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a b s t r a c t

The transportation network design problem (NDP) with multiple objectives and demand uncertainty was
originally formulated as a spectrum of stochastic multi-objective programming models in a bi-level
programming framework. Solving these stochastic multi-objective NDP (SMONDP) models directly
requires generating a family of optimal solutions known as the Pareto-optimal set. For practical imple-
mentation, only a good solution that meets the goals of different stakeholders is required. In view of this,
we adopt a goal programming (GP) approach to solve the SMONDP models. The GP approach explicitly
considers the user-defined goals and priority structure among the multiple objectives in the NDP decision
process. Considering different modeling purposes, we provide three stochastic GP models with different
philosophies to model planners’ NDP decision under demand uncertainty, i.e., the expected value GP
model, chance-constrained GP model, and dependent-chance GP model. Meanwhile, a unified
simulation-based genetic algorithm (SGA) solution procedure is developed to solve all three stochastic
GP models. Numerical examples are also presented to illustrate the practicability of the GP approach
in solving the SMONDP models as well as the robustness of the SGA solution procedure.

Published by Elsevier Ltd.
1. Introduction

The network design problem (NDP) is to optimize the improve-
ment of a transportation network such that a set of system-wide
objectives are achieved. Due to its practical significance and theo-
retical value, modeling, algorithmic development, and application
on this subject have been extensively investigated by transporta-
tion practitioners and researchers in the past few decades. For a
comprehensive review, interested reader can refer to Bell and Iida
(1997) and Yang and Bell (1998).

The NDP decision usually involves a benefit game among differ-
ent stakeholders. Each stakeholder has their own requirement on
the NDP decision. For example, the network planner aims to de-
velop a network improvement strategy to minimize congestion
or improve efficiency of the whole transportation system; the envi-
ronmentalists aim to protect the environment (e.g., minimizing
vehicular emission); and the network users aim to improve their
travel times as a result of network improvement (e.g., minimizing
spatial inequity). Thus, the NDP is inherently a multi-objective
decision process. Unfortunately, some of these objectives are con-
flicting. That is, increasing the value of one objective may reduce
Ltd.
the value attained for one or more of the other objectives. These
conflicts are particularly obvious in the transportation NDP.

Besides the need of considering multiple objectives, the NDP
decision has to be made under uncertainty where certain inputs
are not known accurately. One of the primary uncertain inputs is
the forecast travel demand. It is quite difficult (or nearly impossi-
ble) to accurately predict the origin-destination (O-D) trip table
twenty years in the future since it is affected by many factors such
as economic growth, land-use pattern, and socioeconomic charac-
teristics. For the NDP under uncertainty, several models have re-
cently been proposed in the literature to tackle the uncertainty
issue, e.g., the expected value model (Chen & Yang, 2004), mean–
variance model (Chen, Subprasom, & Ji, 2003), chance-constrained
model (Lo & Tung, 2003), probability model (Chen, Chootinan, &
Wong, 2006a; Chootinan, Wong, & Chen, 2005; Yim, Wong, Chen,
Wong, & Lam, 2011), min–max model (Yin, Madanat, & Lu, 2009),
and alpha reliable model (Chen, Kim, Zhou, & Chootinan, 2007).
Some of these models also explicitly deal with multiple objectives
(e.g., Chen, Subprasom, & Ji, 2006b, 2010). For a more detailed re-
view on the NDP models under uncertainty, please refer to Chen,
Kim, Lee, and Choi (2009), Chen, Kim, Lee, and Kim (2010) and
Chen et al. (2011) and the references therein.

To solve this type of multi-objective optimization problems,
there exist two main schemes: generating scheme and prefer-
ence-based scheme (Gen & Cheng, 2000). The generating scheme
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aims to determine the whole set of Pareto-optimal solutions or its
approximation (e.g., vector evaluation method, Pareto ranking
method, and random weighting method). Its focus is on generating
the Pareto-optimal solution set rather than determining a good
solution for practical implementation. Due to the complexity and
intensive computation of finding the Pareto-optimal set, this
scheme may not be suitable for practical applications. In addition,
a selection methodology is needed to select a good solution for
implementation. For problems with three or more objectives,
selecting a good solution among the identified Pareto-optimal
solutions is not trivial.

In contrast, the preference-based scheme attempts to deter-
mine a preferred or compromised solution within the tradeoff
among the multiple objectives. Weighting method and goal pro-
gramming method are two widely used methods for converting
the multiple objectives into a single objective via a preference
structure provided by the decision makers (DMs). The weighting
method generally applies a set of weights provided by the DMs
to aggregate the multiple objectives into a single objective. It is
simple to implement. However, it is generally difficult to quantita-
tively measure the proportional importance among the objectives.
The goal programming (GP) method, on the other hand, explores a
good solution that can realize as many of the DMs- specified goals
as possible. The GP method has several good features from the
viewpoint of practical implementation: (1) it can incorporate
user-defined priorities about the multiple objectives; (2) in prac-
tice, in order to facilitate implementation and evaluation, DMs usu-
ally only need to set a target level (or goal) for each objective
instead of pursuing for a theoretically optimal solution. The GP
method mimics this decision process with the aim to determine
a good solution that best satisfies the set of user-specified goals;
and (3) it gives a single solution that can be readily used for
implementation.

In view of these good features, this study adopts the GP ap-
proach to solve the NDP with multiple objectives and demand
uncertainty. Without loss of generality, we only consider the
continuous capacity enhancement of the current road network
in the NDP. The stochastic multi-objective NDP (SMONDP) is for-
mulated as three GP models with different modeling philoso-
phies: the expected value GP (EVGP) model, chance-constrained
GP (CCGP) model, and dependent-chance GP (DCGP) model. Even
with different modeling purposes, the three GP models are capa-
ble of finding a good NDP solution for implementation by explic-
itly considering the DMs-specified goals and priority structure
among the objectives. Mathematically speaking, the three GP
models belong to the stochastic bi-level programming (SBLP)
problem, which has several complex and non-tractable character-
istics such as the non-convexity, non-differentiability, and
stochasticity. To solve all three GP models in the SBLP frame-
work, we develop a unified simulation-based genetic algorithm
(SGA) procedure.

