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The structural behaviour of steel tied-arch bridges is determined by the introduction of a large compressive
force. As a consequence, slender steel arches are highly sensitive to in-plane as well as out-of-plane buckling.
At present, no specific buckling curves for out-of-plane buckling exist for non-linear or curved elements in the
international codes and calculation methods. Hence, the buckling curves for straight columns, as determined
by ECCS, are used, which leads to considerable inaccuracies in the assessment of the critical buckling load for
arch bridges.
This paper presents two practical calculation methods to design for the buckling behaviour of slender steel arch
bridges. The first one follows the calculation method of the Eurocode, but proposes some augmented empirical
formulas for the buckling length of the arches. This allows for a better representation of the out-of-plane stiffness
of the arch cross section and of the wind bracings between both arches.
In addition a second method is proposed, based on the use of simplified finite element models to determine the
relative slenderness of the structure. Both methods are validated using results from very detailed three dimen-
sional finite elementmodels. Finite elementmodels of several tied-arch bridges have been created. Thesemodels
include variations of the bridge length, dimensions of the arch cross-section, boundary condition, and load type.
The conclusion of these calculations is that for both of the proposedmethods a higher buckling curve can be used
than proposed by the code, thus resulting in a more slender bridge design.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The fundamental behaviour of tied-arches is based on the fact that a
large compressive force is developed in the arch cross-section. Because
of this, steel arches in particular can become highly sensitive to the
out-of-plane buckling phenomenon. However, there is no clear and
generally accepted calculation method to predict numerically this sta-
bility problem. On one hand, the buckling strength of a steel tied-arch
bridge can be calculated by considering the non-linear elastic–plastic
behaviour. As the imperfections of the arches highly influence the
non-linear behaviour, these geometrical imperfections need to be
known before starting this analysis. On the other hand, a linear calcu-
lation, resulting in an elastic buckling factor for the compression force,
can be carried out. A multiplication factor for the occurring stresses can
be found based on this calculation, using an adequate buckling curve,
as mentioned for straight beams in [1–3]. In this case as well, the
arch imperfections should be known beforehand. However, the imper-
fections in slender steel arch bridges are not related to those of a
straight beam or column which makes it fundamentally impossible,
or at least overly safe, to use the standard buckling curves, derived
for straight beams.
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As the imperfections of arch bridges are smaller than can be ex-
pected for straight members, every detail of the bridge becomes impor-
tant while determining the buckling load and may influence the results
of the numerical simulations. Therefore, all details, such as diaphragms,
connection plates, orthotropic plated bridge deck, bearing systems and
arch springs, are modelled in a very exact manner for the calculations
which are the basis of this research paper.

In comparison, most available research has focused on smaller parts
of the overall problem, or on simplifications of the situation. Initial
studies by Pi and Trahair [4] focussed on the inelastic buckling of arches
under uniform compression and uniform bending separately to better
understand the background of the buckling behaviour. The actual load
situation is however much more complex. A lot of international re-
search has furthermore concentrated on the out-of-plane stability of
roller bent steel I-shaped cross-sections [5,6]. These results are certainly
relevant but will differ quite a bit in terms of out-of-plane stiffness char-
acteristics and residual stress distributions when compared with the
box sections typical for steel arch bridges. Some studies exist focussing
on box sections, such as Manzanares Japón and Sánchez-Barbudo [7],
but especially the boundary conditions at the supports of the arches
are still theoretical constructions. The specific contribution of the re-
search in this paper is thus that it models a realistic situation of an
arch with the actual stiffeners, load introductions and boundary condi-
tions. Only the newest research trend in this field [8–10], the influence
of temperature gradients on arch buckling, is neglected.
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2. Eurocode design of arch buckling

A detailed analytic calculation method has been developed in the
Eurocode [1,2], which allows for the determination of the buckling
strength of steel members. The first step of this method is the determi-
nation of a dimensionless slenderness parameter, λ, for the cross-
section of the considered member. Based on this slenderness factor
and a correct choice for the buckling curve, a reduction factor, χ, can
be directly determined. This clearly defines the maximal normal force
in the cross-section before buckling occurs as a reduction of the plastic
carrying capacity. While initially developed for straight members,
the method is also applicable for curved sections, after some small
augmentations.

