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Abstract

Infeasibility resolution is an important aspect of infeasibility analysis. This paper proposes a multi-objective programming model
for infeasibility resolution and develops a method based on l∞ norm goal programming to solve the problem. Any solution is at least
weakly efficient and any efficient solution is reachable by regulating the weights. For the special case of irreducibly inconsistent
linear systems, any solution is guaranteed to be efficient. The method is capable of handling both linear and nonlinear/non-convex
cases, as demonstrated by the numerical examples.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There are two major aspects of infeasibility analysis for mathematical programming models: (1) infeasibility diag-
nosis to find which constraints are inconsistent with each other; and (2) infeasibility resolution to repair the model to
make it feasible. While diagnosis provides certain insights into the nature of an infeasibility, which is definitely helpful
at the model building stage, the ultimate goal of infeasibility analysis is to resolve the infeasible problem. However,
most published research and practice results in recent years have been focused on the diagnosis side [1–6]. Little
investigation has been made in infeasibility resolution.

Techniques developed for infeasibility diagnosis might not be practically useful in automatic resolution of infeasi-
bility. For linear models, numerous algorithms have been developed to isolate an irreducibly inconsistent system (IIS),
which is an infeasible set of constraints whose proper subsets are all feasible. However, since an infeasible model could
have multiple IISs, the repair of a single IIS may not make the whole model feasible. One tedious approach to complex
infeasibilities is to repeatedly isolate and repair the individual IISs until the whole model becomes feasible. Another
approach is to find the minimum cardinality IIS set cover so that the smallest number of constraints can be removed
from an infeasible LP to make the remaining constraints feasible. Finding such set covers proves to be NP hard [7,8].
For nonlinear models, little attention has been paid even to the diagnosis of infeasibility due to the complexity of
nonlinear programming [4], let alone the resolution of infeasibility.

Very limited literature can be found on infeasibility resolution. Charnes and Cooper [9] initiated the discussion of
adjusting constraint right-hand sides to restore feasibility. Roodman [10] described how to achieve feasibility using
sensitivity analysis of the phase 1 LP. McCarl [11] presented a procedure based on the big-M method to diagnose and
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repair infeasible substructures for LP. Murty et al. [5] discussed how to detect infeasibility in a linear system using the
Gauss–Jordan method and how to make an infeasible system feasible using elastic programming.

However, there are two major limitations to the above methods as tools to resolve infeasibility automatically. Firstly,
since all the methods are essentially based on the weighted sum of elastic variables, they are only able to find certain
corner solutions. Solutions are either too sensitive to the weights or entirely insensitive to the weights. As a result,
priority levels cannot be adequately represented by the weights. Secondly, no example has been provided for nonlinear
models. As a matter of fact, methods based on the weighted sum would be ineffective to solve nonlinear and non-convex
problems.

In this paper, the problem of infeasibility resolution is formally modeled via multi-objective programming (MOP),
which clearly reveals the weaknesses mentioned above. To overcome these weaknesses, a method based on l∞ norm
goal programming (GP) is developed for infeasibility resolution. It can reach any efficient solution by regulating the
weights even for nonlinear and non-convex cases. Any solution of the goal program is at least weakly efficient and can
further be improved to an efficient solution by a subsequent procedure. Moreover, efficiency is guaranteed by the goal
program for irreducibly inconsistent linear constraints.

The rest of the paper is organized as follows. Section 2 introduces a multi-objective programming model for in-
feasibility resolution and briefly reviews some relevant basic concepts. Two numerical examples, one linear and one
nonlinear, are given in Section 3 to illustrate the weaknesses of the weighted sum method. Section 4 presents a method
based on l∞ norm GP and proves the efficiency properties of the solutions. The numerical examples are re-solved in
Section 5 using the new method to show its effectiveness. Section 6 concludes the paper.

2. Infeasibility resolution as multi-objective programming

For a set of constraints

fi(x)�0, i = 1, . . . , m, (1)

where fi :R
n �→ R, define non-negative elastic or relaxation variables yi such that

fi(x) − yi �0, i = 1, . . . , m. (2)

If the original constraint set (1) is feasible, then yi = 0 for all i = 1, . . . , m, is a solution to (2). Otherwise, some yi

must be positive. To make the constraint set feasible while keeping the relaxation as small as possible, it is natural to
formulate the following MOP

(MOP) min (y1, . . . , ym) (3a)

s.t. fi(x) − yi �0, i = 1, . . . , m, (3b)

yi �0, i = 1, . . . , m. (3c)

For (MOP), (x∗, y∗) = (x∗
1 , . . . , x∗

n, y∗
1 , . . . , y∗

m) is an efficient solution (also called non-dominated, non-inferior or
Pareto optimal solution) if there exists no other feasible solution (x̂, ŷ) = (x̂1, . . . , x̂n, ŷ1, . . . , ŷm) such that ŷi �y∗

i

for all i = 1, . . . , m and ŷ �= y∗. (x∗, y∗) is a weakly efficient solution if there exists no other feasible solution (x̂, ŷ)

such that ŷi < y∗
i for all i = 1, . . . , m. The set of all efficient solutions is called the efficient frontier.