The remainder of the paper is organized as follows. In the next
section, we provide mathematical formulations for the three GP
models. The SGA solution procedure is presented in Section 3. In
Section 4, some numerical examples are provided to illustrate
the robustness of the solution procedure. Finally, some concluding
remarks and future research directions are given in Section 5.
2. Mathematical models

In this section, we present three GP models for the SMONDP.
Notation is provided first, followed by three objective measures
used in this study, a brief description of the SBLP framework, a
spectrum of stochastic programming models, and three GP
formulations.
2.1. Notation

Notation used throughout this paper is listed as follows and all
boldface letters denote the corresponding vectors.
W
 Set of O-D pairs

A
 Set of links

A
 Set of candidate links for capacity enhancement,

A # A

Rw
 Set of routes connecting O-D pair w 2W

va; ta; t0

a

Flow, travel time, and free-flow travel time on link
a 2 A, respectively
Ca, La
 Capacity and length of link a 2 A, respectively

ua
 Capacity enhancement on link a 2 A (decision

variable)

umax

a
 Upper bound of capacity enhancement on link a 2 A

ga(�)
 Construction cost for capacity enhancement on link

a 2 A

B
 Total construction budget available for capacity

enhancement

ea(�)
 Amount of carbon monoxide pollution from link

a 2 A

f w
r
 Flow on route r 2 Rw between O-D pair w 2W
Qw
 Random travel demand between O-D pair w 2W

pw
 Minimum travel time between O-D pair w 2W

dw

ar
 Link-route incidence indicator. dw
ar ¼ 1, if route r

between O-D pair w uses link a; and dw
ar ¼ 0,

otherwise
2.2. Objective measures

Without loss of generality, we consider three objective mea-
sures that represent efficiency, environment, and equity in the
SMONDP.

2.2.1. Efficiency
Total travel time has often been adopted as an efficiency mea-

sure in the NDP (Yang & Bell, 1998). In this study, we also adopt
it to quantify the network efficiency.

F1ðvðu;Q Þ;uÞ ¼
X
a2A

taðvaðu;Q Þ;uaÞvaðu;Q Þ; ð1Þ

where ua is the capacity enhancement on link a, and u is its vector
form; va(u,Q) is the flow on link a, and v(u,Q) is its vector form;
ta(va(u,Q),ua) is the travel time on link a. Since both ta(va(u,Q),ua)
and va(u,Q) depend on the random travel demand vector Q, the
total travel time F1(v(u,Q),Q) is thus a random variable.

2.2.2. Environment
For simplicity, we consider the emission effect only since it is

the major part of the vehicle-based pollution contributing to the
deterioration of the environment. However, the model is capable
of accounting for other pollutants (e.g., noise). For vehicular emis-
sion, carbon monoxide (CO) is considered as an important indicator
for the level of atmospheric pollution generated by vehicular traffic
(e.g., Alexopoulos, Assimacopoulos, & Mitsoulis, 1993). Again for
simplicity, we use CO as an illustration to model vehicular emis-
sion as an environment objective:

F2ðvðu;Q Þ;uÞ ¼
X
a2A

eaðvaðu;Q Þ;uaÞvaðu;Q Þ; ð2Þ

where ea(va(u,Q),ua) denotes the amount of CO pollution from link
a. Since both ea(va(u,Q),ua) and va(u,Q) depend on the random
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demand Q, the total network emission F2(v(u,Q),Q) is also a random
variable. In this study, we adopt the nonlinear macroscopic model
of Wallace, Courage, Hadi, and Gan (1998) to estimate the link-
based vehicular CO emission:

eaðvaðu;Q Þ;uaÞ ¼ 0:2038 � taðvaðu;Q Þ;uaÞ

� exp
0:7962 � La

taðvaðu;Q Þ;uaÞ

� �
; ð3Þ

where La is the length (in kilometers) of link a; ta(va(u,Q),ua) and
ea(va(u,Q),ua) are respectively measured in minutes and grams
per hour.

2.2.3. Equity
Spatial equity in the NDP was first addressed by Meng and Yang

(2002). In their study, spatial equity is measured by the maximum
ratio of O-D travel times after and before capacity enhancement:

F3ðvðu;Q Þ;uÞ ¼maxw2W
pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

� �
; ð4Þ

where pw(u,v(u,Q)) and pw(0,v(0,Q)) are the minimum travel times
between O-D pair w 2W after and before capacity enhancement,
respectively. The minimum O-D travel time is a random variable
since it depends on the random demand Q. Therefore, the maximum
ratio F3(v(u,Q),Q) among all O-D pairs is also a random variable.

Before presenting the GP formulations, we briefly describe the
stochastic bi-level programming (SBLP) framework for modeling
the transportation NDP.

2.3. Stochastic bi-level programming framework

Due to the consideration of travelers’ route choice behavior, the
NDP decision process is usually modeled as a bi-level structure or a
non-corporative game between two players. The travelers (or the
follower) choose the cheapest routes to travel, while the planners
(or the leader) aim to make efficient use of limited resources to
achieve the stated objectives while considering travelers’ route
choice behavior. In other words, in order to evaluate a design
scheme, the planners need to know how travelers response to this
scheme (i.e., the aggregation of travelers’ route choice decisions in
terms of traffic flow patterns). A general formulation of the SBLP
can be illustrated in Fig. 1, where the upper-level and lower-level
Fig. 1. Illustration of the stochastic b

Table 1
Three main modeling philosophies in stochastic programming.

