
Modelling Hardware Verification Concerns Specified in the
e Language: An Experience Report

Darren Galpin
Infineon Technologies
Hunts Ground Road,

Stoke Gifford,
Bristol, England, BS34 8HP

+44 (0)117 9528741

Darren.Galpin@infineon.com

Cormac Driver
Lero,

Distributed Systems Group
Trinity College Dublin,

Ireland
+353 1 8961765

Cormac.Driver@cs.tcd.ie

Siobhán Clarke
Lero,

Distributed Systems Group
Trinity College Dublin,

Ireland
+353 1 8962224

Siobhan.Clarke@cs.tcd.ie

ABSTRACT

e is an aspect-oriented hardware verification language that is

widely used to verify the design of electronic circuits through the

development and execution of testbenches. In recent years, the

continued growth of the testbenches developed at Infineon

Technologies has resulted in their becoming difficult to

understand, maintain and extend. Consequently, a decision was

taken to document the testbenches at a higher level of abstraction.

Accordingly, we attempted to model our legacy test suites with an

existing aspect-oriented modelling approach. In this paper we

describe our experience of applying Theme/UML, an aspect-

oriented modelling approach, to the representation of aspect-

oriented testbenches implemented in e. It emerged that the

common aspect-oriented concepts supported by Theme/UML

were not sufficient to adequately represent the e language,

primarily due to e’s dynamic, temporal nature. Based on this

experience we propose a number of requirements that must be

addressed before aspect-oriented modelling approaches such as

Theme/UML are capable of representing aspect-oriented systems

implemented in e.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features; D.2.10 [Software Engineering]: Design; D.2.2

[Software Engineering]: Design Tools and Techniques

General Terms

Design, Languages, Verification

Keywords

Hardware verification, e, aspect-oriented modelling, Theme/UML

1. INTRODUCTION
Infineon Technologies [1] offers semiconductors and system

solutions for automotive, industrial electronics, chip card and

security domains, as well as applications in communications.

These products are based on development of innovative analog

and mixed signal, radio frequency, power and embedded control

technologies. The company currently holds approximately 22,900

patents related to these technologies.

Specman is an aspect-oriented hardware verification tool

employed by Infineon to verify the design of electronic circuits.

Specman testbenches are written in an aspect-oriented language

called e. e is primarily used by Infineon to construct testbenches

that inject stimuli into a hardware design and check for valid

actions/responses. The continued growth of the testbenches in

recent years has raised the issue of how to maintain and reuse

legacy test code as it increases in complexity. Testbenches are

reused across multiple projects, with different aspect-oriented

extensions being added on a per-project basis. When attempting to

adopt a legacy testbench written by another developer, the number

of aspect-oriented extensions makes it difficult to determine

exactly what behaviour has been defined, particularly when

individual methods can be extended and overwritten in different

sub-types. To compound this problem, knowledge of the part-

iculars of each project-specific design is partially or completely

lost as people move out of Infineon. It was decided that using a

high-level, graphical design language to visualise the testbenches

would speed up knowledge transfer and project understanding,

and thereby aid with maintaining and reusing existing code.

UML was initially used to model the testbenches, but we found

that the object-oriented concepts embodied in UML did not map

to e’s aspect-oriented concepts. Subsequently, an aspect-oriented

extension to UML was adopted. This paper describes our

experience with attempting to model Infineon’s testbenches with

an established aspect-oriented modelling approach called

Theme/UML [2]. We found that while the common aspect-

oriented notions supported by Theme/UML were a better fit with

those in e than the object-oriented notions in UML, there were

still a number of issues that prevented us from successfully

modelling the testbenches. These issues were primarily related to

e’s support for dynamism and temporality - concepts not

commonly supported in aspect-oriented software development

techniques. This situation was exacerbated by a misalignment

between e’s basic units of decomposition and those generally used

in aspect-oriented languages. The result of this experience, and

the contribution of this paper, is a set of requirements for future

aspect-oriented modelling approaches.