For arches, the slenderness λ, can be calculated using the following
formula:

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A � fy
Ncr

s
ð1Þ

where A is the area of the arch cross-section, fy the yield strength of steel
and Ncr the critical elastic normal force of the arch. The critical elastic
normal force for out-of-plane buckling of steel tied-arch bridges can
be determined based on analytical calculations or by simplified finite
element modelling using only beam elements for the entire bridge
and solving the eigenvalue problem (see Method I in Section 4). An
easier method, also supplied by the Eurocode [2] but in an informative
Annex D, uses the following formula:

Ncr ¼
π
β l

� �2
EIz ð2Þ

wherein l represents the bridge span, EIz the out-of-plane bending stiff-
ness of the arch and β the buckling length factor (see also Method II in
Section 5). The buckling length factor is the product of two factors β1

and β2, which can be found in diagrams in Annex D of Eurocode 3 [2].
The first factor, β1, is mainly based on the span to height ratio of the
arch and the out-of-plane bending stiffness. In addition, the hanger con-
figuration of the arch and the transfer method of loads between arch
and bridge deck are represented by β2.

The reduction factor for the buckling force can afterwards be deter-
mined based on the slenderness, using the following formula:

χ ¼ 1

Φþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2 þ λ2

q ;χ≤1 ð3Þ

Φ ¼ 0;5 1þ α λ−0;2
� �þ λ2

� �
ð4Þ

where the parameterα determines the choice of the buckling curve and
equals 0.34 for buckling curve “b” and 0.21 for buckling curve “a”. This
factor allows for determining themaximal allowable load on the bridge,
Fig. 1. High-speed railway bridge across
or in other words the necessary reduction of the theoretical maximal
load capacity because of buckling:

Nb;RD ¼ χ
A � fy
γM1

ð5Þ

where γM1 is a safety factor, determined by Eurocode [1].

3. Finite element modelling of arch buckling

3.1. Description of the FEM geometry

A finite elementmodel of the Albert Canal Bridge, which can be seen
in Fig. 1, is used as the basis for the research on the resistance to out-of-
plane buckling of arches [11–13]. The detailing and calculation strategy
is envisioned to represent the real-life behaviour of an arch bridge
during buckling. The Albert Canal Bridge was built in 2004, in Belgium
near the city of Antwerp, as part of the new high speed railway between
Antwerp and Amsterdam. The bridge span equals 115m, which is quite
larger than the Albert Canal itself. However, this bridge span has been
chosen in view of the further widening of the canal and the increasing
of fluvial traffic on the canal towards the Port of Antwerp. The two
arches of this steel tied-arch bridge are connected to the lower chord
members by sixteen inclined hangers. The upper bracing consists of
three tubes of large diameters spread along the length of the arch. The
arch springs are tied by the lower chord, consisting of an orthotropic
steel deck plate. The bridge is furthermore supported by neoprene
bearing systems.

To obtain a finite element model which is as accurate as possible,
special attention is given to all details of the bridge, as is being described
further on, especially those which might introduce asymmetry into the
model or might influence the buckling behaviour of the bridge. Since
any out-of-plane movement of the bridge is mainly resisted by the
wind bracings and by lateral clamping of the arch springs, it was impor-
tant to model these as accurate as possible. They are the only part of the
construction, connecting both bridges and resisting lateral forces.

The model has been developed using the SAMCEF Solver Suite,
distributed by LMS Samtech — Siemens [14]. Except for the bearings,
the bridgemodel is constructed of nearly 50,000Mindlin shell elements.
The elements used allow taking into account shear deformations of
thick shells. All parts of the arches, the hangers, the connections be-
tween the hangers and arches, the diaphragms and the bracings have
been modelled in detail.

The finite element model, developed for this bridge can be seen in
Fig. 2. Since the lower chord member of this steel tied-arch bridge con-
sists of an orthotropic plated bridge deck, which has a very specific be-
haviour, the deck plate of the Albert Canal bridge is also modelled in
detail, as can be seen in Fig. 3. The longitudinal and transversal stiffness
of the orthotropic plated deck are distributing the traffic loads to the
lateral lower chord and thus to the arches by means of the hangers.
For further clarification of the illustration of the bridge deck in Fig. 3,
the deck plate has been removed, displaying the trapezoidal stiffeners
the Albert Canal, Antwerp, Belgium.



Fig. 2. Finite element model of the Albert Canal Bridge.
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and the crossbeams. The lower chord consists of two longitudinal
girders with an inverted T-cross-section. These two girders are con-
nected by crossbeams. Furthermore, the deck plate is stiffened by
10 longitudinal closed section stiffeners. These stiffeners cross the
crossbeams through special cut-outs in the webs, to avoid a very nega-
tive fatigue detail.