Modeling philosophy Formulation

Expected value model min E[Fi(u,Q)]
Chance- constrained

model
min Fi
s:t: PrðFiðu;Q Þ 6 FiÞP ai

(ai is the user-specified
confidence level)

Dependent-chance model max PrðFiðu;Q Þ 6 FiÞ
(Fi is the user-specified
threshold value)
subprograms model the decisions of planners and travelers,
respectively.

Since there is no explicit relationship between the upper-level
and lower-level decision variables (i.e., u and v), the BLP problem
is usually quite difficult to solve. Mathematically speaking, it is
generally nonlinear and non-convex. In this study, how to tackle
the stochastic objective measures due to demand uncertainty also
adds more complexity to the NDP model.
2.4. A spectrum of stochastic programming models

When making decisions under uncertainty, there are three main
modeling philosophies: expected value model (EVM), chance-con-
strained model (CCM), and dependent-chance model (DCM). The
EVM aims to optimize the expected performance of a stochastic
decision system while ignoring its variability. The CCM, originally
developed by Charnes and Cooper (1959), models a stochastic deci-
sion system with the assumption that the chance constraints will
hold at least a times, where a is the user-specified confidence level
provided as an appropriate safety margin. This model focuses on the
system’s ability to meet the chance constraint with certain reliabil-
ity under uncertainty. The DCM maximizes the probability (or
chance) of satisfying certain events under uncertainty. Their math-
ematical formulations and meanings are summarized in Table 1. For
more details on the above three modeling philosophies, interested
readers may refer to Liu (2009). Note that in the context of trans-
portation, Chen et al. (2009) adopted this spectrum to deal with
the uncertainty issue in the single-objective NDP, while (Chen
et al., 2010) extended these stochastic NDP models to consider mul-
tiple objectives to find an approximate Pareto-optimal solution set.
2.5. Goal programming formulations

Solving the SMONDP directly requires generating a Pareto-opti-
mal solution set. This is not a trivial problem. In addition, a selection
methodology based on secondary objectives or user preferences is
needed to select a single good solution among the identified Pare-
to-optimal solutions for practical implementation. In view of these
issues, we formulate the SMONDP as a goal programming (GP)
problem by using the user-defined priority structure and target
value (or goal) for each objective. Specifically, the GP model deter-
i-level programming framework.

Remark

Minimize the expected value of the objective measure in consideration
Minimize the threshold value subject to the chance constraint that
guarantees the probability of the objective measure less than or equal to
the threshold value is not less than the user-specified probability

Maximize the probability that the objective measure does not exceed the
user-specified threshold value
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mines a good solution that best satisfies the set of goals. The limited
budget is allocated in a sequential manner to minimize the devia-
tions from all target values according to the priority structure.
The relationship among the actual objective value f(x), target value
b, and deviations is shown in Fig. 2. The positive and negative devi-
ations (d+ and d�) represent the over-achievement and under-
achievement of the objective value with respect to the target value,
respectively.

In the following, three GP formulations using the modeling phi-
losophies given in Table 1 are presented, i.e., the expected value GP
(EVGP) model, chance-constrained GP (CCGP) model, and depen-
dent-chance GP (DCGP) model.

2.5.1. Expected value goal programming model
For demonstration purpose, we consider the following user-

specified priority structure among the three objectives. Other pri-
ority structures can also be used in this modeling framework. In
general, the priority structure should be specified according to
the transportation policy of the city/region in question, and it
should be updated periodically to reflect new challenges in differ-
ent time periods.

Priority 1: For the efficiency objective, the expected total travel
time (TTT) should not exceed its target value F1. Then, we have
the following efficiency goal constraint:
Fig
E
X
a2A

taðvaðu;Q Þ; uaÞvaðu;Q Þ
" #

þ d�1 � dþ1 ¼ F1; ð5Þ
where the positive deviation between the expected TTT and the tar-
get value, dþ1 ¼ E

P
a2Ataðvaðu;Q Þ;uaÞvaðu;Q Þ

� �
� F1

� �
_ 0, is to be

minimized. Note that b _ 0 denotes the maximum between b and 0.
Priority 2: For the environment objective, the expected total CO
emission should not exceed its target value F2. Then, we have
the following environment goal constraint:
E
X
a2A

eaðvaðu;Q Þ;uaÞvaðu;Q Þ
" #

þ d�2 � dþ2 ¼ F2; ð6Þ
where dþ2 ¼ E
P

a2Aeaðvaðu;Q Þ; uaÞvaðu;Q Þ
� �

� F2
� �

_ 0 is to be
minimized.

Priority 3: For the spatial equity objective, the expected maxi-
mum ratio of the minimum O-D travel times after and before
capacity enhancement should not be larger than its target value
F3. Then, we have the following equity goal constraint:
E max
w2W

pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

� �� 	
þ d�3 � dþ3 ¼ F3; ð7Þ
where dþ3 ¼ E max
w2W

pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

n o� 	
� F3

� 	
_ 0 is to be minimized.

Under the SBLP framework presented in Section 2.3, we can for-
mulate the SMONDP as the following EVGP model:
. 2. Objective value, target value, and deviations in goal programming.
EVGP

lexminu dþ1 ; dþ2 ; dþ3
� �

subject to :

E
P
a2A

taðvaðu;Q Þ;uaÞvaðu;Q Þ
� 	

þd�1 �dþ1 ¼ F1

E
P
a2A

eaðvaðu;Q Þ;uaÞvaðu;Q Þ
� 	

þd�2 �dþ2 ¼ F2

E maxw2W
pw ðu;vðu;Q ÞÞ
pw ð0;vð0;Q ÞÞ

n oh i
þd�3 �dþ3 ¼ F3P

a2A

gðuaÞ6B

06ua 6umax
a ; 8a2A

dþi P 0; d�i P 0; i¼1;2;3
vðu;Q Þ solves the lower-level subprogram for each realization of Q