The remainder of this paper is structured as follows. Section 2

introduces the e language and discusses its support for aspect-

oriented programming. Section 3 discusses our experience with

Copyright ACM, 2009. This is the author's version of the work. It is

posted here by permission of ACM for your personal use. Not for

redistribution. The definitive version was published in AOSD '09:

Proceedings of the 8th ACM international conference on Aspect-

oriented software development, 978-1-60558-442-3,

http://doi.acm.org/10.1145/1509239.1509267

attempting to model testbenches written in e with Theme/UML.

Section 4 proposes a set of requirements for aspect-oriented

modelling approaches that arose from the work described in

Section 3. Section 5 contains a summary.

2. THE e PROGRAMMING LANGUAGE
e is a domain-specific programming language that is used for

functional verification of electronic designs. The language was

developed in 1997 by Verisity Design (subsequently acquired by

Cadence Design Systems [3]) as part of their Specman tool and

from its inception contained constructs supporting aspect-oriented

programming. e was standardised as IEEE 1647 [4] and a second

revision of the standard was published in 2008. In this section we

introduce the e language by describing its key concepts and

examining its aspect-oriented features.

At e’s core is a pseudo-random generator that facilitates creation

of input stimuli that can be applied to the design under test

(DUT). All variables are assigned a random value unless either

marked as not generatable or constrained to be a specific value. e

contains constructs that allow the response of the DUT to be

monitored and checked. In addition, there are constructs to

support assessment of the functional coverage of the DUT (as

opposed to simply the code coverage).

A typical electronic design consists of a processor, peripherals

and connecting busses, all of which are usually verified

individually before being tested together. The individual

peripherals are verified in their own testbenches using e-

Verification Components (eVCs). eVCs are testbench elements

written in e that encapsulate a protocol or some specific behaviour

and are used to stimulate the design, test the response and

measure whether certain state combinations and system responses

have been observed, i.e., assess the functional coverage. The most

common type of eVC is one targeted at a specific bus protocol,

and contains a bus master to generate stimuli, a bus slave to

receive responses from a DUT master, a bus arbiter to control the

system, protocol checkers to ensure that the correct bus behaviour

is observed at all times, and a scoreboard to check for end-to-end

data transmission correctness throughout the system.

In providing support for the development of such testbenches, e

brings together concepts from several languages:

• It has a basic object-oriented programming model with

automatic memory management and single inheritance

in a similar manner to Java.

• e natively supports aspects that can cut across multiple

objects within an e domain.

• e supports constraints as object features, using

constraints to refine object models. The execution

model resolves the constraints, picking random values

that satisfy the constraint set.

• e is strongly typed, like Pascal.

• e has concurrency constructs for hierarchical

composition, similar to hardware description languages

such as Verilog and VHDL.

• e contains temporal logic constructs that borrow from

linear temporal logic and interval temporal logic.

e supports aspect-oriented programming through two main

mechanisms, one for objects and one for methods. Unlike object-

oriented languages such as Java, e does not have classes, but

instead has units and structs. Units represent objects that exist

throughout the simulation time, e.g., bus masters and slaves.

Structs represent objects that are created and destroyed during

simulation time, e.g., bus data packets that are passed between

agents in a system.

Both units and structs can have aspect-oriented extensions applied

to them in the same manner through the use of the extend

construct. This is similar to the concept of inter-type declarations

in AspectJ. The extend construct adds code to an existing

module in an aspect-oriented manner (as opposed to creating a

new module as per standard inheritance, which is achieved in e

using the like keyword). Listing 1 illustrates a simple example

of how a unit and a struct can have aspect-oriented extensions

applied to them. An empty object is defined in each case. The

base object is extended by adding a new variable to the object.

