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Abstract

In a real environment, acoustic and language features often vary depending on the speakers, speaking styles and topic changes.
To accommodate these changes, speech recognition approaches that include the incremental tracking of changing environments
have attracted attention. This paper proposes a topic tracking language model that can adaptively track changes in topics based on
current text information and previously estimated topic models in an on-line manner. The proposed model is applied to language
model adaptation in speech recognition. We use the MIT OpenCourseWare corpus and Corpus of Spontaneous Japanese in speech
recognition experiments, and show the effectiveness of the proposed method.
© 2010 Elsevier Ltd. All rights reserved.
Language model; Latent topic model; Topic tracking; On-line algorithm; Speech recognition

1. Introduction

Speech recognition is a promising technique for automatically transcribing broadcast news, multimedia archives
on the web, meetings, and lecture recordings for information retrieval (e.g., Makhoul et al. (2000) for broadcast news
and Glass et al. (2007); Hori et al. (2009) for lectures). In these scenarios, speech includes temporal variations caused
by changes of speakers, speaking styles, environmental noises, and topics. Thus, speech recognition models have to
track temporal changes in both acoustic and language environments. This paper focuses on tracking temporal changes
in language environments, as shown in Fig. 1. Fig. 1 depicts temporal change tracking by using a dynamic language
model of a lecture.

The study of dynamic language models beyond N-gram deals with the temporal changes in language environments,
which is a main theme of language model research (see Rosenfeld, 2000; Bellegarda, 2004 in detail). The dynamic
language models are mainly classified into two types, i.e., those that estimate word (N-gram) probabilities directly
and indirectly. The cache-based language model (Kuhn and De Mori, 1990) is representative of the direct estimation
approaches. This model uses an N-gram probability obtained from a cache text (e.g., thousands of words in a text
history), in addition to a normal (static) N-gram probability. The new N-gram probability is obtained by linearly
interpolating the two probabilities. The other techniques employed in the direct estimation approaches are based on the
maximum a posteriori (MAP) criterion. Then, the N-gram probability is obtained by the N-gram count, which is linearly
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Fig. 1. Tracking temporal changes in language environments.

interpolating the two N-gram counts, unlike the probability based interpolation in the cache approach (Federico, 1996;
Masataki et al., 1997).

The indirect estimation approaches mainly focus on mixture weight estimation where each mixture component
is represented by a topic dependent word probability and each mixture weight corresponds to a topic proportion
probability. The mixture models in the context of the language models are obtained by clustering articles (Iyer and
Ostendorf, 1996) or by applying the well-known (Probabilistic) Latent Semantic Analysis (LSA, PLSA) to the language
model (Bellegarda, 2000; Gildea and Hofmann, 1999). Then, the number of free parameters in the indirect estimation
approaches corresponds to the number of topics, and is often fewer than that in the direct estimation approaches, where
the number of free parameters corresponds to the vocabulary size. This property is effective especially for an on-line
adaptation strategy for language models that mitigates over-training problems, and therefore this paper focuses on
tracking temporal changes within the indirect estimation approaches.

LSA was originally formulated in the context of information retrieval (Deerwester et al., 1990) in the natural language
processing field, and is extended to a probabilistic framework based on PLSA, and Latent Dirichlet Allocation (LDA)
(Hofmann, 1999; Blei et al., 2003). PLSA and LDA assume that samples in a set of sentences (e.g., documents in text
processing and chunks (sets of utterances) in speech processing.1) are exchangeable, and therefore they cannot deal
with topic dynamics where samples are regarded as a time series, and have a time order. There are several approaches for
extending PLSA and LDA to deal with topic dynamics in the context of information retrieval. Some of the approaches
consider the sudden (discrete) topic changes caused by scene switching. These are modeled by the state transition from
topic to topic (Griffiths et al., 2005; Gruber et al., 2007; Chen et al., 2009).2 On the other hand, there is a different type of
topic changes, where the topics are changed gradually by maintaining the topic continuity between several utterances.
This dynamics can be modeled in terms of the time evolution of topics, which proceeds smoothly when the past and
current topic models are interpolated, and again the original PLSA and LDA can not deal with the dynamics, either.
We have considered such topic changes, and proposed the topic tracking model (TTM) (Iwata et al., 2009) for web
data mining by extending the LDA to involve time-dependent hyper-parameters in the word and topic probabilities.

The TTM extends PLSA and LDA to track changes smoothly across chunks by establishing a dynamics between
the previous and current topic model parameters. This establishment of the dynamics is often used in the Kalman filter
based approach. The standard Kalman filter approach simply assumes a continuous value as a system output, which is
modeled by a Gaussian distribution. This assumption is not suitable for language modeling since the language model

1 This paper uses discrete values (e.g., document, chunk, and utterance) for time. For reference, dynamic topic models with continuous time have
also been discussed in Wang et al. (2008) recently.

2 These are applied to speech recognition (Hsu and Glass, 2006; Sako et al., 2008).
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regards a discrete value (word count) as a system output. To solve the Kalman filter equation for a discrete value
case, dynamic topic model (Blei and Lafferty, 2006) uses a softmax activation function to convert discrete values to
continuous values and a model is estimated by using variational Bayes. On the other hand, the TTM and dynamic
mixture model (Wei et al., 2007) consistently employ discrete values by using multinomial distributions and their
conjugate distributions (Dirichlet distributions) in topic dynamics. Therefore, they can obtain a simple update equation
of a topic probability in an on-line manner. In addition, the TTM can estimate the topic probability and the word
(unigram) probability at the same time, unlike the dynamic mixture model. Furthermore, these probabilities depend
on the long-range history by considering the past several terms in the history, unlike the dynamic mixture model and
dynamic topic model, which consider only the previous term. Then, the TTM estimates the precision parameter of
the topic probability for each past term, where the parameter corresponds to the degree of contribution of data in a
certain past term of the long-range history. Therefore, the TTM can deal with long-range history by considering the
importance of the data in each past term, which is powerful in practice. This estimation process is performed with a
stochastic EM algorithm.

This paper considers that the topic changes discussed above are also important in speech recognition, and proposes
a language model adaptation technique, the topic tracking language model (TTLM), that tracks the topic changes in
speech by modifying the TTM. The TTLM is basically formulated as a TTM for on-line topic and word (unigram)
probability extraction in Section 2. By integrating the model into an N-gram language model and further integrating it
with the unlabeled (unsupervised) incremental adaptation of speech recognition in Section 3, the TTLM enables us to
realize language model adaptation with topic tracking. We also discuss how to set the size of incremental adaptation
step in speech recognition, since it is difficult to provide document or web page units for speech, unlike information
retrieval. To show the effectiveness of the TTLM, we performed speech recognition experiments using lectures provided
by the MIT OpenCourseWare corpus (MIT-OCW, Glass et al., 2007) and oral presentations provided by the Corpus of
Spontaneous Japanese (CSJ, Furui et al., 2000). The experiments involved the unlabeled (unsupervised) incremental
adaptation of language models for these talks.