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

;

ð8Þ

minv
P
a2A

R va

0 taðx;uaÞdx

subject to :P
r2RW

f w
r ¼ qw; 8w 2W

va ¼
P

w2W

P
r2Rw

f w
r dw

ar ; 8a 2 A

f w
r P 0; 8r 2 Rw; w 2W

8>>>>>>>>><
>>>>>>>>>:

;

where lexmin represents lexicographically minimizing the deviation
vector d+ between the expected objective values and the target val-
ues; A # A is the set of candidate links for capacity enhancement;
ga(ua) is the construction cost function of link a; B is the total con-
struction budget available; umax

a is the upper bound for capacity
enhancement on link a. In the lower-level subprogram, qw is a reali-
zation of the random demand Qw between O-D pair w; f w

r is the flow
on route r between O-D pair w; dw

ar is the link-route incidence indica-
tor: dw

ar ¼ 1 if route r of O-D pair w uses link a, and 0 otherwise.
The first three constraints are the goal constraints with respect

to the efficiency, environment, and equity requirements. The
fourth constraint is the total construction budgetary constraint.
The fifth constraint sets the upper bound for the candidate link
capacity enhancement. The sixth constraint is the non-negativity
conditions on the deviations. The lower-level subprogram is to
model travelers’ response to a certain capacity enhancement u.
For each realization q, va(u,q) is the equilibrium flow on link a,
which is obtained by solving the lower-level subprogram as a stan-
dard user equilibrium (UE) traffic assignment problem (Sheffi,
1985). After solving the lower-level subprogram for all realizations
of the random demand, we can collect the realizations of the net-
work-wide random objective measures. These realizations form
approximate distributions of the objective measures and thus can
be used to calculate the deviations.

The GP model first allocates the limited construction budget to
realize the goal in Priority 1 by minimizing its corresponding devi-
ation. If it is achieved, the remaining budget will be used to realize
the goal in Priority 2 as much as possible while keeping the achieve-
ment of the first goal intact. This sequential process continues until
all three goals are realized as much as possible within the budget.

2.5.2. Chance-constrained goal programming model
We consider the following priority structure in the CCGP model.

Priority 1: For the efficiency objective, the total travel time
(TTT) should not exceed its target value F1 at a probability of
a1 (e.g., 0.95).
Pr
X
a2A

taðvaðu;Q Þ;uaÞvaðu;Q Þ � F1 6 dþ1

 !
P a1; ð9Þ
where the positive deviation between the a1-percentile of TTT and
the target value, dþ1 ¼ min djPr

P
a2Ataðvaðu;Q Þ;uaÞvaðu;Q Þ�


��
F1 6 dÞP a1g� _ 0, is to be minimized.
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Priority 2: For the environment objective, the total CO emission
should not exceed its target value F2 at a probability of a2 (e.g.,
0.85).

Pr
X
a2A

eaðvaðu;Q Þ;uaÞvaðu;Q Þ � F2 6 dþ2

 !
P a2; ð10Þ

where dþ2 ¼ min djPr
P

a2Aeaðvaðu;Q Þ; uaÞvaðu;Q Þ � F2 6 d

 ���

P a2g� _ 0 is to be minimized.
Priority 3: For the equity objective, the maximum ratio of the
minimum O-D travel times after and before capacity enhance-
ment should not be larger than its target value F3 at a probabil-
ity of a3 (e.g., 0.75).
Pr maxw2W
pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

� �
� F3 6 dþ3

� �
P a3; ð11Þ
where dþ3 ¼ min djPr maxw2W
pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

n o
� F3 6 d


 �
P a3

n oh i
_ 0

is to be minimized.

Based on the above priority structure and goal setting, we have
the following lexicographic optimization problem:

CCGP

lexminu dþ1 ; d
þ
2 ; d

þ
3

� �
subject to :

Pr
P
a2A

taðvaðu;Q Þ; uaÞvaðu;Q Þ � F1 6 dþ1

� �
P a1

Pr
P
a2A

eaðvaðu;Q Þ; uaÞvaðu;Q Þ � F2 6 dþ2

� �
P a2

Pr maxw2W
pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

n o
� F3 6 dþ3


 �
P a3P

a2A

gðuaÞ 6 B

0 6 ua 6 umax
a ; 8a 2 A

dþi P 0; i ¼ 1;2;3

vðu;Q Þ solves the lower-level subprogram

for each realization of Q

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

;

ð12Þ

where the lower-level subprogram is the same as that in the EVGP
model (8).

2.5.3. Dependent-chance goal programming model
Similarly, we consider the following priority structure in the

DCGP model:

Priority 1: For the efficiency objective, the probability of the
total travel time less than its threshold value F1 should achieve
a1 (e.g., 0.95). !
Pr
X
a2A

taðvaðu;Q Þ;uaÞvaðu;Q Þ 6 F1 þ d�1 � dþ1 ¼ a1; ð13Þ
where the negative deviation between the target probability
(a1) and the actually achieved probability,
d�1 ¼ a1 � Pr

P
a2Ataðvaðu;Q Þ;


�
uaÞvaðu;Q Þ 6 F1Þ� _ 0, is to be

minimized.
Priority 2: For the environment objective, the probability of the
total CO emission less than its threshold value F2 should
achieve a2 (e.g., 0.85).
Pr
X
a2A

eaðvaðu;Q Þ;uaÞvaðu;Q Þ 6 F2

 !
þ d�2 � dþ2 ¼ a2; ð14Þ
where d�2 ¼ a2 � Pr
P

a2Aeaðvaðu;Q Þ;uaÞvaðu;Q Þ 6 F2

 �� �

_ 0 is to be
minimized.
Priority 3: For the equity objective, the probability that the
maximum ratio of the minimum O-D travel times after and
before capacity enhancement is less than its threshold value
F3, should achieve a3 (e.g., 0.75).