The same mechanism can be used to extend types. Types are used

to represent data, are globally visible, and can be user-defined

enumerated variables as well as the pre-defined numerical and

Boolean types common to most languages. The type extension

mechanism is illustrated in Listing 2 where an extra type is added

to dog_type (which is a collection of possible dog types).

Listing 1. Unit and struct extension

Listing 2. Type extension

Method extension is handled via three aspect-oriented constructs,

is also, is first, and is only. Consider the following

methods:

(a) bark() is {out(“Bark!”)};

(b) bark() is first {out(“1st message”)};

(c) bark() is also {out(“Last message”)};

(d) bark() is only {out(“Miaow!”)};

(a) is the original method declaration and prints the message

“Bark!” when executed. When (a) and (b) are deployed together,

two messages are printed - first “1st message” and second “Bark!”.

If (c) is also active then three messages are printed, with “Last

message” printed last. However, if (d) is loaded after (a), (b) and

(c), the is only construct dictates that all previous definitions

are ignored and the latest definition becomes the one that is used.

In this case the only message printed is “Miaow!”.

As illustrated in Listing 2, the original dog_type type had two

concrete types, and the aspect extension adds a third type to the

list. Aspect-oriented method extensions can be applied to both

unit base_unit { };
extend base_unit {
 a : unit;
};

struct base_struct { };
extend base_struct {
 b : bool;
}

type dog_type : [poodle, bulldog];
extend dog_type : [pug];

existing and newly created types. Listing 3 illustrates how

different types can have different behaviours based on aspect-

oriented method extensions. In this way complex layers of aspects

can be introduced to the system to change the observed behaviour.

Listing 3. Aspect extensions within polymorphic extensions

e also supports aspect-oriented extension of temporal events and

coverage objects in a similar way to how it handles method

extension. A temporal expression is a combination of events and

temporal operators that describe behaviour, temporal relationships

between events, field values, variables and other items during a

test. An event may be emitted during execution of a method either

by directly invoking emit event or because a signal to which

the event is tied has changed. For example, event a is

rise('clk')@sim is an event that is true if the signal clk

within the DUT rises on a simulator tick. Because of the use of

is, an event can be extended using the is only extension (is

first and is also are not supported for temporal events).

Consequently, a new aspect could be created in order to redefine

event a, e.g., event a is only fall('clk')@sim. This

action results in event a looking for the falling edge of clk at

sim rather than the rising edge.

Coverage objects, triggered by specific events, are used to collect

functional coverage information about key architectural and

micro-architectural features of the DUT. Listing 4 illustrates the

syntax of a coverage object.

Listing 4. Coverage object syntax

If a coverage object has been defined, new objects can be added

using the is also extension. The <options> field in the

cover object definition allows further constraints to be added. A

typical use of this facility is to add constraints that restrict

evaluation of the coverage object to times when certain conditions

hold. For example, the statement when=FSM==idle restricts the

evaluation of the coverage object to times when the finite state

machine has the value idle at the time the coverage event

occurs. The options can also be extended, giving the user the

ability to extend the coverage object within an aspect, as

illustrated by example in Listing 5.

Listing 5. Aspect extension of coverage objects

The example shows that the cover group1 barking is triggered

when the barking event is observed and the dog_kind is

recorded. The extension adds a restriction to this, only allowing

the evaluation to occur when the variable weight is greater than

50. This type of extension can be performed on coverage objects

as well as cover groups. The extension differs from the others

described previously in that the extension itself can contain a

constraint on when it is executed, allowing different aspects of the

same object to record different ranges of information. It can only

be performed on cover objects.

In the next section we discuss our experience with attempting to

model testbenches written in e with Theme/UML, a UML-based

aspect-oriented modelling language.

3. MODELLING HARDWARE VERIFIC-

ATION CONCERNS SPECIFIED IN e
UML is a general-purpose, language-independent modelling

approach that is widely used to design object-oriented systems.

We initially attempted to model our testbenches using UML but

found that it lacked support for the aspect-oriented features of e.