One widely used method to find the efficient solutions of (MOP) is to scalarize the vector objective functions by the
weighted sum (WS) as follows

(WS) min z =
m∑

i=1

wiyi (4a)

s.t. fi(x) − yi �0, i = 1, . . . , m, (4b)

yi �0, i = 1, . . . , m, (4c)

where
∑m

i=1wi =1 and wi �0 for all i=1, . . . , m. The mathematical meaning of (WS) is clear: it searches for a solution
with the smallest weighted average relaxation to achieve feasibility. Weight wi represents the priority or importance of
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relaxation variable yi . The larger wi is, the less likely constraint fi(x)�0 will be relaxed. It is well known that when
wi > 0 for all i = 1, . . . , m, any solution of (WS) is efficient [12]. A new CPLEX functionality provided by ILOG [13]
deals with infeasible linear problems essentially in the same way, where the only difference is that the weights there
are interpreted as the reciprocal of the preference levels.

A major weakness of the WS method is that it can never generate solutions in the concave portion of an efficient
frontier. The situation is no better for linear models, where the efficient frontier is polyhedral. In theory, when the
contour hyper-plane

∑m
i=1 wiyi =z is parallel with a surface of the efficient frontier, any point on the surface could be a

solution. However, even a very small numerical error in an LP solver could skew the contour hyper-plane slightly, so that
it can only touch a corner of the polyhedron. In summary, solutions in both the linear case and the nonlinear/non-convex
case are either too sensitive to the weights (a slight change of the weights could make a solution jump from one corner
to another) or entirely insensitive to the weights (changing the weights has no effect on the solution). Priority levels
cannot be well described by the weights in (WS).

3. Numerical examples

To verify what is described in Section 2, two simple numerical examples, one linear and one nonlinear, are presented.

3.1. Linear example

x1 �0, (5a)

x2 �0, (5b)

5x1 + 6x2 �30. (5c)

As shown in Fig. 1, each of the above constraints specifies a half-space inR2. Since there is no intersection among the
three half-spaces, the constraint set is infeasible. Following Section 2, a MOP can be formulated as

(MOP1) min (y1, y2, y3) (6a)

s.t. x1 − y1 �0, (6b)

x2 − y2 �0, (6c)

5x1 + 6x2 + y3 �30, (6d)

y1, y2, y3 �0. (6e)

By changing the relaxation variables, the lines for constraints are moved in an attempt to make an intersection among
the half-spaces. An intersection can be achieved by moving just one of the lines, which is equivalent to changing

5x1 + 6x2 ≥ 30

x1 ≤ 0

x2 ≤ 0

x2

x1

B

O

A

Fig. 1. Linear example.
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y2

y3

y1

y*1(6,0,0)

y*2 (0,5,0)

y*3 (0,0,30)

y*

5y1 + 6y2 + y3 = 30

w1y1 + w2y2 + w3y3 = z

w1y1 = w2y2 = w3y3

O

Fig. 2. Efficient frontier of linear example.

one relaxation variable while keeping the other two fixed at 0. For example, when y2 = 0 and y3 = 0, the minimum
required value for y1 is 6, corresponding to point B in Fig. 1. y∗1 = (y∗1

1 , y∗1
2 , y∗1

3 ) = (6, 0, 0) is an efficient solution
in the objective space because there is no other feasible solution which is better (smaller) than y∗1 in at least one
dimension. Similarly, y∗2 = (y∗2

1 , y∗2
2 , y∗2

3 ) = (0, 5, 0) corresponding to point A and y∗3 = (y∗3
1 , y∗3

2 , y∗3
3 ) = (0, 0, 30)

corresponding to point O are also efficient solutions. It can further be shown that any convex combination of the three
efficient solutions, which corresponds to a point in the triangle ABO, is also efficient. Triangle ABO is actually the
projection of the decision space efficient frontier onto the (x1, x2) space, while the objective space efficient frontier is
triangle y∗1y∗2y∗3 in Fig. 2.