2. Topic tracking language model

This section describes the topic tracking language model (TTLM) by considering the application of the topic
tracking model (TTM) to speech recognition. First, Section 2.1 provides a general description of a latent topic model,
and extends this model by establishing topic dynamics in Section 2.2. Then, Section 2.3 introduces the estimation of
TTLM parameters and Section 2.4 considers the long-term dependences of TTLM. Section 2.5 discusses an interpolation
of the latent topic model and topic-independent word probability in the TTLM framework. The mathematical notations
used in this paper are summarized in Table 1.

2.1. Latent topic model

As we begin the formulation, we first define a chunk unit as a subsequence of a long word sequence concatenating
all the word sequences in a speech transcription corpus. Spontaneous speech such as lecture and oral presentation does
not have an explicit chunk size unit unlike a text corpus (e.g., an article unit in newspapers and a page unit on the
web). In general, it is very difficult to set a chunk unit for talks, and this paper regards a set of adjacent utterances or
sentences as a chunk, and uses chunk index t as a unit of time evolution in the following formulation and experiments.

A latent topic model considers the word sequence W = {w1, . . . , wm, . . .} and the corresponding latent topic
sequence Z = {z1, . . ., zm, . . . } as follows:

W = {w1, . . . wM1︸ ︷︷ ︸
Wt=1

, . . . , wMt−1+1, . . . , wMt︸ ︷︷ ︸
Wt

, . . .},

Z = {z1, . . . zM1︸ ︷︷ ︸
Zt=1

, . . . , zMt−1+1, . . . , zMt︸ ︷︷ ︸
Zt

, . . .}, (1)

where wm and zm indicate the mth word and latent topic, respectively, and they are hierarchically represented by subset
sequences of Wt and Zt at chunk t, which is a longer time unit than a word. Mt denotes the sequential serial number of
the last word at chunk t. Then PLSA assumes that the unigram probability of wm at chunk t is decomposed into topic
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Table 1
Notation list.

wm : mth word
zm : mth corresponding latent topic
t : Chunk index
Wt : Word sequence at chunk t
Zt : Latent topic sequence at chunk t
Mt : Sequential serial number of last word at chunk t
l : Word index
k : Topic index
L : Number of words
K : Number of latent topics
φ : Topic probability
θ : Word probability
Φ : Set of topic probability parameters
Θ : Set of word probability parameters
γ : Dirichlet hyper-parameters of topic probability in LDA
φ̂ : Mean parameter of topic probability
θ̂ : Mean parameter of word probability
α : Precision parameter of topic probability
β : Precision parameter of word probability

and word probabilities as follows:

P(wm|t)︸ ︷︷ ︸
Unigram probability

=
K∑

k=1

P(k|t)︸ ︷︷ ︸
Topic probability

P(wm|k, t)︸ ︷︷ ︸
Word probability

�
K∑

k=1

φtkθtkwm,

(2)

where k is a topic index (i.e. zm = k) and K is the number of topics. Topic probability φtk means a probability where
topic k exists at chunk t with φtk≥ 0 and

∑
kφtk = 1. When the mth word has an index l, i.e., wm = l, word probability

θtkl means a probability where word l exists in topic k at chunk t with θtkl≥ 0 and
∑

lθtkl = 1. The joint distribution of
data W and latent topics Z can be represented with a set of topic probability parameters Φ and a set of word probability
parameters Θ as follows:

P(W, Z|�, �) =
∏

t

P(Wt , Zt|φt , �t)

=
∏

t

Mt∏
m=Mt−1+1

φtzmθtzmwm,

(3)

where we assume that each joint distribution at a chunk is independent and identically distributed, conditional on
parameters φt = {φtk}Kk=1 and �t = {{θtkl}Ll=1}

K

k=1 at chunk t. L is vocabulary size. Based on this joint distribution, the
topic and word probability parameters (Φ and Θ) can be estimated by using the EM algorithm to maximize

∑
ZP(W,

Z | Φ, Θ) (Hofmann, 1999).
In addition to Eqs. (2) and (3), LDA considers the prior distribution of topic probability φt, which is represented by

the Dirichlet distribution with hyper-parameter γ = {γk}Kk=1 as follows:

P(φt|γ) ∝
K∏

k=1

φγk−1
tk . (4)

The joint distribution (P(Wt, Zt | Θt, γ)) is computed by marginalizing Eq. (3) and this prior distribution with respect
to φt (Blei et al., 2003). This equation shows that topic probability φt is independent of other chunks, and does not
exhibit any explicit dynamics.
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Fig. 2. Graphical representation of topic tracking language model (TTLM).

2.2. Topic tracking language model (TTLM)

To model the dynamics of topic probability φt, the TTLM assumes that the mean of the topic probabilities at the
current chunk are the same as those at a previous chunk unless otherwise indicated by the newly observed data. In
particular, we use the following Dirichlet distribution, in which the mean of the current topic probabilities is the same
as the mean of the previous probabilities φ̂t−1k and the precision is αt.

P(φt|φ̂t−1, αt) ∝
K∏

k=1

φαtφ̂t−1k−1
tk . (5)

We use the Dirichlet distribution as a conjugate distribution, which simplifies its parameter estimation. Precision αt

provides a degree of unchangeability thus making it possible to follow the temporal changes of topics flexibly. Similar to
the topic probability, the TTLM can also focus on the following prior distributions of word probabilities θtk = {θtkl}Ll=1
for word index l with vocabulary size L,

P(θtk|θ̂t−1k, βtk) ∝
L∏

l=1

θβtkθ̂t−1kl−1
tkl , (6)

where βtk is the precision of the word dynamics probability.
The generative process of the TTLM is as follows:

1. Draw φt from Dirichlet(αtφ̂t−1)
2. For each topic k = 1, . . ., K:

(a) Draw θtk from Dirichlet(βtk θ̂t−1k)
3. For each word in chunk t (m = Mt−1 + 1, . . ., Mt):

(a) Draw zm from Multinomial(φt)
(b) Draw wm from Multinomial(θtzm )

Fig. 2 is a graphical representation of the TTLM, where shaded and unshaded nodes indicate observed and latent
variables, respectively.
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2.3. Inference

We estimate the TTLM parameters based on a stochastic EM algorithm, which alternately iterates (1) the Gibbs
sampling of latent topics and (2) the maximum joint likelihood estimation with respect to the precision parameters (αt

and βt = {βtk}Kk=1) (Wallach, 2006).

2.3.1. Gibbs sampling of latent topics
We infer latent topics based on collapsed Gibbs sampling (Griffiths and Steyvers, 2004), which requires the joint

distribution of data and latent topics of the precision parameters (P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt)). This joint distribution
is represented by marginalizing the joint distribution of data and latent topics conditional on topic and word probability
parameters (Eq. (3)) and their prior distributions (Eqs. (5) and (6)) as follows:

P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) =
∫∫

P(Wt , Zt|φt , �t)× P(φt|φ̂t−1, αt)P(�t|�̂t−1, βt)dφtd�t . (7)

Here, we assume the following independence,

P(φt , �t|φ̂t−1, �̂t−1, αt, βt) = P(φt|φ̂t−1, αt)P(�t|�̂t−1, βt). (8)

This assumption means that the dynamics of the word and topic probabilities are independent of each other, as described
in the previous section.