We subsequently investigated existing aspect-oriented modelling

approaches and decided to attempt to model our testbenches with

Theme/UML. Theme/UML is an aspect-oriented extension to

UML that supports fine-grained decomposition and composition

of both functional and non-functional concerns, including those

that are crosscutting. Theme/UML proved a better fit than

standard UML to the aspect-oriented constructs in e. However,

there were a number of instances in which Theme/UML could not

adequately capture behaviour that can be specified with e. These

issues arose primarily due to the dynamic, temporal nature of e.

Figure 6. Theme/UML representation of is also

3.1 Aspect-Oriented Type Extension
Figure 6a illustrates the Theme/UML design of an aspect theme

and a base theme. The aspect theme, called AspectA, is designed

so that the crosscutting behaviour contained in the method

extsnA() is executed after any method from the base system

(represented in this example by method() in the base theme

bound to the aspect). The result of composing the aspect with the

1 A cover group contains one or more coverage objects.

cover barking is {
 item dog_kind;
};

cover barking using is also when =
 weight > 50{};

unit dog {
 dog_kind : dog_type;
 bark() is empty;

 when pug dog {bark() is also
 (out("I am a Pug"))};
 when poodle dog {bark() is also
 (out("I am a Poodle"))};
};

cover <event>[using <options>] is [also] {
 item name [:type=expr] [using <options>]
};

base is shown in Figure 6b, where the crosscutting behaviour

executes after the base method. This example shows how

Theme/UML can be used to graphically represent e’s is also

extension. The is first and is only extensions can be

modelled in a similar fashion.

However, handling type extension is more problematic. One

possible way of handling type extension is to have a base class

that is extended to create a new class, e.g., we could create a base

class called dog and a child class pug that is a specialisation of

dog. However, in e the child class does not exist until it is

generated at runtime, and it is not guaranteed that it will be

generated, i.e., it would be possible to constrain the environment

to only generate poodles and bulldogs, in which case although the

possibility of a pug exists, it is never realised. It is difficult to

graphically express this concept in Theme/UML due to its

foundations in UML and the misalignment between the object-

oriented concepts in UML and the dynamic, aspect-based module

creation in e. An attempt can be made using sequence diagrams as

they have the ability to represent object creation over time with

lifelines. However, behaviour described with sequence diagrams

become difficult to visualise and understand as designs grow and

aspect-oriented extensions are added. Development of a domain-

specific modelling language to explicitly address these issues (and

the others mentioned throughout this paper) would be superior to

the continued use of UML-based approaches to model e.

3.2 Language Dynamicity and Constraints
UML is best suited to modelling static languages, i.e., those in

which all variable types are known at compile time. This raises

questions about how Theme/UML models can cater for e’s

dynamic language constructs. To model the dog example from

listings 2 and 3 we could have a dog generator that creates dog

structs, and so might have multiple copies that are created and

destroyed during the program execution. However, we might also

have a constraint that says keep dog_kind in

[poodle,pug], meaning that a bulldog can never be created

although the code for it exists. Formal constraints can be added to

variables via the Object Constraint Language (OCL), but we

found we could not model constraints that are modified via aspect

extension.

Listing 6. Aspect-oriented code extension

Listing 6 illustrates how constraints can be extended via aspects.

The soft constraint restricts the bark_type to only be yelp

and growl. Soft constraints can be overridden at any time,

although the constraint engine will try to satisfy soft constraints if

they overlap with hard constraints. For the extended poodle

dog, the bark_type is constrained further via an aspect.

Graphical representation of this form of constraint extension is not

catered for in UML.

Furthermore, different constraints can interact to reduce the

allowed state space, and may even contradict. As constraints can

be statically analysed, it should be possible to highlight possible

contradictions within UML by indicating how each constraint

reduces the range of allowed possible values for the variable in

question. A constraint set might allow a bulldog to be generated at

certain times, but not at others, but we found it is not possible to

describe temporally conditional existence with UML.