While the corner solutions can be interpreted as certain relaxation preferences, i.e., only one of the dimensions is
allowed to be relaxed, solutions in the interior of the triangle, such as y∗ in Fig. 2, might be more preferable in some
situations. Unfortunately however, as indicated in Section 2, these solutions may never be reached using the following
WS method

(WS1) min z = w1y1 + w2y2 + w3y3 (7a)

s.t. x1 − y1 �0, (7b)

x2 − y2 �0, (7c)

5x1 + 6x2 + y3 �30, (7d)

y1, y2, y3 �0, (7e)

where w1 + w2 + w3 = 1 and w1, w2, w3 �0.
Given a set of weights (w1, w2, w3), z = w1y1 + w2y2 + w3y3 defines a plane in the (y1, y2, y3) space, shown as

the dashed triangle in Fig. 2. (WS1) pushes the plane until it just touches the efficient frontier y∗1y∗2y∗3. Different sets
of weights determine different directions of the plane. However, no matter how the weights are changed to alter the
direction, (WS1) can only return the three corner solutions, as shown in the column 2 of Table 1.

3.2. Nonlinear example

Fig. 3 shows the following nonlinear example

x1 + x2 �1, (8a)

x1x2 �2, (8b)
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Table 1
Solutions of linear example

(w1, w2, w3) (y∗
1 , y∗

2 , y∗
3 )

Weighted sum Goal programming

(0, 1/2, 1/2) (6, 0, 0) (6, 0, 0)
(1/2, 0, 1/2) (0, 5, 0) (0, 5, 0)
(1/2, 1/2, 0) (0, 0, 30) (0, 0, 30)
(1/6, 1/3, 1/2) (6, 0, 0) (3.6, 1.8, 1.2)
(1/6, 1/2, 1/3) (6, 0, 0) (4, 1.333, 2)
(1/3, 1/6, 1/2) (0, 5, 0) (1.698, 3.396, 1.132)
(1/3, 1/2, 1/6) (6, 0, 0) (2.727, 1.818, 5.455)
(1/2, 1/6, 1/3) (0, 5, 0) (1.224, 3.673, 1.837)
(1/2, 1/3, 1/6) (0, 5, 0) (1.765, 2.647, 5.294)
(3/5, 3/10, 1/10) (0, 5, 0) (1.304, 2.609, 7.826)
(1/3, 1/3, 1/3) (0, 5, 0) (2.5, 2.5, 2.5)

x1

x2

x1 + x2 ≤ 1

x1x2 ≥ 2

Fig. 3. Nonlinear example.

whose MOP is

(MOP2) min (y1, y2) (9a)

s.t. x1 + x2 − y1 �1, (9b)

x1x2 + y2 �2, (9c)

y1, y2 �0. (9d)

It can be verified that the efficient frontier for (MOP2) in the (y1, y2) space is

y2 = 2 − 1
4 (y1 + 1)2, (10a)

y1, y2 �0, (10b)
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y1

y2

w1y1 + w2y2 = z

(y1 + 1)2

4

1
y2 = 2 −

w1y1 = w2y2

y*1

y*2

Fig. 4. Efficient frontier of nonlinear example.

Table 2
Solutions of nonlinear example

(w1, w2) (y∗
1 , y∗

2 )

Weighted sum Goal programming

(0, 1) (1.828, 0) (1.828, 0)
(1, 0) (0, 1.75) (0, 1.75)
(1/3, 2/3) (1.828, 0) (1.317, 0.658)
(2/3, 1/3) (0, 1.75) (0.657, 1.314)
(1/2, 1/2) (0, 1.75) (1, 1)

as shown in Fig. 4. Since the efficient frontier is concave, the following WS method can only return the two corners
y∗1 = (y∗1

1 , y∗1
2 ) = (2

√
2 − 1, 0) and y∗2 = (y∗2

1 , y∗2
2 ) = (0, 7

4 ), no matter how the weights are changed.

(WS2) min w1y1 + w2y2 (11a)

s.t. x1 + x2 − y1 �1, (11b)

x1x2 + y2 �2, (11c)

y1, y2 �0, (11d)

where w1 + w2 = 1 and w1, w2 �0. Column 2 of Table 2 shows the solutions by using different weights.