At the arch springs, the arch compression forces are introduced in
the deck plate. The thickness of the bridge parts and especially the
deck plate and crossbeam, is higher, the bridge deck being equipped
with additional longitudinal and transversal stiffeners, as can be seen
in Fig. 4. Special attention was given to the bearings and the connection
between the arch springs and the lower chord edge members. A first
calculation run of the model has shown that a torsional effect exists at
the arch springs, this fading rapidly with increasing distance to the
springs. Torsion is introduced by the neoprene bearings, which are not
completely identical for the two arches, resulting in unsymmetrical
end conditions. A neoprene bearing system, for which the movement
is restrained transversely, can still move about a millimetre in that
direction. The same applies to the longitudinally and the fully restrained
bearings. This necessitates the use of approximately 2000 volume ele-
ments. A flexible/flexible contact between the neoprene and the fixing
studs has been assumed. For this, a contact element has been created,
with a kinematic constraint that is active when contact occurs and inac-
tive without contact conditions.

Both of the arches of the bridge are stiffened using diaphragms and
longitudinal stiffeners, at the connection of the arch with the hangers
and at the connection of the arch with the tubular wind bracings. The
diaphragms at the connection with the hangers can be seen in Fig. 5.
To allow for a better visibility of the diaphragms, one web plate has
been removed from the model. In the lower flange plate of the arch, a
longitudinal gap is designed, allowing the connection plate with the
hangers to enter the arch without connecting it to the lower flange,
Fig. 3. Detail of the bridge deck in the finite e
which would result in extreme local stresses. This connection plate
also extends into the hangers, which have a rectangular shape. This
plate introduces the hanger forces into the arch. The connection be-
tween the arch and the connection plate is made by two diaphragms,
which are welded to both ends of the connection plate, which ensures
that the hanger forces are transmitted to the arch cross-section as even-
ly as possible. These diaphragms also increase the resistance of the arch
cross-section to distortion.

Other stiffened sections are found at the connectionwith the tubular
wind bracings. The wind bracing tubes are connected to the arch sec-
tions, and on both ends of these bracings, diaphragms are installed in-
side of the arch, as can be seen in Fig. 6. Again, in this figure one web
plate of the arch section, as well as the wind bracing itself are removed
to deliver a better view on the diaphragms. These two diaphragms are
connected to each other by two additional longitudinal stiffeners.

Afterwards, finite element models have been developed for a num-
ber of other bridges which have been built in the period of 2004–2008
as part of the high-speed railway network in Belgium: IJzerlaan Bridge,
Kapelse Steenweg Bridge, Bredabaan Bridge, Schaarbeek Bridge and
Prester Bridge. They incorporate a wide variation in geometries, hanger
configurations, wind bracings, etc. The finite element models of the
other five considered bridges are quite similar. The arches, stiffeners,
bracings and hangers are all built up in a comparable manner. The
main difference between these bridges can be found in the deck plates.
While the larger bridges are equipped with orthotropic steel deck
plates, the smaller ones all have a concrete bridge deck, working to-
gether with steel crossbeams and stiffeners. The same level of detail
has been used in the development of the finite element models. An
overview of themost important dimensions is given in Table 1. In addi-
tion, all of the finite element models were parameterized ensuring that
the geometry could be varied resulting inmore than 50 detailedmodels
of steel tied-arch bridges.
lement model of the Albert Canal Bridge.

image of Fig.�2
image of Fig.�3


Fig. 4. Detail of the arch springs in the finite element model of the Albert Canal Bridge.
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3.2. FEM of buckling