3.3 Timed Behaviour
The next question is how to represent a) timed methods that are

tied to an event or clock to synchronise their execution b)

temporal expressions that can be events or temporal checks and c)

coverage objects. We found that it is possible to treat all of these

as different types of method, as they have to be instantiated within

a unit or struct. An event is a method that raises a flag when the

event is emitted or when a sequence of other events is observed. A

temporal expression is a piece of Boolean logic that evaluates to

true or false and again raises a flag – a false for the entire

expression is observed as a fail, whereas a true is observed as a

pass. Coverage objects are also methods that increment counters

for coverage purposes.

However, the main problem with modelling time constructs is that

UML does not cater for real-time by default, making it difficult to

model the difference between a standard method, e.g.,

method(), and a timed method, e.g., method()@clock, both

of which are treated differently in e. Although a number of real-

time extensions for UML have been proposed [5, 6], Theme/UML

does not currently support design of real-time behaviour and

therefore it was not possible to adequately model e’s time

constructs. However, even in the case that a real-time profile for

UML had been adopted, we would still have faced challenges

when attempting to model e’s aspect-oriented behaviour. For

example, the temporal behaviour of a method can be modified via

an aspect by either changing the event to which the method is

synchronised or by changing the code within a method.

Additionally, e enforces different extension rules depending on

which construct is being extended. For example, is only

extension is not allowed for cover objects, but is allowed for

methods. These behaviours are not supported by standard real-

time profiles for UML.

3.4 Tool Support
From a more practical perspective, an additional problem is that

aspect-oriented modelling is not currently supported in any of the

commercial modelling tools that Infineon might use. The

Theme/UML diagram presented in Figure 6 was created manually

in a graphics package. Consequently it is not possible to load up

an entire e environment and visualise it graphically with a tool

that provides the quality guarantees that a large organisation

requires. Tool support for Theme/UML has been developed

recently and is described by Carton et al. in [6]. However, this

tool supports standard Theme/UML and therefore cannot fully

model e systems due to the issues discussed throughout this

section.

4. REQUIREMENTS FOR ASPECT-

ORIENTED MODELLING APPROACHES
In this section we present some requirements for aspect-oriented

modelling approaches based on our experience with attempting to

type bark_type : [yelp, growl, howl];
type dog_kind : [poodle, pug, bulldog];

struct dog {
 bark : bark_type;
 dog_kind : dog_kind;
 keep soft bark_type in [yelp,growl];
};

extend poodle dog {
 keep bark_type=yelp;
};

model e using aspect-oriented extensions to UML. These are

requirements that must be addressed if an aspect-oriented

modelling approach wishes to support representation of hardware

verification testbenches.

4.1 Visualising Aspect Interaction
The standard aspect development approach at Infineon involves

endeavouring to group all related behaviour for a given aspect

into one file, and creating a new file for each new extension to the

original aspect (especially when reusing an existing piece of

verification intellectual property). With a number of files under

consideration, very different behaviour can occur depending on

the order in which the files are loaded. Consider the example in

Listing 7. If file A is loaded, followed by file B and file C, and

method() is invoked, the message “I am C” is printed. If file A

is loaded, followed by file C and file B, and method() is then

invoked, two messages are printed, “I am C” followed by “I am

B”. The order in which sub-types are defined, extended via

aspects and resolved at runtime also impacts program execution.

Listing 7. Extended e code in three files

The effect of load order is extremely important, and leads to one

of the biggest headaches with aspect-oriented programming in e –

debugging. When trying to find the exact piece of code to modify,

the developer has to bear in mind that it may have been extended

via aspects in several places, and previous extensions might have

been completely overridden by new is only extensions. Conse-

quently, carefully inserted debug messages can be completely

ignored due to an unknown override.

