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Abstract – We propose an amoeba-based 
knowledge discovery or data mining system, that is 
implemented using an amoeboid organism and an 
associated control system. The amoeba system can
be considered as one of the new non-traditional
computing paradigms, and it can perform 
intriguing, massively parallel computing that
utilizes the chaotic behavior of the amoeba. Our 
system is a hybrid of a traditional knowledge-based
unit implemented on an ordinary computer and an 
amoeba-based search unit, with an interface of an 
optical control unit. The solutions in our system can 
have one-to-one mapping to solutions of other well 
known areas such as neural networks and genetic 
algorithms. This mapping feature allows the 
amoeba to use and apply techniques developed in 
other areas. Various forms of knowledge discovery 
processes are introduced. Also, a new type of 
knowledge discovery technique, called 
“autonomous meta-problem solving,” is discussed. 
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I. INTRODUCTION
Knowledge discovery - the notion of computers 

automatically finding useful information is an exciting 
and promising aspect of any application intended to be 
of practical use [1]. 

New computing paradigms - For the past 40 years 
computer hardware has been dominated by the 
traditional CMOS or silicon-based integrated circuits 
(so-called “silicon-based architecture”). Recently, 
computer architecture concepts based on totally new 
principles other than the silicon-based technology have 
been given much attention [2]. This article proposes a 
knowledge discovery scheme employing an amoeba-
based system, one of the new computing paradigms. 

II. AMOEBA-BASED COMPUTING
A plasmodium of a true slime mold Physarum

Polycephalum (Fig. 1a), a unicellular amoeboid 
organism with a single gel layer (cellular membrane) 
encapsulating intracellular sol, can be regarded as a 

kind of massively parallel computer whose elements 
are microscopic actomyosins (fibrous proteins) taking 
contracting or relaxing states. Collectively interacting 
actomyosins in the gel layer generate rhythmic 
contraction-relaxation oscillation (period = 1~2 min) 
of vertical body thickness, and their spatiotemporal 
oscillation pattern induces horizontal shuttle-streaming 
of intracellular sol (velocity=~1 mm/sec) to deform the 
macroscopic shape. Despite its homogeneous and 
decentralized structure, the amoeba exhibits integrated 
computational capacities in its shape deformation [3].  

In [4-8], Aono, et al. showed that such a system can 
implement a chaotic neurocomputing. Because of its 
slow processing speed, it is not proposed as a high-
speed alternative to replace traditional silicon-based 
technology, but it is interesting from a scientific point 
of view for the following reasons: (1) It is the first 
actual, non-silicon based implementation of a chaotic 
neuron model; (2) It exhibits an interesting problem 
solving capability in which the speed may not be an 
issue; (3) There are many chaotic phenomena in nature 
such as lasers and certain properties observed in atoms 
and molecules. The dynamic speed of these 
phenomena is very fast; some can easily surpass their 
current silicon-based counterparts. When the problem 
solving techniques in this scheme are realized in these 
areas, they could lead to a new fast computing 
paradigm. Additional unique features of amoeba-based 
computing are discussed below.  

Figure 1. (a) A true slime mold amoeba. (b) An Au-coated barrier 
resting on an agar plate. The amoeba restricts itself inside the barrier 
where the agar is exposed because of its aversion to metal surfaces. 
(c) Experimental setup. For transmitted light imaging using a video 
camera (VC), a surface light source (LS) placed beneath the sample 
amoeba (SM) was used to emit light of a specific wavelength, which 
did not affect the amoeba’s behavior. The recorded image was 
processed using a personal computer (PC) to visualize the 
monochrome image by using a projector (PJ).  
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III. STRUCTURE AND IMPLEMENTATION
System configuration  
An amoeba-based knowledge discovery system 

consists of three major units, called the Amoeba-Based 
Search Unit (Fig. 1b and SM in Fig. 1c), Silicon-Based 
KD (Knowledge Discovery) Unit (VC and PC in Fig. 
1c), and Optical Control Interface (PJ in Fig. 1c). The 
Amoeba-Based Search Unit can represent, for 
example, a configuration < 1, 0, 0, 1, 0, 0, 1, 0 > at a 
specific time. The Silicon-Based KD Unit is the 
command center of the entire system. It knows the 
target problem and a basic strategy for finding a 
solution, and gives guidance to the amoeba through the 
Optical Control Interface. A key element of the system 
is the Amoeba Unit that searches for a solution in a 
unique fashion.  

Representation of a configuration and a solution  
In this article, a state represented by the amoeba at 

a specific time, such as < 1, 1, 0, 1, 0, 0, 1, 0 >, is 
called a “configuration.” When a configuration 
suffices the problem condition, it is called a “solution.”  