Pr maxw2W
pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

� �
6 F3

� �
þ d�3 � dþ3 ¼ a3; ð15Þ

where d�3 ¼ a3 � Pr maxw2W
pwðu;vðu;QÞÞ
pwð0;vð0;Q ÞÞ

n o
6 F3


 �h i
_ 0 is to be

minimized.

The DCGP model can then be formulated as the lexicographic
optimization problem below:

DCGP

lexminu d�1 ; d�2 ; d�3
� �

subject to :

Pr
P
a2A

taðvaðu;Q Þ;uaÞvaðu;Q Þ 6 F1

� �
þ d�1 � dþ1 ¼ a1

Pr
P
a2A

eaðvaðu;Q Þ;uaÞvaðu;Q Þ 6 F2

� �
þ d�2 � dþ2 ¼ a2

Pr maxw2W
pwðu;vðu;Q ÞÞ
pwð0;vð0;Q ÞÞ

n o
6 F3


 �
þ d�3 � dþ3 ¼ a3P

a2A

gðuaÞ 6 B

0 6 ua 6 umax
a ; 8a 2 A

dþi P 0; d�i P 0; i ¼ 1;2;3

vðu;Q Þ solves the lower-level subprogram

for each realization of Q

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð16Þ

where the lower-level subprogram is the same as that in the EVGP
model (8).

Remark 1. The above three GP models belong to the BLP problem,
which has several complex and non-tractable characteristics such
as the nonlinear and non-convex constraint set. In addition, due to
demand uncertainty, we have three nonlinear and non-convex goal
constraints in each model, which further add complexity. To solve
the spectrum of GP models with different philosophies, Section 3
presents a unified simulation-based genetic algorithm (SGA)
solution procedure.
Remark 2. In each of the above three GP models, there is only one
type of modeling philosophy. However, the above three modeling
philosophies can be combined for different modeling purposes.
For example, we may use the EVM to mimic the requirement on
the efficiency, the CCM on the environment, and the DCM on the
spatial equity.
3. Solution procedure

3.1. Simulation-based genetic algorithm

Solving the BLPs with multiple goals under demand uncertainty
is generally a very difficult task. The complexity involves address-
ing three issues: (1) how to solve the BLP problem, (2) how to com-
pute the random objective measures, and (3) how to incorporate
the user-defined priority structure and goals. Evolutionary algo-
rithms, especially genetic algorithm (GA), have shown to be effec-
tive in solving this type of complex problems (e.g., Chen et al.,
2009, 2010; Xu, Wei, & Hu, 2009). In this study, we develop a uni-
fied simulation-based genetic algorithm (SGA) procedure shown in
Fig. 3 to solve all three GP models.



A. Chen, X. Xu / Expert Systems with Applications 39 (2012) 4160–4170 4165
In this procedure, there are five main modules, i.e., simulation,
traffic assignment, satisfaction evaluation, chromosome rearrang-
ing, and GA. Their functions are briefly described as follows:

� Simulation module is to generate realizations of the uncertain
demand according to a given distribution specification.
� For each demand realization, the traffic assignment module is

used to model travelers’ route choice behavior under a given
capacity enhancement. For simplicity, the well-known Frank–
Wolfe algorithm (Sheffi, 1985) is adopted here.
� Evaluation module is to evaluate the satisfaction degree of each

capacity enhancement (i.e., each chromosome) with respect to
the goals and priority structure.
� Chromosome rearranging module uses the priority structure to

rank the chromosomes from good to bad for the subsequent GA
operations.
� GA module (including the reproduction, crossover, and muta-

tion operations) is to obtain better capacity enhancement
solutions.

In this study, the chromosomes are represented as a string of
real numbers with a length equal to the number of design variables
(i.e., candidate links for capacity enhancement). For the GA opera-
tions, we adopt the commonly used roulette wheel reproduction
operator, arithmetical crossover and mutation operators. In the fol-
lowing, we only highlight the special satisfaction function used in
Step 3, and the chromosome rearranging module in Step 4. We
should point out these two steps are different from those in the
single-objective (e.g., Chen & Yang, 2004; Chootinan et al., 2005)
and multi-objective (e.g., Chen et al., 2006b, 2010) problems. For
more details of the other steps in the SGA procedure, interested
readers may refer to Chen et al. (2006b, 2010) and Chootinan
et al. (2005).

3.2. Strategies of handling the priority structure

When solving the GP models, how to deal with the user-defined
priority structure (i.e., how to optimize the deviations in the order
N = 1

p = 1

S = 1

Simulation
module

S > Snsp

Report final solutions

N = N+1

p = p+1

S = S+1

No

YesTraffic 
assignment 

module

Step 1

Step 2

Step 6

• Define population size, PS
• Define maximum number of 

generations, Nm

• Define maximum number of
sample sizes, Snsp

• Generate initial population

Fig. 3. Flowchart of the simulation-based
of the priority structure) is a critical issue. There are two main han-
dling strategies in the GP literature: weighting (Taguchi, Ida, & Gen,
1997) and ranking (Gen & Cheng, 2000). The weighting strategy
assigns a weight for each deviation according to the relative impor-
tance among the multiple objectives and then converts the multi-
deviation optimization problem into a single-objective (i.e., a
combined deviation) optimization problem. This strategy is easy
to implement and can also decrease the computational burden.
However, it does not directly reflect the satisfaction degree of the
design scheme with respect to the priority structure. On the other
hand, the ranking strategy directly uses the priority structure to
rank the chromosomes from good to bad. This treatment has its
advantage in making preparation for the subsequent GA opera-
tions. However, this strategy does not provide a direct evaluation
(i.e., the quantity of the deviations) of the chromosomes. Consider-
ing the advantages and disadvantages of the two strategies, this
study combined them to provide a better strategy to handle the
priority structure. Specifically, we use the weighting strategy as a
satisfaction function to provide an explicit assessment of each
chromosome, and then use the ranking strategy to rearrange the
chromosomes in the current population before performing the
GA operations.