4. Goal programming for infeasibility resolution

As another popular technique for MOP, GP was first formally introduced by Charnes and Cooper [9]. Ogryczak [14]
showed the relationship between GP and the reference point method. Tamiz et al. [15] gave an overview of GP for
decision-making and examined its connections with other techniques of MOP, such as compromise programming and
reference point method. Yang [16] developed a minimax reference point approach to facilitate goal programming in
non-convex cases. Carrizosa and Romero-Morales [17] proposed a parametric problem by means of GP to combine
min-sum and minimax and proved the (weak) efficiency of solutions to the parametric problem under certain conditions.
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The MOP formulated for infeasibility resolution in Section 2 can be modeled as the following goal program

(GP) min ‖y − ȳ‖ (12a)

s.t. fi(x) − yi �0, i = 1, . . . , m, (12b)

yi �0, i = 1, . . . , m, (12c)

where ȳ=(ȳ1, . . . , ȳm) is a reference point (goal) and ‖•‖ is a norm operator.An obvious reference point for infeasibility
resolution is ȳ = (0, . . . , 0), which is also a utopia point or ideal point. Two widely used norms are weighted l1 norm
and weighted l∞ norm:

‖y − ȳ‖w
1 =

m∑

i=1

|wi(yi − ȳi )|, (13a)

‖y − ȳ‖w∞ = max{|wi(yi − ȳi )| : i = 1, . . . , m}, (13b)

where
∑m

i=1 wi = 1 and wi �0. Contours of these norms can be found in Steuer [18].

4.1. l1 Norm goal programming

Interestingly, research on the relationship between GP and infeasibility analysis dates back to the infancy of GP. In
the initial introduction of GP, Charnes and Cooper [9] also discussed its relationship to the analysis of contradictions
in non-solvable LP problems as goal attainment. Tamiz et al. [13] presented an algorithm to isolate an IIS using GP.
Huitzing et al. [19] presented a GP model to analyze infeasibility in test problem assembly.

However, all the above GP formulations are in one way or another based on the l1 norm as follows:

(GP1) min z =
m∑

i=1

|wiyi | (14a)

s.t. fi(x) − yi �0, i = 1, . . . , m, (14b)

yi �0, i = 1, . . . , m, (14c)

where
∑m

i=1 wi = 1 and wi �0. It is obvious that (GP1) is equivalent to (WS) under certain conditions, thus suffering
the same weaknesses described in the previous sections.

4.2. l∞ Norm goal programming

To overcome the weaknesses described earlier, the following GP∞ is proposed, which uses the l∞ norm for infea-
sibility resolution

(GP∞) min z = max{|wiyi | : i = 1, . . . , m} (15a)

s.t. fi(x) − yi �0, i = 1, . . . , m, (15b)

yi �0, i = 1, . . . , m, (15c)

where
∑m

i=1 wi = 1 and wi �0. It has been shown that any efficient solution of (MOP) can be obtained by changing
the weights in (GP∞) [12], which ensures the effectiveness of using weights to represent the priority levels.

4.3. Efficiency properties of (GP∞)

A major concern of using (GP∞) is that its solutions are not necessarily efficient to (MOP). However, the following
theorem shows that any solution to GP∞ is at least weakly efficient.

Theorem 1 (Weak efficiency theorem). If (x∗, y∗, z∗) is an optimal solution to (GP∞), then (x∗, y∗) is a weakly
efficient solution to MOP.



1490 J. Yang / Computers & Operations Research 35 (2008) 1483–1493

Proof. (GP∞) can be rewritten as

(GP′∞) min z (16a)

s.t. wiyi �z, i = 1, . . . , m, (16b)

fi(x) − yi �0, i = 1, . . . , m, (16c)

yi �0, i = 1, . . . , m, (16d)

where
∑m

i=1 wi =1 and wi �0. The absolute sign is dropped because both wi and yi are non-negative. If (x∗, y∗, z∗)=
(x∗

1 , . . . , x∗
n, y∗

1 , . . . , y∗
m, z∗) is an optimal solution to (GP′∞) but (x∗, y∗) is not weakly efficient to (MOP), then

(MOP) must have a feasible solution (x̂, ŷ) = (x̂1, . . . , x̂n, ŷ1, . . . , ŷm), such that ŷi < y∗
i for all i = 1, . . . , m. Let

ẑ = sup{wiŷi : i = 1, . . . , m}. (x̂, ŷ, ẑ) is a feasible solution to (GP′∞) with smaller objective value ẑ < z∗. This
is in contradiction to the assumption that (x∗, y∗, z∗) solves (GP′∞). Therefore, (x∗, y∗) must be weakly efficient
to (MOP). �

For the (GP∞) solutions to be efficient, we need one more condition as stated in Theorem 2.