Since we use conjugate priors for parameters φt and Θt, we can integrate out these parameters in the joint distribution
by substituting Eqs. (3), (5), and (6) into Eq. (7) as follows (See Appendix A.1):

P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) =
Γ (αt)∏

k

Γ (αtφ̂t−1k)

∏
k

Γ (ntk + αtφ̂t−1k)

Γ (nt + αt)

×
∏
k

Γ (βtk)∏
l

Γ (βtkθ̂t−1kl)

∏
l

Γ (ntkl + βtkθ̂t−1kl)

Γ (ntk + βtk)
, (9)

where Γ (x) is the gamma function. nt is a count of words at chunk t, ntk is a count of words assigned to topic k at chunk
t, and ntkl is a count of word index l assigned to topic k at chunk t. Thus, the joint distribution is represented by the
counts of words and hyper-parameters (φ̂t−1, �̂t−1, αt , and βt).

From Eq. (9), Gibbs sampling assigns the mth word (wm) in chunk t to a latent topic (k) by using the following
assignment probability (See Appendix A.2):

P(zm = k|Wt , Zt\m, φ̂t−1, �̂t−1, αt, βt) ∝
ntk\m + αtφ̂t−1k

nt\m + αt

ntkwm\m + βtkθ̂t−1kwm

ntk\m + βtk

. (10)

Zt\m is a set of topics that does not include the mth word. n·\m means a count of words that does not include the mth
word. Eq. (10) means that the assignment probability is proportional to the ratios of the word counts (ntk\m, ntkwm\m)
where these counts are linearly interpolated by the previously estimated probabilities (φ̂t−1 and �̂t−1) and the precision
parameters (αt and βt).

2.3.2. Maximum likelihood estimation of joint distribution
Then, precision parameters αt and βt can be obtained by the maximum likelihood estimation of the joint distribution

(Eq. (9)), and precision of topic probability αt can be estimated by the following update equation (Minka, 2000).

αt ← αt

∑
k

φ̂t−1k

(
�(ntk + αtφ̂t−1k)−�(αtφ̂t−1k)

)
�(nt + αt)−�(αt)

, (11)



446 S. Watanabe et al. / Computer Speech and Language 25 (2011) 440–461

where � is a digamma function. Similarly, the precision of word probability βtk can also be estimated as follows:

βtk ← βtk

∑
k

θ̂t−1kl

(
�(ntkl + βtkθ̂t−1kl)−�(βtkθ̂t−1kl)

)
�(ntk + βtk)−�(βtk)

. (12)

After the iterative calculation of Eqs. (10)–(12), we can obtain Zt, αtk, and βt, respectively.
From the obtained Zt, αtk, and βt, the means of φt and θtk are obtained as follows:

φ̂tk = ntk + αtφ̂t−1k

nt + αt

,

θ̂tkl = ntkl + βtkθ̂t−1kl

ntk + βtk

.

(13)

Therefore, the unigram probability at chunk t can be computed by plugging φ̂tk and θ̂tkl into φtk and θtkl, respectively,
in Eq. (2). Eq. (13) means that the word and topic probabilities are obtained by the ratios of the word counts (ntk
and ntkl) where these counts are linearly interpolated by the previously estimated probabilities (φ̂t−1 and �̂t−1) and
the precision parameters (αt and βt). The θ̂tkl result is similar to those of the N-gram estimation approaches based on
the maximum a posteriori (MAP) criterion (Federico, 1996; Masataki et al., 1997) since the TTLM and MAP-based
approaches are within a Bayesian framework. Therefore, the TTLM can include the MAP-based N-gram estimation
approaches, in addition to topic tracking via φ̂tk.

Note that φ̂tk and θ̂tkl are used for the hyper-parameters of the prior distributions at the succeeding chunk t + 1. This

on-line algorithm only requires data at chunk t (Wt) and the hyper-parameters at chunk t− 1 (φ̂t−1 and {θ̂t−1k}Kk=1) to
estimate the parameters at chunk t, which can reduce the required computation time and memory size.

2.4. Topic tracking language model by capturing long term dependences

If we consider the long term dependences in topic dynamics (i.e., S chunks before t), we have to consider the time
dependence from the (t− S)th chunk to the tth chunk in the TTLM.

Such a long-term TTLM can be modeled as follows, instead of using Eqs. (5) and (6),

P(φt|{φ̂t−s, αts}Ss=1) ∝
K∏

k=1

φ(α∗φ̂k)t−1
tk ,

P(θtk|{θ̂t−sk, βtks}Ss=1) ∝
L∏

l=1

θ(βk∗θ̂kl)t−1
tkl ,

(14)

where

(f ∗ g)t �
S∑

s=1

ftsgt−s. (15)

Here, φt and θtk depend on hyper-parameters {φ̂t−s, αts}Ss=1 and {θ̂t−sk, βtks}Ss=1, respectively. Then, the TTLM param-
eters are obtained in a similar way to that used in Section 2.3. In fact, equations for the Gibbs sampling of latent topics
and the maximum likelihood estimation of the joint distribution of the TTLM with long-term dependences can be
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obtained by using the following substitution for those in Section 2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αtφ̂t−1k → (α ∗ φ̂k)t
βtkθ̂t−1kl → (βk ∗ θ̂kl)t

αt →
S∑

s=1

αts

βtk →
S∑

s=1

βtks

. (16)

Therefore, the remainder of this section only provides the analytical results of the equations of the TTLM with long-term
dependences.

2.4.1. Gibbs sampling of latent topics
The assignment probability (Eq. (10)) is rewritten as follows:

P(zm = k|Wt , Zt\m, {φ̂t−s, �̂t−s, αts, βts}Ss=1) ∝ ntk\m + (α ∗ φ̂k)t

nt\m +
∑

s

αts

ntkwm\m + (βk ∗ θ̂kwm )t

ntk\m +
∑

s

βtks

. (17)

2.4.2. Maximum likelihood estimation of joint distribution
The update equations of αt (Eq. (11)) and βtk (Eq. (12)) are rewritten as follows:

αts ← αts

∑
k

φ̂t−sk

(
�(ntk + (α ∗ φ̂k)t)−�((α ∗ φ̂k)t)

)

�(nt +
∑
s′

αts′ )−�(
∑
s′

αts′ )
,

βtks ← βtks

∑
k

θ̂t−skl

(
�(ntkl + (βk ∗ θ̂kl)t)−�((βk ∗ θ̂kl)t)

)

�(ntk +
∑
s′

βtks′ )−�(
∑
s′

βtks′ )
.

(18)

The means of φt and θtk in Eq. (13) are also rewritten as follows:

φ̂tk = ntk + (α ∗ φ̂k)t

nt +
∑
s′

αts′
,

θ̂tkl = ntkl + (βk ∗ θ̂kl)t

ntk +
∑
s′

βtks′
.

(19)

Thus, the long-term TTLM can also model the long-term dynamics in an on-line algorithm by using previ-
ous chunks. Similarly, the TTLM can also use current and Fth future chunks by considering the parameter set

{φ̂t−s, �̂t−s, αts, βts}Ss=−F
from the (t− S)th chunk to the (t + F)th chunk, and by changing the summation to

∑S
s=−F

in Eqs. (17)–(19). Although it lacks causality, there are many effective off-line applications in speech recognition that
do not require the causality. This extension is also an advantage of the TTLM, since it can be formulated as a Kalman
filter for a discrete value, and can naturally use current and future data, as well as past data, which corresponds to the
“Kalman smoother” from the analogy with the Kalman filter theory.