3.2.1. Satisfaction function
We formulate the normalized satisfaction function for the three

GP models as follows:

EVGP&CCGP satðuÞ ¼
X3

i¼1

Pi � 1� dþi
Fi

� � X3

i¼1

Pi

,
; ð17Þ

and

DCGP satðuÞ ¼
X3

i¼1

Pi � 1� d�i
ai

� � X3

i¼1

Pi

,
; ð18Þ

where Pi (P1 >> P2 >> P3) is the preemptive priority factor, express-
ing the relative importance among various goals according to the
priority structure; the relative deviation value dþi =Fi (or d�i =ai) is
used to eliminate the influence of different metrical units among
Evaluation 
module

p >PS

N > Nm

GA module
• Reproduction
• Crossover
• Mutation

Yes

No

No
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Step 3
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Chromosome 
rearranging 

module

Step 4

genetic algorithm (SGA) procedure.



Fig. 4. Illustration of the chromosome rearranging procedure.
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the different goals; and 1� dþi =Fi

 �

(or 1� d�i =ai

 �

) denotes the sat-
isfaction degree with respect to the ith goal. Hence, 0 6 sat(u) 6 1.
According to Taguchi et al. (1997), Pi can be calculated in the follow-
ing manner:

Pi ¼ 103�i; i ¼ 1;2;3: ð19Þ

We should point out the satisfaction functions in Eqs. (17) and (18)
are different from the weighted deviation in Taguchi et al. (1997) on
two aspects: (1) Eqs. (17) and (18) are used to explicitly evaluate
the normalized satisfaction degree (rather than the combined devi-
ation) with respect to both the priority structure and goals; and (2)
the influence of different metrical units among the different goals
has been eliminated in Eqs. (17) and (18).

3.2.2. Ranking strategy
After the evaluation step, we have obtained the deviations for

each capacity enhancement plan. Considering the special features
of the GP models, we use the priority structure to rearrange the
chromosomes by assigning a rank number for each chromosome
in the current population (Gen & Cheng, 2000). Note that Baykaso-
glu (2005) also used a similar method to accept or reject a neigh-
borhood solution in the simulated annealing algorithm. The
procedure for rearranging the chromosomes is described as follows
and also illustrated in Fig. 4.

Step 4 (Chromosome rearranging procedure)
Step 4.1: Sort the chromosomes based on the deviation

value in Priority 1 and assign a rank number ri

for each chromosome in the current generation.
Note that ri = 1 and ri = PS correspond to the best
and worst chromosomes, respectively.

Step 4.2: If there exist some chromosomes with the same
deviation value in Priority 1, record them in the
set X2 and go to Step 4.3; else, terminate the
rearranging step.

Step 4.3: Sort the chromosomes in the set X2 according to
the deviation value in Priority 2 and modify their
rank numbersri.

Step 4.4: If there still exist some chromosomes with the
same deviation value in Priority 2, record them
in the set X3 and go to Step 4.5; else, terminate
the rearranging step.

Step 4.5: Sort the chromosomes in the set X3 according to
the deviation value in Priority 3 and modify their
rank numbersri.

Step 4.6: If there still exist some chromosomes with the
same deviation value in Priority 3, sort them
randomly.

4. Numerical experiments

In this section, four numerical examples are provided to demon-
strate the practicability of the GP approach in solving the SMONDP
models as well as the robustness of the proposed solution proce-
dure. Specifically, the effects of sample size, population size, cross-
over probability, and mutation probability are examined for the
three GP models.

4.1. Network description and parameter setting

We use the well-known Nguyen-Dupuis (N-D) network (1984)
to conduct the set of numerical experiments. The N-D network,
shown in Fig. 5, consists of 13 nodes, 19 links, and 4 O-D pairs.
We adopt the standard BPR (Bureau of Public Road)-type link
performance function with parameters of 0.15 and 4. Link free-
flow travel time, current capacity, length, and upper bound for
capacity enhancement are listed in Table 2.

The link construction cost function for capacity enhancement is
gaðuaÞ ¼ 0:30 � ua � La;8a 2 A. All 19 links are selected as candidate
links for capacity enhancement and the available construction
budget is 1800. The random correlated travel demands are gener-
ated according to the method by Asakura and Kashiwadani (1991)
with scaling and correlation parameters of 0.60 and 0.80. The ex-
pected travel demands of O-D pairs (1,2), (1,3), (4,2), and (4,3)
are 400, 800, 600, and 200, respectively. For simplicity, we use
the same priority structure for all three GP models: the efficiency
objective is in Priority 1, environment in Priority 2, and equity in
Priority 3.

Parameters in the SGA procedure are set as follows:
Maximum number of generations (Nm)
 200

Population size (PS)
 16, 32

Sample size (Snsp)
 1000

Crossover probability (Pc)
 0.30, 0.50

Mutation probability (Pm)
 0.10, 0.20, 0.30

Length of chromosomes
 19
The maximum number of generations is selected from a trial-
and-error method. Our preliminary tests for this network indicate
that after 200 generations, the deviation improvement is quite
marginal. Thus, we select 200 as the maximum number of genera-
tions to conduct the following experiments.

4.2. Evaluation criteria

Before presenting the numerical results for the three GP models,
we describe the evaluation measures used to quantify how ‘good’
the SGA solution satisfies the user-defined priority structure and
goals. Here, two measures are used: (1) the number of goals that
are completely realized, and (2) the difference of the satisfaction
value with respect to the best case, which is defined as follows:

errorðuÞj ¼maxj satðuÞj � satðuÞj; ð20Þ



Table 2
Link characteristics.