In order to model the buckling behaviour, out-of-plane imperfec-
tions have to be introduced before increasing the loading until buckling
occurs. This process is illustrated in Fig. 7, showing the transversal out-
of-plane displacements of the highest point of the arch of the IJzerlaan
Bridge during all steps of the calculation. The possible out-of-plane im-
perfections are superposed on the actual arch geometry by translating
all points of the cross-section in a stress-free manner before the start
of the calculations (start of the calculation in Fig. 7). All of the enforced
imperfections are based on sinewaves with, for the Albert Canal Bridge,
maximum amplitude of 115mm. This amplitude equals 1/1000 fraction
of the total the arch span,which is the value recommended by the buck-
ling curves from ECCS [3]. The recommended value according to
Eurocode 3 [2] is much higher. Both predictions for the geometrical im-
perfections are listed in Table 1 for all of the considered bridges. Since
concurrent research has proven that the assumed imperfections in
design codes are higher than in reality and that a half wine wave is a
good approximation of the imperfection shape [15], the geometrical im-
perfections for steel tied-arch bridges are assumed to be identical to
those of straight member according to ECCS [3], being 1/1000th of the
arch length. Several possible shapes of out-of-plane imperfections,
Fig. 5. Detail of the stiffening of the arch cross-section at the connection with hangers in
the finite element model of the Albert Canal Bridge.
such as sinusoidal, double sinusoidal and random shapes are then su-
perposed on the model of the bridge, to assess their influence on the
buckling behaviour. The imperfections of both arches of each bridge
can be identical anti-symmetrical or completely unrelated resulting in
another parameterization of the finite element model.

A subsequent calculation is of the elastic–plastic type, using non-
linear plastic material behaviour laws for the steel parts of the structure.
The definition of this material law complies with Eurocode [1] guide-
lines for the finite element modelling of plastic materials. The load
acting on the bridge is increased linearly and the calculation is stopped,
if the displacements of the bridge become as large; any further increase
would inevitably result in an infinite increase of displacements. This
calculation starts while having the dead load of the structure, which is
calculation step “a” in Fig. 7. In the following time steps, the live load
consisting of heavy lorries is placed on the bridge deck and is being
increased stepwise. Starting from the following time step, the weight
of these lorries is increased linearly until the end of the calculation is
reached by divergence of the finite element calculation criterion,
which is step “f” in Fig. 7. The other steps of the calculation, shown in
Fig. 7 are: step “b” which is just before reaching yield strength in the
Fig. 6. Detail of the stiffening of the arch cross-section at the connection with wind
bracings in the finite element model of the Albert Canal Bridge.
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Table 1
Dimensions and load test parameters of the tested bridges.

Albert Canal
Bridge

IJzerlaan
Bridge

Kapelse Steenweg
Bridge

Bredabaan
Bridge

Schaarbeek
Bridge

Prester
Bridge

Bridge length [m] 115 59 60 60 136.2 136.2
Bridge height [m] 15 9.2 12 12 23.6 23.6
Arch height [mm] 1332 680 686 686 1500 1500
Arch width [mm] 920 850 850 850 1100 1100
Geometrical imperfection according to ECCS [2] [mm] 115 59 60 60 136 136
Geometrical imperfection according to Eurocode [1] [mm] 195 163 139 139 210 210
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arch cross-section; step “c” the development of the first plastic hinge
near the top of one of both arches of the bridge; the moment “d”
where the first plastic hinge is fully formed; expansion of the plastic re-
gions in step “e” and finally step “f” which is characterized by fully
formedplastic hinges in both arches afterwhich thebridge structure be-
comes a mechanism. The buckling reduction factor can be calculated
based on the maximum value NFE,pl of the normal force in the finite el-
ement model of the arch bridge before buckling of the arch.

χFE ¼ NFE;pl

A � fy
ð6Þ

This non-linear method to determine the buckling factors is chosen
over the classic calculation method for buckling, which is based on
solving an eigenvalue problem. The difference between both methods
is illustrated in Fig. 8 displaying the possible transversal displacements
according to a classical buckling calculation (full lines) and the non-
linear method proposed here (dashed lines). The advantages of this
non-linearmethod include the possibility to study the internal force dis-
tribution during buckling, the fact that displacements of the structure
before buckling are taken into account, the actual occurrence of plastic
hinges during the calculation, the stabilizing effect both arches can
have on each other and the fact that only live load is increased during
the calculation while dead load remains constant. Whenever χFE is
used in this paper, it represents a buckling factor based on this type of
calculation using plastic behaviour laws, influence of residual stresses,
geometrical imperfections, etc. in an extremely detailed finite element
model. The calculation method will always be described as the “non-
linear method”. To be clear, although the term “non-linear” is used,
this calculation is not merely using a non-linear material model or
bifurcation theory, but specifically residual stresses, geometrical imper-
fections, plastic behaviour, etc. In addition, χFE is assumed to be repre-
sentative for the actual buckling behaviour and used as a measurement
Fig. 7. Transversal displacements of the top of the arch of the IJzerlaan Bridge under
increasing live load.
point for all other buckling calculation methods (Eurocode, simplified
beam models, etc.).