Knowledge discovery process
Some well known basic types of procedures by 

which knowledge discovery is performed are: 
classification, clustering, association, pattern 
recognition, and control. To perform these types of 
procedures, specific techniques are employed. Neural
networks, genetic algorithms and statistical approaches 
are some well known techniques. Further, these 
techniques are generally variations of basic processes, 
such as optimization [9].  

We note that many attribute-based symbolic forms 
of knowledge representation and data mining employ 
the above type of configuration [9]. For example, a 
symbolic form of a rule: “if there is no headache, the 
temperature is high, and a cough exists, then there is a 
cold” can be coded as < 0, 1, 1, 1 >, where the first 0 
represents “there is no headache.”

The amoeba can represent configurations and 
solutions of neural networks, genetic algorithms, and 
so on. Amoeba-based systems have also successfully 
solved many types of problems involving the above-
mentioned processes such as optimization and 
constraint satisfaction. They include the traveling 
salesman problem (TSP) and arranging 1s and 0s to 
satisfy the logical NOR function. The core of this 
paper is to put all the above together. Summarizing, 
typical steps of an amoeba-based knowledge discovery 
system are as follows:

Given a specific application problem, select a 
basic type of procedure by which knowledge 
discovery is performed, e.g., classification. 

Select a technique to be employed, e.g., 
neural networks, and a representation of a 
solution, e.g., a string of bits.  
Identify the type of process to be performed, 
e.g., optimization.  
Consider representing each solution by a 
geometric configuration of the amoeba. They 
should have one-to-one correspondence. The 
coding of the geometric configuration of the 
amoeba, e.g., what it means in terms of the 
original problem, is understood by the 
silicon-based KD unit, not by the amoeba.  
Implement a knowledge discovery algorithm, 
either previously developed for the technique 
(e.g., backpropagation) or for a new one, in 
the silicon-based KD unit. Devise an 
appropriate optical control scheme to drive 
the amoeba to search for a solution.  

Given a target application problem, an amoeba is 
placed, and its geometric configuration is determined. 
Then, the current configuration is fed back to the KD 
unit. Next, the unit determines a desirable direction the 
amoeba should take and sends this information to the 
amoeba through the optical control interface. The 
amoeba evolves to a new configuration, partially on its 
own spatiotemporal dynamics and partially under the 
guidance of the optical stimulation. This leads to an 
intriguing and unique computing paradigm. In the 
following, we show some examples to illustrate 
amoeba-based knowledge discovery systems. 

Figure 2. Experimentally observed problem-solving process. (a) 
Transient configuration <0,0,0,0,0,0,0,1>. Whitelight was projected 
to white rectangular regions (No 1 and No. 7). By means of digital 
image processing, the phase of vertical thickness oscillation was 
binarized into the relaxing (thickness increasing) and contracting 
(decreasing) states, represented by the black and gray pixels, 
respectively. Phase wave propagated from the center to periphery 
with symmetry breaking. (b) First-reached solution <0,1,0,0,1,0,0,1>.

IV. SPECIFIC FORMS of AMOEBA-BASED KNOWLEDGE
DISCOVERY SYSTEMS

A. Knowledge Discovery by Means of Constraint 
Satisfaction Problem Solving 

A small piece of the amoeba (0.75 ± 0.05 mg) cut 
from an individual acts only inside the star-shaped 
barrier structure on an agar plate (Fig. 1b) by 
expanding or shrinking its multiple branches. We show 
a simple example of solving a constraint satisfaction 
problem to illustrate the basic idea of our systems. The 
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problem can be described as follows: We work on a 
cyclic 8-bit string, <xi, i = 1, 8 >; the problem is to 
find a string that satisfies the logical NOR function; 
more specifically, xi = NOR(xi-1, xi+1), i = 1, 8. For 
example, < 1, 1, 0, 1, 0, 0, 1, 0 > is a configuration but 
not a solution, and < 1, 0, 0, 1, 0, 0, 1, 0 > is a 
solution. We can consider this as a kind of an 
optimization problem. As in genetic algorithms, we 
can define a fitness function f as the number of bits 
that satisfy the condition xi = NOR(xi-1, xi+1). The 
problem then is to maximize the fitness function; a 
configuration with f = 8 is a solution. We see that such 
capability of our amoeba-based systems can translate 
to knowledge discovery. For example, most knowledge 
discovery processes in genetic algorithms employ this 
form. The size of the string can be scaled up, or each xi
can assume a fractional value in a real interval [0.0, 
1.0].  