Link From To Free-flow
travel time

Current
capacity

Length Upper bound for
enhancement

1 1 5 7 800 7 800
2 1 12 9 400 9 400
3 4 5 9 200 9 200
4 4 9 12 800 12 800
5 5 6 3 350 3 350
6 5 9 9 400 9 400
7 6 7 5 800 5 800
8 6 10 13 250 13 250
9 7 8 5 250 5 250

10 7 11 9 300 9 300
11 8 2 9 550 9 550
12 9 10 10 550 10 550
13 9 13 9 600 9 600
14 10 11 6 700 6 700
15 11 2 9 500 9 500
16 11 3 8 300 8 300
17 12 6 7 200 7 200
18 12 8 14 400 14 400
19 13 3 11 600 11 600

Fig. 5. Nguyen–Dupuis network.
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where sat(u)j represents the satisfaction value of the jth trial, and
maxj sat(u)j represents the maximal satisfaction value among all
trials. The first measure provides a simple evaluation on the total
number of achieved goals, while the second measure quantifies
the variation of achievement degrees among various trials.
4.3. Example 1: effect of sample sizes

Recall that a simulation module is embedded in the SGA proce-
dure to estimate the distributions of the three random objective
measures. In this example, we address the question of whether
Table 3
Effect of sample sizes on the network performance assessment.

Sample size 100 500

EVM Expected value 103791 978
RAE (%) 5.12 0.9

CCM 90%-percentile 162271 156
RAE (%) 2.47 1.0

DCM Pr (TTT 6 1.5E5) 0.870 0.8
RAE (%) 1.25 0.3
the specified number of samples is enough and appropriate for this
network. Without loss of generality, five different sample sizes
are compared in Table 3. For each sample size, we use the traffic
assignment results to evaluate the performance measures of the
three models before capacity expansion. Specifically, we calculate
the expected value of the random TTT in the EVM, the 90%-percen-
tile of the TTT in the CCM, and the probability of the TTT less than
1.5E5 in the DCM. The relative absolute error (RAE) denotes the rel-
ative absolute difference with respect to the sample size of 1000.
For example, the RAE for the sample size of 500 in the EVM is:
j97820–98740j/ 98740 = 0.93%. From Table 3, we can see that the
sample sizes larger than 1000 generally result in much smaller
RAEs for all three models. Thus, we will use the sample size of
1000 in Examples 2–4. We should mention that, in order to solve
large-scale problems, we must properly increase the sample size
in the simulation module such that we have a stable network per-
formance assessment.

4.4. Example 2: expected value goal programming model

Example 2 demonstrates the EVGP model. The target values for
the efficiency, environment, and equity objectives are set as
F1 ¼ 88000; F2 ¼ 33400, and F3 ¼ 0:90, respectively. We examine
twelve combinations of population size (16 and 32), crossover
probability (0.3 and 0.5), and mutation probability (0.1, 0.2, and
0.3). Table 4 presents the relative deviations (i.e., the deviation di-
vided by the corresponding target value), satisfaction value in Eq.
(17), and satisfaction error in Eq. (20) used to evaluate the perfor-
mance of the solution procedure for the above twelve cases. One
can observe that for all cases, the solution procedure can achieve
the same number of goals (i.e., efficiency and environment) and
only the least important goal (i.e., equity) is not fully satisfied. In
addition, the satisfaction error among the twelve cases does not
exceed 0.02%. The above results indicate that the SGA solution pro-
cedure is quite robust to different GA parameter settings.

To further examine the performance of the SGA solution proce-
dure, without loss generality, we illustrate the convergence results
of Case 12 in Figs. 6 and 7. Fig. 6 shows the convergence of the sat-
isfaction value in Eq. (17). One can see the trajectory increases
steadily in the first 50 generations and stabilizes after the 90th
generation. Fig. 7 shows the effect of the user-defined priority
structure in the evolution process. The first goal is achieved in
the 50th generation; the second goal is satisfied in the 88th gener-
ation; while the third goal is not completely realized. The best ob-
tained relative deviation for the third goal is 7.99% in the 200th
generation. These results are consistent with our pre-defined prior-
ity structure and goal setting. The first two goals can be completely
satisfied, but the third goal is not achieved with a positive relative
deviation of 7.99%.

4.5. Example 3: chance-constrained goal programming model

Example 3 demonstrates the CCGP model. The target values and
confidence levels for the three objectives are set as follows:
1000 1500 2000

20 98740 99006 98795
3 0.00 0.27 0.06

759 158353 158352 159592
1 0.00 0.00 0.78

84 0.881 0.882 0.881
4 0.00 0.11 0.00



Table 4
Effect of PS, Pc, and Pm on the solution quality of the EVGP model.

Case # PS Pc Pm Relative deviation Satisfaction
(%)

Error
(%)

1 2 3

1 16 0.3 0.1 0 0 0.0734 99.9339 0.0042
2 16 0.3 0.2 0 0 0.0744 99.9330 0.0051
3 16 0.3 0.3 0 0 0.0830 99.9252 0.0129
4 16 0.5 0.1 0 0 0.0726 99.9346 0.0035
5 16 0.5 0.2 0 0 0.0784 99.9294 0.0087
6 16 0.5 0.3 0 0 0.0836 99.9247 0.0134
7 32 0.3 0.1 0 0 0.0725 99.9347 0.0034
8 32 0.3 0.2 0 0 0.0771 99.9305 0.0076
9 32 0.3 0.3 0 0 0.0898 99.9191 0.0190
10 32 0.5 0.1 0 0 0.0687 99.9381 0.0000
11 32 0.5 0.2 0 0 0.0717 99.9354 0.0027
12 32 0.5 0.3 0 0 0.0799 99.9280 0.0101
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F1 ¼ 136000; F2 ¼ 43800; F3 ¼ 0:90;a1 ¼ 90%;a2 ¼ 85%, and a3 =
80%. Similar to Example 2, we present the relative deviations, sat-
isfaction value in Eq. (17), and satisfaction error in Eq. (20) for each
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of the twelve cases in Table 5. We can see all the cases have the
same number of achieved goals (i.e., the first two goals), and the
satisfaction error among the twelve cases is less 0.01%. Even
though the CCGP model has a complex bi-level structure with
three nonlinear and non-convex probabilistic goal constraints,
the results in Table 5 suggest that the solution procedure is fairly
robust to different GA parameter settings.
4.6. Example 4: dependent-chance goal programming model