By modelling several variations of each bridge, it became possible to
assemble a database of the actual buckling behaviour of more than 50
steel tied-arch bridges with a span length varying between 45 and
200m. This database is then used to validate both of the designmethods
described in the following paragraphs.

4. Buckling design of arch bridges using simplified beam
models (Method I)

Using finite element models as detailed as the one in Section 3.1 is
not really acceptable for design purposes. Therefore an alternative
designmethod is necessary. Two possiblemethods, based on the princi-
ples of Eurocode 3 [2] design,will be presented in this and the following
paragraph.

A simplified finite element model, using only 1-dimensional beam
elements can suffice to get an accurate estimation of the buckling
strength of an arch bridge. This finite element model does not include
the influence of residual weld stresses, nor geometrical imperfections.
It is a model of a “perfect” version of the arch bridge upon which a sta-
bility analysis can be performed. A stability analysis consists in solving
an eigenvalue problem in the form of:

Kx ¼ χSx ð7Þ

where K represents the structural stiffness matrix, S the geometric stiff-
nessmatrix in stability, x oneof the bucklingmodes and χ the associated
buckling load. The components of vector x are the structure's degrees
of freedom, usually displacements (translations and rotations). The
buckling load must be interpreted as the factor by which the external
loads must be multiplied for the structure to become unstable. This
calculation method is much easier and faster than the one described
Fig. 8. Comparison between a non-linear buckling calculation and a calculation based on
solving the eigenvalue problem.
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Table 2
Arch normal force [kN] under dead load and live load as well as the critical normal forces for buckling.

Albert Canal Bridge IJzerlaan Bridge Kapelse Steenweg Bridge Bredabaan Bridge Schaarbeek Bridge Prester Bridge

Dead load 8430 7835 6514 6514 13,540 13,540
Live load 7775 4621 4376 4376 8614 8614
Ncr based on a simplified beam model 39,824 53,233 44,085 44,085 103,561 103,561
Ncr based on a non-liner model 36,516 51,338 42,772 42,772 91,756 91,756
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in previous paragraphs. Table 2 offers a comparison of the critical buck-
ling loads according to this method as well as based on the non-linear
method described in Section 4. The difference between both methods
is about 10%, with the non-linear method always giving a more conser-
vative value of the buckling force. It is important to remark that the
simplified beam-model always uses a “perfect” arch without initial
imperfections.

The slenderness λ can thus be calculated using Eq. (8) based on the
maximum value NFE,el of the normal force in the finite elementmodel of
the arch bridge before buckling of the arch in a calculation using only
linear elastic material models. This normal force is illustrated in Fig. 9,
showing the simplified version of the finite element model shown in
Fig. 2. The most critical buckling mode, also shown in Fig. 10, appears
to be a sinusoidal deformation of both arches.

λFE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A � fy
NFE;el

s
ð8Þ

When using the slenderness as defined by Eq. (8), it becomes possi-
ble to calculate the reduction factor χ for buckling, using Eqs. (3) and (4)
based on the results of the simplified beam model. Still, the choice
remains whether to use buckling curve “a” or “b” for this calculation
step. If the buckling reduction factor, as determined by the non-linear
method and Eq. (6) is plotted on the same diagram as the buckling
curves, it can be seen that almost all of the arch bridges end up well
above buckling curve “a”. The slenderness, which is drawn on the hori-
zontal axis, is calculated based on the simplified beammodel andEq. (8)
to allow for comparison between χFE and the buckling curves. Most of
points in Fig. 11 are even situated above bucking curve “a0”.

Based on these results, it would seem that buckling curve “a”would
be a safe and economical choice for the design of the out-of-plane buck-
ling behaviour of steel tied-arch bridges. However, most codes advise
the use of buckling curve “b” at present. It seems advisable to use buck-
ling curve “a” for the design of steel tied-arch bridges, having a welded
box section as arch cross-section and with span lengths of about 50 tot
200 m.