2.5. Interpolation of latent topic model and topic-independent word probability

In a practical situation, we sometimes face a problem, namely that unigram probabilities obtained via topic models
cannot be appropriately estimated (e.g., due to data sparseness) and this degrades the performance compared with that
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of conventional unigram models. To prevent this degradation, we extend a latent topic model from Eq. (2) as follows:

P(wm|t) =
K∑

k=1

φtkθtkwm + φt0θ0wm

=
K∑

k=0

φtkθtkwm,

(20)

where θ0wm is a topic-independent word probability. This extension means that a new unigram probability is represented
by a linear interpolation of topic-based and universal unigram probabilities. Then, the dynamics of topic probability
φt in Eqs. (5) and (15) are respectively extended as follows:

P(φt|φ̂t−1, αt) ∝
K∏

k=0

φαtφ̂t−1k−1
tk . (21)

and

P(φt|{φ̂t−s, αts}Ss=1) ∝
K∏

k=0

φ(α∗φ̂k)t−1
tk . (22)

Namely, an additional mixture weight φt0 is appended to the original φt (i.e., φt = {φt0, φt1, . . ., φtk, . . ., φtK} in this
extension). Note that this extension does not change the estimation process in the inference part of the TTLM framework
in Sections 2.3 and 2.4. We can obtain αt and φ̂tk by preparing a topic-independent word probability (θ0wm ) and simply
considering the k = 0 component in the estimation process. This kind of interpolation technique is very familiar in
language modeling where the interpolation coefficient parameters are estimated under the maximum likelihood EM
algorithm on held-out data (e.g., Section 3.1 in Bellegarda (2004)). The key aspect of this interpolation in the proposed
approach is that the estimation of the interpolation coefficient parameter φt0 is involved in the stochastic EM algorithm
in the TTLM. Therefore, we do not have to prepare the held-out data for the maximum likelihood EM algorithm, and
the parameter estimation is performed within the TTLM framework, as well as the other topic probability parameters.

Thus, the TTLM is basically formulated as a TTM for on-line topic and word probability extraction in Section 2.
The next section introduces the TTLM implementation for the unlabeled (unsupervised) incremental adaptation of
language models.

3. Implementation for unlabeled (unsupervised) incremental adaptation of language models

This paper mainly focuses on temporal changes of topics. Therefore, we only consider the dynamics of the topic
probabilities φtk while the word probability for each chunk is fixed (i.e., θtkl≈ θkl). In fact, since the word probability
in our language model adaptation tasks has a large number of parameters, word probability estimation would cause
an over-training problem. θkl is initially obtained via conventional LDA by using training data. Then, a TTLM for the
unlabeled (unsupervised) incremental adaptation of language models is realized by employing the following steps:

(1) A word sequence in chunk t (Wt) is obtained by using a speech recognizer (decoder) with a previously estimated
N-gram model (P(wm|wm−N−1

m−1 , t − 1)).
(2) The TTLM updates a current unigram model (P(wm|t)) by using the obtained word sequences (Wt) and previously

estimated TTLM parameters ({φ̂t−s}Ss=1).

(3) To obtain a current N-gram model (P(wm|wm−N−1
m−1 , t)), a rescaling technique based on the dynamic unigram

marginal is used, as discussed in Section 3.1.
(4) A recognition result is obtained by using a decoder with the adapted N-gram model (P(wm|wm−N−1

m−1 , t)).

These four steps are undertaken incrementally for each chunk, as shown in Fig. 3.
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Fig. 3. Unlabeled (unsupervised) incremental adaptation of language models in speech recognition based on the TTLM.

Thus, we can realize the unlabeled (unsupervised) incremental adaptation of language models in an on-line manner
within the TTLM framework.3 The following subsections describe a unigram rescaling technique, which is used at
Step 3) in the implementation and the discussion about the chunk size and long-term dependency.

3.1. Unigram rescaling

Once we obtain a unigram probability using the TTLM, we can compute the N-gram probability of the TTLM
by rescaling the original N-gram probability with the ratio of the new unigram probability to the original one. This
paper uses the dynamic unigram marginal (or known as minimum discrimination information (MDI) adaptation) as a
unigram rescaling technique, which can consider back-off probabilities in an N-gram probability (Kneser et al., 1997;
Niesler and Willett, 2002). First, we define the following unigram scaling factor for word l:

π(l, t)�
(

P(l|t)
P(l)

)ρ

, (23)

where P(l) and P(l | t) are the original unigram probability and the new unigram probability obtained with the TTLM,
respectively. ρ is a tuning parameter. Then, the new N-gram probability with a history of word sequence hN−1 is
represented as follows:

P(l|hN−1, t) =

⎧⎪⎪⎨
⎪⎪⎩

π(l, t)

C0(hN−1, t)
P(l|hN−1) if n(hN−1, l) > 0

1

C1(hN−1, t)
P(l|hN−2, t) else

, (24)

3 To achieve totally “unsupervised” incremental adaptation, we have to consider how to obtain an appropriate chunk size, as well as label
information. This paper uses voice activity detection (e.g., Fujimoto et al., 2007) to divide long speeches automatically into sets of utterances. This
paper also examines experimentally how to set an appropriate chunk size from the set of utterances.



450 S. Watanabe et al. / Computer Speech and Language 25 (2011) 440–461

where

C0(hN−1, t) =

∑
l:n(hN−1,l)>0

π(l, t)P(l|hN−1)

∑
l:n(hN−1,l)>0

P(l|hN−1)
, (25)

and

C1(hN−1, t) =
1−

∑
l:n(hN−1,l)>0

P(l|hN−2, t)

1−
∑

l:n(hN−1,l)>0

P(l|hN−1)
. (26)

Then, P(l | hN−2, t) is also iteratively calculated by π(l, t), P(l | hN−2), and P(l | hN−3, t). Thus, the unigram rescaled
language model is obtained by modifying the back-off coefficients.

3.2. Chunk size and long term dependency

As regards the chunk size setting, this paper adopts an utterance-based unit, i.e., a chunk unit (t) is composed of
several utterances. This is because automatic speech recognition often uses utterance units for decoding, which can be
automatically extracted by using voice activity detection (VAD), and an on-line topic model based on utterance units is
desirable. Therefore, this paper examines experimentally how to set an appropriate chunk size from the set of utterances
in Section 4.1. Especially in the second experiments (Section 4.2), we used one utterance as the chunk size but we
used the many terms (S) in the history of the long time dependency to model the topic dynamics across utterances.
The reason of adopting one utterance per chunk is that one utterance is the smallest unit, which holds some topic
information and can be efficiently integrated to the current automatic speech recognition system. Although the number
of terms in history is fixed during one talk, the precision parameter (αts), which denotes the degree of contribution of
the utterances of a certain term to the topic probability, is automatically estimated from data utterance by utterance,
based on Section 2.4. Therefore, the TTLM can automatically disregard any useless terms in a long history based on
this estimation process. Consequently, the TTLM prefers the long term setting of history, if the precision parameter
estimation process works perfectly.

