decision maker (increasing membership l(C)), this is
‘‘pro-core’’ defuzzification. A ‘‘gambler’’ decision maker could have
different preference (Yu, 1990). A general suggestion could be to
use one of the values {2, 3, 4} for power k, and the value of power
k should be the same for defuzzifying all fuzzy numbers within a
study.

The fuzzy VIKOR algorithm in step (vii) uses the 2nd weighted
mean as a practical defuzzification tool for converting a fuzzy num-
ber into crisp number. A weighted factor include the membership
function l(x) that denotes the degree of truth that the fuzzy value
is equal to x within the real interval [l, r]. The greater the value of
l(x), the higher the confidence in the value of x. The wider the sup-
port of the membership function, the higher the fuzziness (impre-
ciseness, uncertainty).

Appendix B

B.1. Operations on triangular fuzzy numbers

To express an imprecise value, as ‘‘about m’’ (‘‘approximately
m’’), the triangular fuzzy number (TFN) eN ¼ ðl;m; rÞ is used, associ-
ated with the membership triangular function defined as follows:
leN ðxÞ ¼
ðx� lÞ=ðm� lÞ; x 6 m
ðr � xÞ=ðr �mÞ; x P m

0; x R ½l; r


8><>:
The membership function l(x) denotes the degree of truth that

the fuzzy value is equal to x within the real interval [l, r]. The fuzzy
number eN has the core m with l(m) = 1 and the support [l,r].

The fuzzy VIKOR method has been developed applying mathe-
matical operations on TFNs defined as follows

Summation :
Pn
i¼1
� eNi ¼

Pn
i¼1

li;
Pn
i¼1

mi;
Pn
i¼1

ri

� �
Scalar summation : eN � K ¼ ðlþ K;mþ K; r þ KÞ
Subtraction : eN1 � eN2 ¼ ðl1 � r2;m1 �m2; r1 � l2Þ
Scalar subtraction : eN � K ¼ ðl� K;m� K; r � KÞ
Scalar multiplication : K 	 eN ¼ ðK 	 l;K 	m;K 	 rÞ;

for K P 0
Multiplication : eN1 � eN2 ¼ ðl1 	 l2;m1 	m2; r1 	 r2Þ;

for l1 P 0ðpositiveeN1Þ
Scalar division : eN=K ¼ ðl=K;m=K; r=KÞ;

for K > 0
Operator MAX : MAX

i
eNi ¼ ðmax

i
li;max

i
mi;max

i
riÞ

Operator MIN : MIN
i
eNi ¼ ðmin

i
li;min

i
mi;min

i
riÞ

The result of summation or subtraction on TFNs is TFN. The re-
sult of fuzzy multiplication is considered as an approximation of
TFN, especially when applying a-cut (Giachetti & Young, 1997a).
The result of MAX eN1; eN2

� �
(or MIN) is not a TFN only if eN1 andeN2 are overlapping in two cases: 1. l1 < l2, m1 – m2, r1 > r2; and 2.

l1 < l2, m1 > m2, r1 < r2; in these cases TFN is used as an approxima-
tion. Definitions and characteristics of the above operations are
discussed in several articles (Chiu & Wang, 2002; Giachetti &
Young, 1997b; Klir & Yuan, 1995).
References

Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment.
Management Science, 17, 141–164.

Chang, C.-L., & Hsu, C.-H. (2009). Multi-criteria analysis via the VIKOR method for
prioritizing land-use restraint strategies in the Tseng–Wen reservoir watershed.
Journal of Environmental Management, 90(11), 3226–3230.

Chen, L. S., & Cheng, C. H. (2005). Selecting IS personnel use fuzzy GDSS based on
metric distance method. European Journal of Operational Research, 160(3),
803–820.

Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making: Methods
and applications. Berlin: Springer-Verlag.

Chiu, C. H., & Wang, W. J. (2002). A simple computation of MIN and MAX operations
for fuzzy numbers. Fuzzy Sets and Systems, 126, 273–276.

Detyniecki, M., & Yager, R. (2000). Ranking fuzzy numbers using a-weighted
valuations. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 8(5), 573–591.

Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin
development. Water Resources Research, 16(1), 14–20.

Escobar, M. T., & Moreno-Jimenez, J. M. (2002). A linkage between the analytic
hierarchy process and the compromise programming models. Omega, 30,
359–365.

Giachetti, R. E., & Young, R. E. (1997a). Analysis of the error in the standard
approximation used for multiplication of triangular and trapezoidal fuzzy
numbers and the development of a new approximation. Fuzzy Sets and Systems,
91, 1–13.

Giachetti, R. E., & Young, R. E. (1997b). A parametric representation of fuzzy
numbers and their arithmetic operators. Fuzzy Sets and Systems, 91, 185–202.

Gu, X., & Zhu, Q. (2006). Fuzzy multi-attribute decision-making method based on
eigenvector of fuzzy attribute evaluation space. Decision Support Systems, 41,
400–410.

Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications.
Englewood Cliffs: Prentice-Hall.

Lai, Y. J., & Hwang, C. L. (1994). Fuzzy multiple objective decision making: Methods and
applications. Berlin: Springer-Verlag.