We believe that in order to address this issue, a means of

visualising an aspect-oriented system and how the aspects interact

and resolve themselves is required. The modelling technique

could be three-dimensional, with a time axis showing the effect of

loading in different aspects at different times. This would allow

the user to view the interaction effects of different aspect

extensions as they are applied, and thereby get a greater

understanding of the effects of load order on the resulting system.

4.2 Legacy System Support
Any modelling language adopted by Infineon must be able to

support representation of legacy systems. We have been using the

e language for eight years and our most significant problems

concern support of our legacy systems. eVCs are typically written

by small teams who may no longer be in the company or might

not be available when necessary. These eVCs are imported into

larger environments to test modules such as memory controllers.

A memory controller is connected to a bus driven by an eVC, and

to various memory models connected via call-backs to the e

testbench so that both end-to-end scoreboarding and functional

correctness assessment can be carried out. A typical development

process is one in which a new memory class has to be supported,

with new features added to the memory controller. The new

memory model therefore has to be incorporated into the testbench,

existing checks have to be updated, new checks have to be added,

and if the bus protocol has been extended (perhaps by adding

sideband signals), the eVC must be extended. If the original

authors are not present for consultation, undertaking this work is a

significant challenge, particularly in the absence of an adequate

means of viewing and reasoning about the existing system. In our

opinion, the lack of visualisation software for graphically

representing aspect-oriented systems is the single largest problem

facing the adoption of aspect-orientation in the hardware

verification community.

4.3 Visualising Dynamic Behaviour
Any modelling approach adopted by Infineon has to understand

the dynamic nature of e, as structs can be generated and destroyed

during a simulation. Struct generation occurs in two ways - start-

time generation and runtime generation. In start-time generation, e

generates pseudo-random values to apply to all variables within

the system, satisfying all constraints, and creating all units and

structs that should exist at time 0. In runtime generation, in-line

generate statements are used within methods to create new structs.

Listing 8. Dynamic struct generation

In Listing 8, method() runs, and every cycle it loops and re-

runs. Therefore, at every clock cycle a new dog is generated by

the gen method that constrains the dog kind to be one of two

types (although the dog may have other types available, as in

Listing 2). This new dog is then added to the list_of_dogs,

and if the new list size is greater than 4, the dog at the bottom of

the list is removed, i.e., the struct is effectively deleted. We

therefore need to be able to model a creation point within the code

and assign constraints to the creation point to restrict the range of

structs that need to be modelled as possibilities at the creation

point. There also needs to be some way of indicating the

destruction of structs, and when they are removed from the

system. However, there is nothing stopping the user extending

inbuilt methods such as pop0() using an is only extension to

change the behaviour of the system, so that it no longer deletes

structs but instead manipulates them or even generates new

structs. Essentially, a modelling approach cannot rely on

keywords for inbuilt methods to establish what is happening but

needs some way of visualising both the dynamic creation and

// file A:
method() is {
 print "I am A";
};
// file B:
method() is also {
 print "I am B";
};
// file C:
method() is only {
 print "I am C";
};

unit kennel {
 !list_of dogs : list of dog_struct;
// ! Means do not generate at start
//time, leave it null.
 method()@clk is{
 while TRUE {
 wait cycle;
 gen dog keeping {it.kind in
 [pug,poodle]};
 list_of_dogs.add(dog);
 if list_of_dogs.size()>4 {
 list_of_dogs.pop0()};
 // pop0() removes the bottom-most
 // list element
 };
 };
};

destruction of modules and the way in which this behaviour is

affected by aspect extensions.

4.4 Modelling Time
The e language supports the concept of time (as discussed in

Section 3.3 and illustrated in Listing 8). Therefore, any modelling

approach used to represent e systems has to understand the

concept of real-time and time consumption. In addition to

emitting events, a time-consuming method can wait for an event,

sync to an event, or wait a number of clock cycles. This can lead

to the situation in Listing 8 where a perpetually-running method is

set off. If method() was not synchronised to a clock, a 0-cycle

delay loop is set off, causing the simulation to hang (the Specman

simulator would execute method() forever without advancing

time, and the system would lock). A modelling environment

should be able to detect the difference between the two types of

method, and highlight such a scenario as a potential problem.