4. Experiments

We performed speech recognition experiments to show the effectiveness of the TTLM for the unlabeled (unsuper-
vised) incremental adaptation of language models. We used two speech recognition tasks; the MIT OpenCourseWare
corpus (MIT-OCW, Glass et al., 2007) and the Corpus of Spontaneous Japanese (CSJ, Furui et al., 2000). MIC-OCW
is mainly composed of classroom lectures, while CSJ is mainly composed of conference presentations. These were
given by one speaker on one subject (e.g., physics, computer science). In such cases, the topics change gradually and
the topic continuity is maintained between utterances. Therefore, the TTLM would be suitable for modeling the topic
changes in these talks, and we examined the effectiveness of tracking the topic changes using the TTLM.

4.1. Experiments for MIT OpenCourseWare

We designed our first experiments based on MIT-OCW to examine the effectiveness of the TTLM in a simple
application of on-line topic models without using the interpolation technique, as described in Section 2.5, and without
adjusting the tuning parameter in the unigram rescaling technique, as described in Section 3.1. Generally, on-line topic
models consider documents or web pages, which include more than hundred words, as time units (Wei et al., 2007;
Iwata et al., 2009). However, it is difficult to provide such a long unit for speech. Actually, most speech recognition tasks
do not consider such long speeches and their corpuses do not provide us with information about document-like units.
Therefore, in our first experiments, as an initial attempt, we examined the relationship between the speech recognition
performance and the length of unit (chunk size) by using the TTLM and we also examined the effectiveness of the
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Table 2
Experimental setup for MIT-OCW.

Sampling rate 16 kHz
Feature type MFCC + energy + � + �� (39 dim.)
Frame length 25 ms
Frame shift 10 ms
Window type Hamming

# of categories 51 (42 phonemes + 9 noises)
Context-dependent 2193 HMM states (3-state left to right)
HMM topology 32 GMM components

Language model 3-gram (Good-Turing smoothing)
Vocabulary size 70,397
Perplexity 194.1
OOV rate 1.4 %

long-term dependence of the TTLM. We adopted MIT-OCW for this attempt because MIT lectures are classroom
lectures, each of which is more than 1 h long and contains an average of more than 10,000 words. Therefore we can
use document-like units for the TTLM (e.g., if we use 64 utterances (approximately 500 words) as one chunk, we can
monitor 20-epoch dynamics.). We also provide examples of topic dynamics in a lecture about physics.

4.1.1. Speech recognition setup
The training data consisted of 147 lectures from MIT-OCW (128 h of speech data and corresponding 6.2M word

transcriptions). The evaluation data consisted of 4 lectures (4.5 h, 43,002 words). Table 2 shows the acoustic and lan-
guage model information. We used a standard acoustic model, which is a context-dependent model with a continuous
density HMM. The HMM parameters were estimated by employing the MIT-OCW training data based on the conven-
tional maximum likelihood approach. Lexical and language models were also obtained by employing the MIT-OCW
training data. We used a 3-gram model with a Good-Turing smoothing technique. The Out Of Vocabulary (OOV) rate
was 1.4 % and the testset perplexity was 194.1. For decoding, we used a WFST based decoder. The acoustic model
construction and LVCSR decoding procedures were performed by using the NTT speech recognition platform SOLON
(Hori, 2004). During the adaptation process, we fixed the number of topics at 50 (i.e., K = 50). We also fixed the scaling
factor ρ = 1 in Eq. (23). Namely we use the dynamic unigram marginal Kneser et al. (1997) as a unigram rescaling
technique in the implementation and experiments for a simple evaluation of the effect of the topic models.

This work used a set of utterances as a chunk (t). The utterances were obtained by segmenting speech using voice
activity detection (Fujimoto et al., 2007). We then prepared several sizes of chunk unit consisting of 16, 32, 64, 128, and
256 utterances for use in the experiments. The lectures in the evaluation set contained an average of 1422 utterances,
and the average numbers of chunks in one lecture were 89, 45, 23, 12, and 6.

4.1.2. Experimental results
As a preliminary investigation, we first examined the effectiveness of the TTLM with/without using on-line word

probability �̂ estimation for 64 utterances per chunk and S = 10 long-term dependence. We found that the approach
improved the recognition performance (38.5 %) from the baseline performance (38.8 %). However, by comparison
with the performance obtained when only using the topic probabilities �̂, there was a 0.3 % degradation that was
probably due to the sparse training data problem. In addition, the TTLM with the word probabilities are sensitive to
the word recognition errors in unlabelled (unsupervised) speech recognition where the word recognition errors directly
affect the word (unigram) probabilities. This sensitivity would also be the reason of the degradation. Therefore, we
decided to use only the topic probabilities in the language model adaptation in the following experiments.

Then, we examined the TTLM performance as regards the length (S in Section 2.4) of the long-term dependence in
the TTLM for a fixed chunk size (64) as shown in Fig. 4. The baseline recognition results were obtained by using the
initial 3-gram language model.

When S = 0, the approach becomes semi-batch LDA, which estimates the unigram probability using only the data
in a chunk. It does not consider the time dependence between different chunks. From Fig. 4, we found that the TTLM
was up to 0.4 % better than semi-batch LDA. This result means that considering the topic dynamics across chunks in
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Fig. 4. Dependence of long-term effect of TTLM on length.

the TTLM was effective as regards the lectures. Although the TTLM prefers a long term setting of history (S) if the
estimation process of the precision parameter works perfectly, as discussed in Section 3.2, the performance degraded
slightly at S = 20. Therefore, the result indicates that the TTLM depends on the S setting practically even with the
process for estimating the precision parameters. However, we also found that the degradation was not very large, and
the S setting was not very sensitive when we chose an S value around 15. Therefore, we used a fixed S (S = 15) for the
following experiments.

Then, we examined the TTLM performance with respect to chunk size by changing the number of utterances in a
chunk from 16 to 256, as shown in Fig. 5. We also examined the batch LDA performance using all the adaptation data
for each lecture. With a small chunk size (16 utterances), the TTLM performance was not greatly improved owing to
the problem of the sparseness of the data available for estimating the TTLM parameters. As the chunk size increased,
the recognition performance improved from the baseline performance by up to 0.6 % at 64 utterances per chunk.
However, the 128 and 256 utterance results were again not greatly improved, and the performance was the same as
that of batch LDA. This outcome was reasonable since TTLM theoretically converges with batch LDA if we increase
the chunk size to include all the adaptation utterances. Therefore, these results indicate that the TTLM could track the
topic dynamics if we choose an appropriate chunk size.

Finally, we summarized the TTLM results (64 utterances per chunk) with the baseline results and those for batch
adaptation based on LDA and semi-batch adaptation based on LDA (64 utterances per chunk), as shown in Table 3.
We compared performance by using the testset perplexity for 3-gram language models, and the word error rate. We
also added the testset perplexity for 1-gram language models since this score is a direct measure of TTLM and LDA
performance that focuses on the 1-gram probabilities. From Table 3, batch LDA and semi-batch LDA achieved improved
performance in terms of the word error rate. However, semi-batch LDA in particular degraded the perplexities owing

Fig. 5. WER of TTLM for each number of utterances per chunk.
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Table 3
Perplexity and word error rate for baseline, batch adaptation based on LDA, semi-batch adaptation based on LDA, and on-line adaptation based on
TTLM.