5. Buckling design of arch bridges using buckling length
factors (Method II)

Fig. 12 shows a comparison of the buckling reduction factor, once
determined using buckling curve “b” and the slenderness according to
Eq. (2) and once based on the elastic–plastic finite element calculations
(non-linear method) described in the previous paragraphs which
Fig. 9. Normal force [N] in the arch when buckling occurs in a s
represents the actual buckling behaviour. It is, in other words a com-
parison between a method purely using values from Eurocode with a
method strictly using the finite elementmodelling. All of the data points
are situated well above the bisector line. It is thus obvious that the cal-
culation using buckling curve “b” and Annex D [2] underestimates the
actual buckling capacity of the bridge. In addition, the values for bridges
with larger span lengths, longer than 200 m, are situated at the right
side of the diagram in Fig. 12. The other bridges, having smaller span
lengths are situated further from the bisector line, indicating that the
present design codes are even more conservative for shorter spans.
It can be postulated that the most important source of the differences
between both buckling factors is the definition of the dimensionless
slenderness λ, which is determined by the definition of the buckling
length factor β.

Using Eq. (2) and the results of the simplified finite element model
discussed in Section 4 as well as the non-linear model described in
Section 3, it is possible to recalculate the actual values for the buckling
length factor β based on the maximum value NFE,el of the normal force
in the simplified finite element model. The values according to the ta-
bles in Annex D of Eurocode 3 [2] are shown on the horizontal axis of
the diagram in Fig. 13. The vertical axis represents the value of the buck-
ling length factor β for the same fifty arch bridges, but calculated based
on Eq. (2) and finite element calculations. It seems that the variation of
the buckling length factor is in reality much larger than assumed in the
Eurocode 3 [2]. In addition, the difference seems especially important
for the larger span bridges with heavier cross-sections.

A variation that large indicates that other parameters need to be
taken into account in addition to the influencing factors mentioned in
Eurocode [2]. At the moment, Eurocode [2] mainly bases the buckling
length factor on the ratio between the bridge height and the bridge
span, f/l. All of the considered bridges have f/l-ratios varying between
0.16 and 0.19 which gives buckling length factors varying between
0.39 and 0.42 according to Annex D of Eurocode 3 [2] which is a very
small variation. In reality, a much larger variation between 0.20 and
0.55 is found, which suggests that a number of other parameters influ-
ence the buckling length factor.

Because of this large difference in buckling length factors, an alterna-
tive determination formula for the buckling length factor is proposed,
usable for bridges with a height to span ratio between 0.15 and 0.20.
This alternativemethod assumes the buckling length factor to bemainly
determined by the bridge span, l, as was illustrated in Fig. 13, and also
influenced by the bending stiffness of the arch cross-section for out-
of-plane bending, Iz. This is illustrated in Fig. 14. Comparable bridges
are drawn using the same symbol, indicating that longer bridges are
grouped more to the bottom of the diagram. Bridges with the same
implified finite element model of the Albert Canal Bridge.

image of Fig.�9


Fig. 10. Buckling shape of the Albert Canal Bridge according to a simplified finite element model.
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bridge span apparently show a linear connection between the buckling
length factor and Iz. The trend lines for the four groups of data points in
Fig. 14 all cross the vertical axis at a value of about 0.255. Still the slope
Fig. 11. Comparison of calculation results with a simplified beam model with buckling
curves.

Fig. 12. Comparison of buckling factors based on Eurocode according to buckling curve “b”
with results based on detailed non-linear finite element modeling.
of the four groups of data points is clearly different. The trend line for the
largest bridges is almost horizontal, while the smaller bridges clearly
have a much steeper variation. This indicates that a relation exists be-
tween the span length and the steepness of the trend line through
points with comparable out-of-plane stiffness.

Based on these observations, the following formula can be proposed
for the determination of the buckling length factor, usable for bridges
with a height to span ratio between 0.15 and 0.20:

βalt ¼ βA þ Iz βB−lβCð Þ: ð9Þ

Based on the parametric finite element analyses, the coefficients of
Eq. (9) are determined to be: βA = 0.255; βB = 16.939 and βC =
0.114. The length, l, is given in metres, while the out-of-plane bending
stiffness is in m4. The buckling length factor for all fifty considered
arch bridges as determined using Eq. (9) can be compared with the ac-
tual buckling length factor based on detailed non-linear finite element
modelling in Fig. 15. When comparing Fig. 15 with Fig. 13 it is immedi-
ately obvious that the alternative method for calculating the buckling
length factor is a much better representation of the actual buckling
behaviour, since all values are situated in a narrow zone close to the
bisector line of the diagram.