We write yi = 1 when the illumination for node i is 
turned On, whereas yi = 0 represents that the 
illumination is turned Off. The optical control unit 
automatically updates the illumination according to a 
certain rule. Here, we introduce the following rule for 
updating the illumination at 6 sec intervals: The node i
is illuminated (yi(t+1) = 1) to be inactive (xi(t+1) = 0), 
if at least one of its adjacent nodes is active (xi-1(t) = 1 
or xi+1(t) = 1), otherwise (xi-1(t) = xi+1(t) = 0) 
nonilluminated (yi(t+1) = 0) to be active (xi(t+1) = 1). 
This rule establishes the above-mentioned constraint 
satisfaction problem: Find the system configuration <
x1, x2, . . . , x8 > such that all nodes satisfy xi = NOR(xi-

1, xi+1).
It should be noticed that concurrent processing of 

the circularly connected NOR-operators, analogous to 
Dijkstra's “dining philosophers problem”, entails 
deadlock-like unsolvability of the problem when all 
operations are executed in a synchronous manner [5]. 
Suppose that all branches expand or shrink with a 
uniform velocity. From the initial configuration <0, 0, 
0, 0, 0, 0, 0, 0> evoking no illumination, the 
synchronous growth movements of all branches will 
lead to <1, 1, 1, 1, 1, 1, 1, 1> in which all neurons are 
illuminated. Then, all branches shall shrink uniformly 
to evacuate from the illuminations, until they reach the 
initial configuration allowing them to expand again. In 
this manner, the system can never reach a solution, as 
the synchronous movements result in perpetual 
oscillation between <0, 0, 0, 0, 0, 0, 0, 0> and <1, 1, 1, 
1, 1, 1, 1, 1>. The synchronous movements would be 
inevitable, if the amoeba's oscillatory behavior could 
only produce periodic spatiotemporal patterns with 
circular symmetry. However, our system can actually 
solve the problem, because the amoeba produces 

chaotic oscillatory behavior involving spontaneous
symmetry breaking.  

The experiment was started from the initial 
configuration <0, 0, 0, 0, 0, 0, 0, 0> by placing the 
amoeba’s spherical piece at the center of the star-
shaped structure as shown in Fig. 1b. Fig. 2 shows 
some results after this initial configuration. The 
solution (Fig. 2b) was stably maintained for about 4 h. 
This result implies that our amoeba-based computer 
can surely perform the connected NOR functions, and 
so other arbitrary logic functions [10].  

B. Knowledge Discovery by Means of Optimization 
As mentioned earlier, many knowledge discovery 

systems are based on optimization processes. The 
traveling salesman problem (TSP) is a well known, 
hard optimization problem. We have examined if our 
amoeba-based system is capable of solving the four-
city TSP, and found that the system reached an optimal 
solution with a high probability. In this system, we 
apply a modified version of the well-known neural 
network algorithm developed by Hopfield and Tank 
[11]. We have confirmed that our system has high 
optimization capability in solving TSP [7] and that the 
amoeba might be characterized as a set of coupled 
chaotic oscillators [8]. In theoretical models of coupled 
chaotic neurons, it has already been shown that chaotic 
dynamics is highly efficient for solving combinatorial 
optimization problems [12,13].  

C. Knowledge Discovery Based on Neural Network 
Models  

A set of neurons and/or associated weights can be 
represented by an amoeba configuration. The same 
principle employed in the above examples then can be 
applied to the neural network models.  

D. Knowledge Discovery by Means of Autonomous 
Meta-Problem Solving 

This is a totally new concept for a humanoid-like 
problem solving technique. For example, ordinary TSP 
solving is applied to a fixed problem, i.e., the number 
of cities and the distances among the cities never 
change. Our amoeba-based system can not only solve 
the ordinary TSP but also modify the original problem 
and solve the new ones [7].  

V. CONCLUSIONS
A biological organism, such as the amoeba, is a 

hierarchically structured system in which a number of 
self-organization processes run simultaneously on their 
characteristic spatiotemporal scales at multiple levels. 
The multiple levels are: the molecules, genes, proteins, 
cells, tissues, organs, and body parts, as well as the 
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whole body. Because the self-organization process at 
each level involves a certain kind of benefit 
optimization, such as energy minimization and stability 
maximization, it would be reasonable to consider the 
organism as a particular kind of concurrent computing 
system in which a number of computing processes to 
solve different benefit optimization problems are 
executed concurrently by sharing common 
computational resources such as energies and 
structured substances. If the multilevel optimization 
processes are capable of making a self-disciplined 
decision, for example, a decision to accept a loss in 
short-term benefits of body parts for the sake of long-
term gains of the organism’s whole body, the decision 
capability may be exploited for performing some un-
programmed but reasonable operations when 
incorporated in a bio-computer [8].  

Additionally, amoeba-based computing can 
exercise positive and negative feedback together with 
the amoeba’s adaptability to find new ways to survive 
under unexpected environments [7]. By extracting the 
essential dynamics of the multilevel optimization 
processes [14,15], the computing scheme may be 
implemented by other faster materials capable of 
multilevel self-organization. Placing all the unique 
features together, the proposed amoeba-based system 
may open up completely new methods of knowledge 
discovery and data mining. 
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