Baseline LDA (batch) LDA (semi-batch) TTLM (on-line)

Perplexity (1-gram) 599.7 521.8 641.1 499.3
Perplexity (3-gram) 194.1 175.0 218.7 170.4
Word error rate (%) 38.8 38.7 38.6 38.2
Error reduction rate (%) – 0.3 0.5 1.5

Fig. 6. Time evolution of topic proportion probabilities.

to the over-training problem. On the other hand, although the word error rate gain was not very large since the language
model contributed little to the LVCSR performance, the performance of the TTLM steadily improved in terms of the
perplexities and word error rate. Therefore, the TTLM performance improved sufficiently, and thus could successfully
realize topic tracking in lectures.

4.1.3. Example of topic tracking
The advantage of the TTLM is that the time evolution of topic proportion probabilities can be observed by monitoring

the topic probability for each chunk (φt). Fig. 6 shows an example of the time evolution of a lecture about physics where
the topic proportion probabilities were obtained from the φt value of the TTLM (64 utterances per chunk). To check
the contents of each topic (k), Table 4 shows the 10 highest probability nouns from the word probabilities of Topics
3 (θk=3), 15 (θk=15), and 26 (θk=26). Table 4 shows that Topic 3 represents classical mechanics, Topic 15 represents
astronomy, and Topic 26 represents (time) unit. The lecture theme was physics and the fact that Topic 3 was always
a dominant topic for all chunks in Fig. 6 constitutes a reasonable result. At the beginning of the lecture (1st chunk),

Table 4
Top 10 high probability nouns in word probabilities of Topics 3 (θk=3), 15 (θk=15), and 26 (θk=26).

Topic 3 (∼ classical mechanics) Topic 15 (∼astronomy) Topic 26 (∼ (time) unit)

m Light Percent
Energy Degrees Time
Force Angle Dollars
Mass Frequency Times
Point Energy Minutes
Velocity Direction Day
Direction Waves Bit
v Sun Year
Times Star Hour
Speed Speed Half
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Table 5
An example of the recognition result (HYP) and its correct reference (REF) at 1st chunk, where astronomy and (time) unit topics scored high
probabilities. S and I mean the substitution and insertion errors, respectively.

Topics 15 and 26 scored high probabilities, and this indicates that this lecture began by using astronomy as an example
with time unit. Tables 5 and 6 show examples of the recognition results and their correct references, which also support
the above discussion.

Thus, the TTLM could monitor topic movements by using the topic proportion probabilities. This result also indicates
the effectiveness of the TTLM in appropriately tracking the topic dynamics in the lectures.

Finally, we discuss the problem in this experiment. Although the MIT-OCW experimental results reveal the effec-
tiveness of the TTLM, we found that if we reduced the chunk size, the performance did not improve greatly due to
the shortage of words in a chunk. On the other hand, most speech recognition tasks deal with several-minute sen-
tences (a few hundred words) uttered by many speakers, and they cannot prepare document-like units for the TTLM.
Another problem we face is how to prepare chunk units. Since automatic speech recognition is often used as a real-time
interface, on-line adaptation with a large chunk size causes a serious latency problem. Generally, automatic speech
recognition uses utterance units (a few seconds) for decoding, which can be automatically extracted by using voice
activity detection (VAD), and therefore, an on-line topic model based on utterance units is desirable. Therefore, our
second experiments applied the TTLM to the more challenging task of one-utterance-unit topic tracking (one utterance
as a chunk unit).

4.2. Experiments for Corpus of Spontaneous Japanese

This section describes large vocabulary continuous speech recognition experiments with on-line topic model adap-
tation performed using the CSJ. CSJ is mainly composed of conference presentations, and the average length of each
presentation in the testset is 20 minutes, and is shorter than MIT-OCW. Since CSJ can not provide so long chunk unit
as MIT-OCW, we adopt one utterance as a chunk unit (one utterance unit), which is useful in practical applications.
Although the shortage of words in an utterance-based unit might pose a serious problem, we used an interpolation
technique, as described in Section 2.5, and a dynamic unigram marginal technique, as described in Section 3.1, to
mitigate the problem. Compared with the MIT-OCW task, the CSJ task officially provides three kinds of testset and we
can use them for development and evaluation sets. Therefore, we can use various language model adaptation techniques
whose parameters can be tuned by using the development set. This experiment mainly compares the TTLM with other
adaptation techniques.

Table 6
An example of the recognition result (HYP) and its correct reference (REF) at 11th chunk, where a classical mechanics topic scored high probability.
S and I mean the substitution and insertion errors, respectively



S. Watanabe et al. / Computer Speech and Language 25 (2011) 440–461 455

Table 7
Experimental setup for CSJ.

Sampling rate 16 kHz
Feature type MFCC + energy + � + �� (39 dim.)
Frame length 25 ms
Frame shift 10 ms
Window type Hamming

# of categories 43 phonemes
Context-dependent 5000 HMM states (3-state left to right)
HMM topology 32 GMM components
Training method Discriminative training (MCE)

Language model 3-gram (Good-Turing smoothing)
Vocabulary size 100,808
Perplexity 82.4 (Dev.) 81.5 (Eval.)
OOV rate 2.3 % (Dev.) 2.9 % (Eval.)

4.2.1. Speech recognition setup
The training data for acoustic model construction consisted of 961 talks from the CSJ conference presentations (234 h

of speech data), and the training data for language model construction consisted of 2672 talks from all the CSJ speech
data (6.8M word transcriptions). We used a development set consisting of “CSJ testset 2” to tune some parameters
(e.g., language model weight, number of topics, and the length of the long-term dependence) and an evaluation set
consisting of “CSJ testset 1” with the tuned parameters. The development set consisted of 10 talks (2.4 h, 26,798
words), and the evaluation set consisted of 10 talks (2.3 h, 26,329 words). Table 7 shows acoustic and language model
information (Nakamura et al., 2006). We used a state-of-the-art acoustic model, which is a context-dependent model
with a continuous density HMM. The HMM parameters were estimated by employing the conference presentations
in the CSJ based on a discriminative training (Minimum Classification Error: MCE) approach. Lexical and language
models were also obtained by employing all the CSJ speech data. We used a 3-gram model with a Good-Turing
smoothing technique. The OOV rates were 2.3 % (Dev.) and 2.9 % (Eval.) and the testset perplexities were 82.4 (Dev.)
and 81.5 (Eval.). The acoustic model construction and LVCSR decoding procedures were also performed with the NTT
speech recognition platform SOLON (Hori, 2004).

This experiment used one utterance as one chunk (t) unlike the MIT-OCW experiments in Section 4.1, since the CSJ
testsets consisted of shorter talks than the MIT-OCW testset. Namely the CSJ testsets consisted of oral presentations
of academic conferences (∼ 15 minutes for each talk), while the MIT-OCW testset consisted of coursework lectures
(more than 1 h for each lecture). Utterances were obtained by segmenting speech by using voice activity detection.