Using the alternative formula for the buckling length factor it is pos-
sible to also calculate an alternative dimensionless slenderness λ, using
Eqs. (2) and (1). Afterwards, Eqs. (3) and (4) and the Eurocode 3 [2] as-
sumption that the use of buckling curve “b” is correct will allow for de-
termining an alternative buckling reduction factor χalt,b. The comparison
Fig. 13. Comparison of buckling length factors as determined by strict Eurocode and
detailed non-linear finite element modeling.
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Fig. 16. Comparison of buckling reduction factor as determined by the alternative formula
for the buckling length factor and buckling curve “b” and from finite element modelling.

Fig. 14. Relation between buckling length factor and the out-of-plane bending stiffness of
the arch cross-section.
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of this analytically determined alternative buckling reduction factor
with the one based on detailed finite element modelling is shown in
Fig. 16. All of the data points are situatedwell above the bisector line, in-
dicating that the proposed calculation method still errs on the safe side.
The proposed method using βalt apparently never overestimates the
buckling capacity of the considered arch bridges.

The results in Fig. 16 are still strictly based on the use of buckling
curve “b” for arch bridges. The same buckling calculation can be made,
once again using the alternative buckling length factor, but assuming
that buckling curve “a” is allowable, leading to an alternative buckling
reduction factor χalt,a. This seams a reasonable assumption sinceMethod
I and Fig. 11 already indicated that the present design norms are too
conservative. The comparison of the buckling reduction factor χalt,a
with χFE is shown in Fig. 17. Comparing both Figs. 16 and 17, it is clear
that all of the data points are situated much closer to the bisector line
when using buckling curve “a”. Still, all of the data points remain
above the bisector line indicating that the buckling resistance is never
overestimated, even when using buckling curve “a”, if the alternative
version of the buckling length factor is used.
Fig. 15. Comparison of buckling length factors as determined by the alternative formula
and from finite element modeling.
6. Conclusion

An elaborate and detailed finite element model of a steel tied-arch
bridge is used to calculate a large number of geometric variations of
six variants of tied-arch bridges with bridge lengths between 50 and
200 m and light wind bracings. Variations include the size of the arch
box section, type of bearing system, load type, hanger configuration
and amplitude and size of the assumed imperfections. The results of
these calculations are then used to determine the resulting relative slen-
derness and buckling reduction factor. When comparing these values
with those determined using Eurocode 3 [2], the results seem quite
favourable. While Eurocode 3 dictates the use of buckling curve “b” for
the design of arch bridges, all calculation results are situated well
above buckling curve “a”. Finally, two possible design methods are
presented, which will result in a less conservative design. For the first
method, the elastic buckling force is determined using a simple finite
element model of a perfect arch bridge. The reduction factor can then
be determined using buckling curve “a”. The second method follows
the guidelines of Annex D of Eurocode 3 [2], but proposes an alternative
Fig. 17. Comparison of buckling reduction factor as determined by the alternative formula
for the buckling length factor and buckling curve “a” and from finite element modelling.
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value for the buckling length factor, based on the out-of-plane bending
stiffness of the arch.

Eurocode design codes [1,2] are proven to be quite conservative, but
if usedwith an adapted buckling length factor, can allow for using buck-
ling curve “a” for the design of arch bridges. Although the calculation
method using an alternative formula for the buckling length factor
seems to be pretty straightforward and easy, the advantages of using fi-
nite element modelling for buckling design cannot be underestimated
since they will always lead to a more accurate design. After all, even
the simplified finite element models allow for taking into account the
influence of the exact geometry of the arch section, the bending stiffness
of the cross-section, the hangers and wind bracings, etc. Although all of
these factors have a limited influence on the buckling behaviour when
considered separately, together they can have an important impact.

Summarizing it seems that the buckling design of steel tied-arch
bridges can be done using strictly analytical formula, as was described
in design Method II. However, since a lot of important design parame-
ters are glossed over, this only seems advisable for predesign. For actual
design situations, a simplified finite elementmodel such as described in
Method I will prove to be a finer design tool for determining the critical
buckling load Ncr, with only limited additional effort. More detailed fi-
nite elementmodelling such as described in Section 3 seems only inter-
esting for design purposes. Still, for both methods, the use of buckling
curve “a” should be considered.

Finally, it is important to underline that all of the discussed results
are only assumed to be valid for short and medium span steel tied-
arch bridges (50–200 m), not relying on heavy wind bracings. It has to
be stressed that this research is only a first indication that a less conser-
vative buckling curve should be considered. Before accepting such a
premise, a more extensive and varied set of calculations is necessary
as well as prototype testing as validation.
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