An additional problem with modeling time is that the temporal

behaviour of a method can be completely changed via aspect

extension. Time consuming methods are synchronised to clocking

events, and these events can be extended via aspects as discussed

in Section 2. For example, an aspect could be used to change the

behaviour described in Listing 8 by altering both the amount of

time consumed when performing the wait cycle and the

frequency with which method() repeats. In addition, the

method itself can be extended using is also, is only or is

first and these extensions can specify temporal behavior.

We also believe that a means to graphically represent time in e

would be of significant benefit when handling temporal

expressions (TEs). TEs are used to describe and check the

behavior of the DUT over time, and are associated with sampling

events. These events can themselves be extended, as illustrated in

Listing 9.

The expect statement is a runtime check that is triggered every

time the clk event is true, i.e., on the rising edge of clk in the

DUT. The expect statements looks for TE1 being true on one

rising edge of clk, and TE2 being true on the next rising edge of

clk. The is only extension modifies the clk event so that it

is now true on every falling edge of clk, which implicitly

changes when the expect statement is triggered. The temporal

check in the expect statement does not have to be over one

clock cycle, it could be over several cycles and involve several

events or TEs, and each one can be extended using aspects.

4.5 Integration With Other Languages
Any approach for modelling hardware verification environments

must be able to interface with concurrent High-level Design

Languages (HDLs) such as Verilog and VHDL, as well as

hardware-specific extensions of conventional languages such as

SystemC that support hardware modelling. All hardware

verification environments model some type of system behaviour,

and sample the DUT to check for correct operation. The DUT

should ideally be modelled as well, but generally it is not. In

addition, the ideal verification development process includes

development of an early C model of the DUT which is later

replaced with the actual HDL model. Therefore, the modelling

approach used to represent an aspect-oriented hardware

verification environment needs to be able to reference external

components that might be implemented in different languages and

that might change over time.

5. Summary
In this paper we have discussed our experience with using an

aspect-oriented modelling language to model hardware verific-

ation testbenches written in the e programming language. The

dynamic, temporal nature of e meant that adequately modelling e

testbenches was beyond the scope of Theme/UML, primarily due

to its foundations in UML. Based on these findings we have

proposed a number of requirements that should be addressed by

aspect-oriented modelling approaches if they aspire to modelling

hardware verification environments.

Acknowledgements
This work was supported, in part, by the Science Foundation of

Ireland grant 03/CE2/I303_1 to Lero – the Irish Software

Engineering Research Centre (www.lero.ie).

References
[1] Infineon Technologies. Online; accessed 17 September 2008.

http://www.infineon.com/

[2] Clarke, S. and Baniassad, E. Aspect-Oriented Analysis and

Design: The Theme Approach, 1st ed. Addison-Wesley,

2005.

[3] Cadence Design Systems. Online; accessed 17 September

2008. http://www.cadence.com/

[4] The e Functional Verification Language Working Group.

Online; accessed 17 September 2008.
http://www.ieee1647.org

[5] Douglass, B.P. Real-Time UML: Advances in the UML for

Real-Time Systems, 3rd ed. Addison-Wesley, 2004.

[6] Gherbi, A. and Khendek, F. UML Profiles for Real-Time

Systems and their Applications. Journal of Object

Technology 5, 4 (May – June), pp. 149 – 169.

[7] Carton, A., Driver, C., Jackson, A. and Clarke, S. Model-

Driven Theme/UML. To appear in Transactions on Aspect-

Oriented Software Development, Springer 2009.

 event clk is rise(‘clk)@sim;

 expect TE1 => TE2 @clk;

 event clk is only fall(‘clk)@sim;

Listing 9. Aspect-oriented temporal extension