We used Cache adaptation (Kuhn and De Mori, 1990), the Dynamic Mixture Model (DMM) (Wei et al., 2007),
and Batch LDA (Blei et al., 2003) for comparison. The language model based on Cache adaptation uses the following
unigram model from the cache unigram model Pcache(wm|t) and the original unigram model P(wm) (Kneser et al.,
1997):

P(wm|t) = λPcache(wm|t)+ (1− λ)P(wm), (27)

where λ is an interpolation parameter. The length of the long-term dependence in the Cache adaptation and TTLM
was fixed at 10 epochs (utterances) i.e., S = 10. The interpolation ratio of the Cache adaptation and the numbers of
latent topics in DMM, batch LDA, and TTLM were also tuned by using the development set. All of the language
model adaptation techniques were applied to unigram probability, and a 3-gram language model was obtained by using
the unigram rescaling technique described in Section 3.1. Then, scaling factor was set at 0.5 (ρ = 0.5) in Eq. (23) by
referring to speech recognition results for a dynamic unigram marginal (Kneser et al., 1997).

4.2.2. Experimental results
Table 8 compares the word error rates obtained with Baseline 3-gram, Cache, DMM, Batch LDA, and TTLM. In

addition, we also list error reduction rates and the numbers of improved speakers from the baseline results.
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Table 8
Word error rate (WER) and error reduction rate (ERR) for the development and evaluation sets of the baseline 3-gram (non-adapted), Cache
adaptation, dynamic mixture model (DMM), batch LDA, and TTLM approaches.

Baseline Cache DMM Batch-LDA TTLM

Dev. WER (ERR) 17.9 16.7 (6.7) 16.9 (5.6) 16.7 (6.7) 16.4 (8.4)
Eval. WER (ERR) 21.0 20.0 (4.8) 20.2 (3.8) 19.9 (5.2) 19.7 (6.2)

Dev. # improved speakers – 10/10 10/10 10/10 10/10
Eval. # improved speakers – 9/10 10/10 9/10 10/10

Table 9
Word Error Rate (WER) and Error Reduction Rate (ERR) for the development and evaluation sets of TTLM and its variants.

TTLM 1st pass result TTLM w/o interpolation TTLM

Dev. WER (ERR) 16.4 (8.4) 16.5 (7.9) 16.4 (8.4)
Eval. WER (ERR) 19.9 (5.2) 19.8 (5.7) 19.7 (6.2)

Dev. # improved speakers 10/10 10/10 10/10
Eval. # improved speakers 10/10 10/10 10/10

Table 8 shows that the TTLM provided the best performance, thus confirming its effectiveness. First, we discuss the
TTLM and Batch LDA results. The main difference between them relates to the consideration of the topic dynamics
in a talk. Therefore, as in Section 4.1, we can confirm that the TTLM can properly model topic dynamics. Second, the
main difference between the DMM and the TTLM relates to the consideration of the long-term dependence.4 In this
experiment, the incremental adaptation unit was an utterance, which is prone to suffer from the over-training problem.
A TTLM with long-term dependence could properly mitigate the over-training problem by combining estimated
parameters in the current adaptation step with those in the past (S = 10) adaptation steps. Finally, the main difference
between the Cache and the TTLM is whether the unigram probabilities are estimated directly or indirectly via topic
proportion probabilities, as discussed in the Introduction. Therefore, this superiority of the TTLM also reveals its
effectiveness by further mitigating the over-training problem.

Finally, Table 9 (TTLM and TTLM w/o interpolation) compares the TTLM with/without using the interpolation
of the topic-independent word probability, as discussed in Section 2.5. This interpolation slightly improved the word
error rates by 0.1 %, which shows the effectiveness of this interpolation technique based on the TTLM by correctly
estimating the interpolation weights of the topic-independent word probability as well as those of the topic-dependent
word probabilities.

Thus, the two tasks in the speech recognition experiments (MIT-OCW and CSJ) show the effectiveness of the
TTLM. Therefore, we can conclude that the TTLM properly tracked temporal changes in language environments.

4.3. Computational consideration of TTLM

In this work, we were not greatly concerned with computation time, and our aim was to evaluate the proposed
approaches without search errors occurring during the beam search. Therefore, we used a sufficiently large beam
width during decoding, which took about 1.0 RTF for the MIT task and 0.8 RTFs for the CSJ task. The TTLM and
unigram-rescaling processes did not take much time (less than 0.1 RTF in total). The 2nd decoding step, as shown
in Fig. 3, required the same computation time as the 1st decoding step. Then, although decoding the entire system

4 The other difference between the TTLM and the original DMM is that the former can estimate hyper-parameters (precision parameters) in
Dirichlet distributions by using a stochastic EM algorithm at each chunk, while the DMM uses fixed precision parameters for all chunks. Therefore,
the precision parameters in the TTLM can be dynamically changed depending on the data in a chunk. However, we used the same precision
parameter estimation for the TTLM and the DMM in this experiment, to clarify the effectiveness of the long-term dependences. The effectiveness
of the hyper-parameter optimization in topic models is discussed in Asuncion et al. (2009).
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took 2.0–1.6 RTFs, it would be effective for off-line speech recognition applications. Furthermore, we experimentally
found that the difference of the recognition performance between the results of the 1st and 2nd pass decoding was not
so large, as shown in Table 9 (TTLM and TTLM 1st pass result). Therefore, although we used the 2nd pass decoding
in this paper, we may use only the 1st pass decoding if we require fast and low latency systems in some applications.
In addition, we can also reduce the computation time required for decoding by using a narrower beam width. The 2nd
pass decoding can also be quickly performed by searching for hypotheses in lattices, which were outputted by the 1st
decoding step.

Thus, the TTLM can be efficiently realized in speech recognition without increasing total computational cost so
heavily.

5. Summary

This paper proposed a topic tracking language model (TTLM) and applied it to the unlabeled (unsupervised)
incremental adaptation of language models. Experiments showed the effectiveness of the TTLM by achieving
improved performance in lecture and conference presentation adaptation tasks. However, the recognition performance
depends on the chunk or history size, and our future work will focus on extending the TTLM by jointly optimiz-
ing chunk/history sizes and latent topic models. In fact, one of the authors has extended the topic tracking model
to improve robustness against chunk size setting by considering the multiscale dynamics of latent topic models in
parallel (Iwata et al., 2010). In the future, we will consider the chunk/history size determination problem by consider-
ing the multi-scale dynamics or well-known Dirichlet process mixture approaches (e.g., Rasmussen, 2000; Teh et al.,
2006).

Our goal for this work is to model speech communication by taking various kinds of temporal changes in speech into
consideration (e.g., speakers (Akita and Kawahara, 2004) and roles (Huang and Renals, 2008) in addition to topics).
In this case, we have to deal with topic changes caused by scene switching. These are modeled by the state transition
from topic to topic (Griffiths et al., 2005; Hsu and Glass, 2006; Gruber et al., 2007; Sako et al., 2008; Chen et al.,
2009), and we will extend this work so that we can represent both the smooth and rapidly switching temporal changes
in speech that occur in acoustic and language environments.

We also consider that the word probability θ plays an interesting role in that the probabilities of the important words
in a certain latent topic change gradually over time. Although the experiments in this paper only used the dynamics of
the topic probabilities while the word probability for each chunk was fixed to avoid the over-training problem, we want
to exploit this phenomenon obtained by the on-line word probability estimation in speech recognition in the future.
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Appendix A. Derivation of inference

A.1. Marginalization of joint distribution

This section provides the derivation of the following marginalized joint distribution of data and latent topics in Eq.
(7).