12990 S. Opricovic / Expert Systems with Applications 38 (2011) 12983–12990
Lee, E. S., & Li, R. L. (1988). Comparison of fuzzy numbers based on the probability
measure of fuzzy events. Computers and Mathematics with Applications, 15,
887–896.

Liu, D., & Stewart, T. J. (2004). Integrated object-oriented framework for MCDM and
DSS modeling. Decision Support Systems, 38, 421–434.

Opricovic, S. (1998). Multicriteria optimization of civil engineering systems (in Serbian,
Visekriterijumska optimizacija sistema u gradjevinarstvu). Belgrade: Faculty of
Civil Engineering.

Opricovic, S. (2007). A fuzzy compromise solution for multicriteria problems.
International Journal of Uncertainty, Fuzziness and Knowledge-based Systems,
15(3), 363–380.

Opricovic, S. (2009). A compromise solution in water resources planning. Water
Resources Management, 23(8), 1549–1561.

Opricovic, S., & Tzeng, G. H. (2003). Defuzzification within a multicriteria decision
model. International Journal of Uncertainty, Fuzziness And Knowledge-Based
Systems, 11(5), 635–652.

Opricovic, S., & Tzeng, G. H. (2004). The compromise solution by MCDM methods: A
comparative analysis of VIKOR and TOPSIS. European Journal of Operational
Research, 156(2), 445–455.

Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with
outranking methods. European Journal of Operational Research, 178(2),
514–529.

Ou Yang, Y. P., Shieh, H. M., & Tzeng, G. H. (2009). A VIKOR technique with
applications based on DEMATEL and ANP. Communications in Computer and
Information Science, 35, 780–788.

Perny, P., & Roubens, M. (1998). Fuzzy preference modeling. In R. Slowinski (Ed.),
Fuzzy Sets in Decision Analysis, Operations Research and Statistics (pp. 3–30).
Boston: Kluwer Academic Publishers.

Ribeiro, R. A. (1996). Fuzzy multiple attribute decision making: A review and new
preference elicitation techniques. Fuzzy Sets and Systems, 78, 155–181.

Sanayei, A., Farid Mousavi, S., & Yazdankhah, A. (2010). Group decision making
process for supplier selection with VIKOR under fuzzy environment. Expert
Systems with Applications, 37(1), 24–30.
Tong, L., Chen, C. C., & Wang, C. H. (2007). Optimization of multi-response processes
using the VIKOR method. International Journal of Advanced Manufacturing
Technology, 31(11–12), 1049–1057.

Triantaphyllou, E. (2000). Multi-criteria decision making methods: A comparative
study. Dordrecht: Kluwer Academic Publishers.

Vanegas, L. V., & Labib, A. W. (2001). Application of new fuzzy-weighted average
(NFWA) method to engineering design evaluation. International Journal of
Production Research, 39(6), 1147–1162.

Vincke, P. (1992). Multicriteria decision-aid. New York: John Wiley & Sons.
Von Altrock, C. (1995). Fuzzy logic & neuro-fuzzy applications explained. Englewood

Cliffs: Prentice Hall.
Wu, H. Y., Chen, J. K., & Chen, I. S. (2010). Innovation capital indicator assessment of

Taiwanese Universities: A hybrid fuzzy model application. Expert Systems with
Applications, 37, 1635–1642.

Wu, H. Y., Tzeng, G. H., & Chen, Y. H. (2009). A fuzzy MCDM approach for evaluating
banking performance based on balanced scorecard. Expert Systems with
Applications, 36, 10135–10147.

Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval.
Information Sciences, 24, 143–161.

Yager, R. R., & Filev, D. P. (1994). Essentials of fuzzy modeling and control. New York:
John Wiley & Sons, Inc.

Yu, P. L. (1973). A class of solutions for group decision problems. Management
Science, 19(8), 936–946.

Yu, P. L. (1990). Forming winning strategies: An integrated theory of habitual domains.
Heidelberg: Springer-Verlag.

Zadeh, L. A. (1987). The concept of a linguistic variable and its application
to approximate reasoning. In R. R. Yager et al. (Eds.), Fuzzy sets and
applications: Selected papers by L.A. Zadeh (pp. 219–269). New York: John
Wiley & Sons.

Zimmermann, H. J. (1987). Fuzzy sets, decision making, and expert systems. Boston:
Kluwer Academic Publishers.

Zimmermann, H. J. (1991). Fuzzy set theory and its applications. Boston: Kluwer
Academic Publishers.


	Fuzzy VIKOR with an application to water resources planning
	1 Introduction
	2 The fuzzy VIKOR method
	3 Fuzzy VIKOR application to water resources planning
	4 Some comparisons
	4.1 Non-fuzzy model
	4.2 Predefuzzification
	4.3 Ranking fuzzy numbers
	4.4 NFWA and fuzzy VIKOR
	4.5 Fuzzy AHP and fuzzy VIKOR
	4.6 “Distance” method and fuzzy VIKOR

	5 Conclusions
	Acknowledgments
	Appendix A 
	A.1 Ranking fuzzy numbers and defuzzification

	Appendix B 
	B.1 Operations on triangular fuzzy numbers

	References