Theorem 2 (Efficiency theorem). If (x∗, y∗, z∗) is an optimal solution to (GP∞) that is unique in y∗, then (x∗, y∗) is
an efficient solution to (MOP).

Proof. Again, (GP′∞) is used in the proof. If (x∗, y∗, z∗)=(x∗
1 , . . . , x∗

n, y∗
1 , . . . , y∗

m, z∗) is an optimal solution to (GP′∞)

that is unique in y∗, by Theorem 1, (x∗, y∗) is a weakly efficient solution to (MOP). If (x∗, y∗) is not efficient to (MOP),
then (MOP) must have a feasible solution (x̂, ŷ) = (x̂1, . . . x̂n, ŷ1, . . . , ŷm), such that ŷi �y∗

i for all i = 1, . . . , m, and
ŷj < y∗

j for some 1�j �m. Then (x̂, ŷ, z∗) is also an optimal solution to (GP′∞), which is in contradiction to the
assumption that (x∗, y∗, z∗) is unique in y∗. Therefore, (x∗, y∗) must be efficient to (MOP). �

Note that uniqueness is the key to efficiency. The reason why (x∗, y∗) is not guaranteed to be efficient when
(x∗, y∗, z∗) is not unique in y∗ is that some y∗

i could have room for further reduction without affecting z∗. To get an
efficient solution by squeezing out any such room, a subsequent WS problem based on the (GP∞) result can be solved
as follows:

min z =
m∑

i=1

wiyi (17a)

s.t. yi �y∗
i , i = 1, . . . , m, (17b)

fi(x) − yi �0, i = 1, . . . , m, (17c)

yi �0, i = 1, . . . , m. (17d)

Fortunately, the subsequent WS procedure is not needed when fi(x)�0, i = 1, . . . , m, is an irreducibly inconsistent
linear system because it can be shown that any solution to (GP∞) is unique in y∗ and therefore efficient to (MOP). To
prove this, we need Theorem 3 as a prerequisite.

Theorem 3 (IIS conditions, Fan [20]). The linear system Ax�b, where A is an m×n matrix, is irreducibly inconsistent
if and only if the following two conditions are simultaneously fulfilled:

(1) Any m − 1 rows of A are linearly independent.
(2) There exists � > 0 such that �TA = 0 and �Tb < 0.

Now we can prove the following result.

Theorem 4 (Efficiency theorem for IIS). Suppose that the linear system Ax�b, where A is an m × n matrix, is
irreducibly inconsistent. Let (x∗, y∗, z∗) = (x∗

1 , . . . , x∗
n, y∗

1 , . . . , y∗
m, z∗)T be an optimal solution to the following
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linear goal program

(LGP) min z (18a)

s.t. Ax − Iy�b, (18b)

Wy − Jz�0, (18c)

yi �0, i = 1, . . . , m, (18d)

where I is an m × m identity matrix, J = (

m︷ ︸︸ ︷
1, . . . , 1 )T, W = diag {w1, . . . , wm}, is a diagonal matrix,

∑m
i=1wi = 1 and

wi > 0 for all i = 1, . . . , m. Then (x∗, y∗) is an efficient solution to the following multi-objective linear program

(MOLP) min (y1, . . . , ym) (19a)

s.t. Ax − Iy�b, (19b)

yi �0, i = 1, . . . , m. (19c)

Proof. Let � = (�1, . . . , �m)T �0 and � = (�1, . . . , �m)T �0 be dual variables associated with Ax − Iy�b and
Wy −Jz�0, respectively. Note that both y and z are nonnegative but x is unrestricted. The dual problem [21] of (LGP)
can be written as

(DLGP) max − �Tb (20a)

s.t. �TA = 0, (20b)

�TI − �TW �0, (20c)

�TJ �1. (20d)

From (20b), � ∈ N(AT), the null space of AT. Because Ax�b is irreducibly inconsistent, by Theorem 3 (condition 1),
rank(A) = m − 1. Therefore, N(AT) is a one-dimensional subspace, i.e., a line through the origin. By Theorem 3
(condition 2), there exists � > 0 such that �TA=0 and �Tb < 0. Therefore, �∗ > 0; and from (20c), �∗ > 0. Consequently,
we must have that the optimal dual solution (�∗, �∗) = (�∗

1, . . . , �
∗
m, �∗

1, . . . , �
∗
m)T > 0. By complementary slackness,

Ax∗ − Iy∗ = b, Wy∗ −Jz∗ = 0. Therefore, (x∗, y∗, z∗) is unique in y∗. By Theorem 2, (x∗, y∗) is an efficient solution
to (MOLP). �

5. Revisiting the numerical examples

To verify the effectiveness of the method developed in Section 4, the numerical examples of Section 3 are re-solved.