Finally, Example 4 demonstrates the DCGP model. The thresh-
old values (i.e., F1; F2, and F3Þ and target probabilities (i.e., a1, a2,
and a3) are set as follows: F1 ¼ 135000; F2 ¼ 47500; F3 ¼ 0:99;
a1 ¼ 90%;a2 ¼ 90%, and a3 = 90%. Similar to Examples 2 and 3,
we present the relative deviations, satisfaction value in Eq. (18),
and satisfaction error in Eq. (20) for each of the twelve cases in
Table 6. One can see that for all cases, the first two goals are
achieved while the third goal is not fully satisfied. Even though
different cases have different relative deviations for the third goal,
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Table 5
Effect of PS, Pc, and Pm on the solution quality of the CCGP model.

Case # PS Pc Pm Relative deviation Satisfaction
(%)

Error
(%)

1 2 3

1 16 0.3 0.1 0 0 0.1078 99.9029 0.0044
2 16 0.3 0.2 0 0 0.1055 99.9050 0.0023
3 16 0.3 0.3 0 0 0.1056 99.9049 0.0024
4 16 0.5 0.1 0 0 0.1040 99.9063 0.0010
5 16 0.5 0.2 0 0 0.1045 99.9059 0.0014
6 16 0.5 0.3 0 0 0.1066 99.9040 0.0033
7 32 0.3 0.1 0 0 0.1029 99.9073 0.0000
8 32 0.3 0.2 0 0 0.1064 99.9041 0.0032
9 32 0.3 0.3 0 0 0.1087 99.9021 0.0052
10 32 0.5 0.1 0 0 0.1031 99.9071 0.0002
11 32 0.5 0.2 0 0 0.1063 99.9042 0.0031
12 32 0.5 0.3 0 0 0.1075 99.9032 0.0041

Table 6
Effect of PS, Pc, and Pm on the solution quality of the DCGP model.

Case # PS Pc Pm Relative deviation Satisfaction
(%)

Error
(%)

1 2 3

1 16 0.3 0.1 0 0 0.1506 99.8643 0.0155
2 16 0.3 0.2 0 0 0.1426 99.8715 0.0083
3 16 0.3 0.3 0 0 0.2000 99.8198 0.0600
4 16 0.5 0.1 0 0 0.1437 99.8705 0.0093
5 16 0.5 0.2 0 0 0.1862 99.8323 0.0476
6 16 0.5 0.3 0 0 0.2585 99.7671 0.1127
7 32 0.3 0.1 0 0 0.1489 99.8659 0.0140
8 32 0.3 0.2 0 0 0.1560 99.8595 0.0204
9 32 0.3 0.3 0 0 0.2308 99.7921 0.0877
10 32 0.5 0.1 0 0 0.1382 99.8755 0.0043
11 32 0.5 0.2 0 0 0.1334 99.8798 0.0000
12 32 0.5 0.3 0 0 0.1892 99.8295 0.0503
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the satisfaction value with respect to the goals and priority struc-
ture is quite stable and the satisfaction error does not exceed
0.12%. Again, the solution procedure appears to be quite robust
to different GA parameter settings and also effective in handling
the nonlinear and non-convex probabilistic goal constraints.
5. Conclusion and future research

Solving the stochastic multi-objective network design problem
(SMONDP) directly requires generating the Pareto-optimal set. This
is not a trivial task. In order to obtain a good solution that meets
the goals of different stakeholders for implementation, this study
formulates the SMONDP as a goal programming (GP) problem in
a stochastic bi-level programming framework. For different model-
ing purposes, the upper-level subprogram can use different philos-
ophies (i.e., the EVGP, CCGP, and DCGP) to hedge against the
uncertainties in the planner’s NDP decision, while the lower-level
subprogram models travelers’ route choice decisions in responding
to a certain design scheme. Even with different modeling philoso-
phies, the GP models are able to find a good NDP solution for
implementation by explicitly considering the user-defined goals
and priority structure among the objectives. A unified simula-
tion-based genetic algorithm (SGA) procedure is then developed
to solve all three GP models. Numerical examples are also pre-
sented to illustrate the practicability of the GP approach in solving
the SMONDP models as well as the robustness of the SGA solution
procedure. The analysis results indicate that the SGA solution pro-
cedure is quite robust to the different GA parameter settings, and
also effective in handling the nonlinear and non-convex probabilis-
tic goal constraints in all three GP models. Several works are
worthy of further investigation:
� In this study, the priority structure among the objectives and
goal setting for each objective need to be specified accurately.
This requirement can be relaxed by using the fuzzy logic theory
to model the imprecise priority structure and goals (e.g., Chen &
Su, 2010). This treatment may enhance the flexibility of the GP
approach.
� So far, only demand uncertainty is considered. Further work

should also consider supply uncertainty (i.e., the degradation
of network capacity) and route choice uncertainty (i.e., risk-
averse behavior toward travel time variability).
� This study uses the probability theory to model the uncertain-

ties (or distributions) of the random travel demands and
network-wide objective measures. To cater for different uncer-
tainty data preparations, we can use the creditability theory and
chance theory to construct the GP models.
� Testing the proposed solution procedure with other objectives

(e.g., reliability, vulnerability, resiliency, and robustness) on
realistic networks is needed for practical applications of the
GP approach.
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