P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) =
∫∫

P(Wt , Zt|φt , �t)P(φt|φ̂t−1, αt)P(�t|�̂t−1, βt)dφtd�t . (A.1)
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By substituting the concrete forms of the distributions (Eqs. (3), (5), and (6)) with normalization constants of the
Dirichlet distribution (CD(·)) into (A.1), we obtain the following equation

P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt)

=

∫∫ ∏
m

φtzmθtzmwm

∏
k

φαtφ̂t−1k−1
tk

∏
l

θβtk θ̂t−1kl−1
tkl dφtd�t

CD({αtφ̂t−1k}k)
∏
k

CD({βtkθ̂t−1kl}l)

=

∫∫ ∏
k

∏
l

φntk
tk θntkl

tkl φαt φ̂t−1k−1
tk θβtkθ̂t−1kl−1

tkl dφtd�t

CD({αtφ̂t−1k}k)
∏
k

CD({βtkθ̂t−1kl}l)

=

∫∫ ∏
k

φntk+αtφ̂t−1k−1
tk

∏
l

θntkl+βtkθ̂t−1kl−1
tkl dφtd�t

CD({αtφ̂t−1k}k)
∏
k

CD({βtkθ̂t−1kl}l)
,

(A.2)

where the integrals in (A.2) are analytically solved as normalization constants of the Dirichlet distribution:∫ ∏
k

φntk+αtφ̂t−1k−1
tk dφt = CD({ntk + αtφ̂t−1k}k), (A.3)

and ∫ ∏
k

∏
l

θntkl+βtkθ̂t−1kl−1
tkl d�t =

∏
k

CD({ntkl + βtkθ̂t−1kl}l). (A.4)

Therefore, by substituting Eqs. (A.3) and (A.4) into (A.2), P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) is rewritten as follows:

P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) =
CD({ntk + αtφ̂t−1k}k)

∏
k

CD({ntkl + βtkθ̂t−1kl}l)

CD({αtφ̂t−1k}k)
∏
k

CD({βtkθ̂t−1kl}l)
. (A.5)

The concrete form of the normalization constant CD is defined as follows:

CD({xi}i) =
Γ (

∑
i

xi)

∏
i

Γ (xi)
. (A.6)

Therefore, by substituting Eqs. (A.6) into (A.5), P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) is rewritten as follows:

P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) =
Γ (αt)∏

k

Γ (αtφ̂t−1k)

∏
k

Γ (ntk + αtφ̂t−1k)

Γ (nt + αt)

×
∏
k

Γ (βtk)∏
l

Γ (βtkθ̂t−1kl)

∏
l

Γ (ntkl + βtkθ̂t−1kl)

Γ (ntk + βtk)
. (A.7)

Thus, P(Wt , Zt|φ̂t−1, �̂t−1, αt, βt) is obtained as a Polya (Dirichlet-Multinomial) distribution:
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A.2. Gibbs sampling

This section provides the derivation of the conditional probability (Eq. (10)) for the Gibbs sampling. For simplicity,
we omit φ̂t−1, �̂t−1, αt, and βt from the conditions of the probabilities in this derivation. From the product (Bayes)
rule, we can derive the following equation:

P(zm = k|Wt , Zt\m) = P(Wt , Zt)

P(Zt\m)P(Wt|Zt\m)
. (A.8)

Then, we focus on P(Wt | Zt\m). From the summation and production rules and the i. i. d. assumption of the latent topic
model (i.e., P(Wt|Zt) = P(Wt\m|Zt\m)P(wm|zm = k)), we can derive the following equation:

P(Wt|Zt\m) =
K∑

k=1

P(Wt\m, wm, zm = k|Zt\m) = P(Wt\m|Zt\m)
K∑

k=1

P(wm|zm = k)P(zm = k)

︸ ︷︷ ︸
(∗)

. (A.9)

Factor (∗) does not depend on zm = k, which is the argument of the focused probability P(zm = k | Wt, Zt\m) in Eq. (A.8).
Therefore, we obtain the following proportional relation:

P(Wt|Zt\m) ∝ P(Wt\m|Zt\m). (A.10)

By substituting (A.10) into (A.8) and using the production rule, we obtain

P(zm = k|Wt , Zt\m) ∝ P(Wt , Zt)

P(Wt\m, Zt\m)
. (A.11)

The concrete form of the numerator (P(Wt, Zt)) in Eq. (A.11) is given in Eq. (7) (or (A.7)). The concrete form of the
denominator (P(Wt\m, Zt\m)) is obtained by using Eq. (A.7) as follows:

P(Wt\m, Zt\m) = Γ (αt)∏
k

Γ (αtφ̂t−1k)

Γ (ntzm − 1+ αtφ̂t−1zm )
∏

k /= zm

Γ (ntk + αtφ̂t−1k)

Γ (nt − 1+ αt)

×

⎛
⎜⎜⎝∏

k

Γ (βtk)∏
l

Γ (βtkθ̂t−1kl)

⎞
⎟⎟⎠

⎛
⎜⎜⎝ ∏

k /= zm

∏
l

Γ (ntkl + βtkθ̂t−1kl)

Γ (ntk + βtk)

⎞
⎟⎟⎠

×
Γ (ntzmwm − 1+ βtzm θ̂t−1zmwm )

∏
l /= wm

Γ (ntzml − 1+ βtzm θ̂t−1zml)

Γ (ntzm − 1+ βtzm )
. (A.12)

Therefore, by substituting Eqs. (A.7) and (A.12) into Eq. (A.11), we obtain

P(zm = k|Wt , Zt\m) ∝ Γ (ntk + αtφ̂t−1k)

Γ (nt + αt)

Γ (nt − 1+ αt)

Γ (ntk − 1+ αtφ̂t−1k)

×Γ (ntkwm + βtkθ̂t−1kwm )

Γ (ntk + βtk)

Γ (ntk − 1+ βtk)

Γ (ntkwm − 1+ βtkθ̂t−1kwm )
. (A.13)

By using Γ (x + 1) = xΓ (x), Eq. (A.13) is represented as follows:
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P(zm = k|Wt , Zt\m) ∝ (ntk − 1+ αtφ̂t−1k)

(nt − 1+ αt)

Γ (ntk − 1+ αtφ̂t−1k)Γ (nt − 1+ αt)

Γ (nt − 1+ αt)Γ (ntk − 1+ αtφ̂t−1k)

× (ntkwm − 1+ βtkθ̂t−1kwm )

(ntk − 1+ βtk)

Γ (ntkwm − 1+ βtkθ̂t−1kwm )Γ (ntk − 1+ βtk)

Γ (ntk − 1+ βtk)Γ (ntkwm − 1+ βtkθ̂t−1kwm )

= ntk\m + αtφ̂t−1k

nt\m + αt

ntkwm\m + βtkθ̂t−1kwm

ntk\m + βtk

. (A.14)

Thus, we derive the concrete form of Eq. (10), which is proportional to conditional probability P(zm = k | Wt, Zt\m).
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