5.1. Linear example

min z (21a)

s.t. wiyi �z, i = 1, 2, 3, (21b)

x1 − y1 �0, (21c)

x2 − y2 �0, (21d)

5x1 + 6x2 + y3 �30, (21e)

y1, y2, y3 �0, (21f)

where w1 + w2 + w3 = 1 and w1, w2, w3 �0.
As shown in Fig. 2, solving this problem is equivalent to moving from the origin O along an arrow in the direction

determined by the weights until it reaches the efficient frontier. It is clear that any point on the efficient frontier can be
reached by changing the direction of the arrow. Comparison between columns 2 and 3 of Table 1 shows the advantages
of using weights in (GP∞) to represent the priority levels.

Since (5a–c) is actually an irreducibly inconsistent system, Theorem 4 guarantees the efficiency of solutions to
(GP∞). In more general cases however, only weak efficiency can be ensured, as stated in Theorem 1. If one more
constraint −3x1 + 5x2 �15 is added to (5a–c), as shown in Fig. 5, the constraint set becomes reducibly inconsistent,
or there are multiple IISs.
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5x1 + 6x2 ≥ 30

x1 ≤ 0

x2 ≤ 0

x2

x1

−3x1 + 5x2 ≥ 15

A

B
O

Fig. 5. Multiple IISs.

The corresponding l∞ norm goal program is as follows:

min z (22a)

s.t. wiyi �z, i = 1, 2, 3, 4, (22b)

x1 − y1 �0, (22c)

x2 − y2 �0, (22d)

5x1 + 6x2 + y3 �30, (22e)

− 3x1 + 5x2 + y4 �15, (22f)

y1, y2, y3, y4 �0. (22g)

When wi =0.25 for i=1, . . . , 4, a solution is y∗=(y∗
1 , y∗

2 , y∗
3 , y∗

4 )=(3.235, 3.235, 3.235, 3.235). It is weakly efficient,
but not efficient. To get an efficient solution, we can solve the following WS problem based on the previous result

min
4∑

i=1

wiyi (23a)

s.t. yi �y∗
i , i = 1, . . . , 4, (23b)

x1 − y1 �0, (23c)

x2 − y2 �0, (23d)

5x1 + 6x2 + y3 �30, (23e)

− 3x1 + 5x2 + y4 �15, (23f)

y1, y2, y3, y4 �0, (23g)

which returns an efficient solution ŷ∗ = (ŷ∗
1 , ŷ∗

2 , ŷ∗
3 , ŷ∗

4 ) = (1.471, 3.235, 3.235, 3.235).

5.2. Nonlinear example

The method developed in Section 4 can also be used to handle nonlinear and non-convex cases. The l∞ norm goal
program for (MOP2) can be written as

min z (24a)

s.t. wiyi �z, i = 1, 2, (24b)

x1 + x2 − y1 �1, (24c)

x1x2 + y2 �2, (24d)

y1, y2 �0, (24e)
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where w1 + w2 = 1 and w1, w2 �0. As shown in Fig. 4, solving this problem is equivalent to moving from the origin
along an arrow in the direction determined by the weights until it reaches the efficient frontier. It is clear that any point
on the efficient frontier can be reached by changing the direction of the arrow. Column 3 of Table 2 shows the solutions
by using different weights. The weaknesses of the WS method presented in the previous sections are overcome.

6. Conclusions

This paper discusses infeasibility resolution as an important aspect of infeasibility analysis. A major weakness of
infeasibility analysis based on a weighted sum of elastic variables is that it cannot obtain all solutions on the efficient
frontier. In linear or nonlinear/non-convex problems, only corner solutions are reachable. This makes the weights less
meaningful in interpreting the priority levels. To overcome the weakness, this paper develops a method based on l∞
norm goal programming, which is capable of reaching any efficient solution by regulating the weights. Any solution
of the goal program is at least weakly efficient. A weakly efficient solution can further be improved to an efficient
solution using a subsequent procedure. For irreducibly inconsistent linear constraints, any solution of the goal program
is guaranteed to be efficient. This method is effective in both linear and nonlinear/non-convex cases.
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